工作空间

文章信息

张弢, 董春海. 2016
乙烯信号转导及其在植物逆境响应中的作用
生物技术通报, 2016, 32(10): 11-17

ZHANG Tao, DONG Chun-hai. 2016
Ethylene Signaling and Its Role in Plant Stress Response
Biotechnology Bulletin , 2016, 32(10): 11-17

文章历史

收稿日期:2016-06-23

乙烯信号转导及其在植物逆境响应中的作用
张弢 , 董春海     
青岛农业大学 生命科学学院,青岛 266109
摘要: 乙烯是一种重要的气态植物激素,在植物生长发育及响应生物或非生物胁迫过程中起着重要作用。在模式植物拟南芥中,乙烯首先被内质网膜上乙烯受体所感知,通过一系列下游信号组分进行转导,最终将信号传递到细胞核内转录因子,诱导相关目的基因的表达,从而显示乙烯反应。综述了近几年有关乙烯受体、乙烯信号转导组分及其调控因子的最新研究进展,同时对乙烯信号转导在植物逆境响应中的作用进行了探讨。
关键词乙烯     乙烯受体     乙烯信号转导     逆境响应    
Ethylene Signaling and Its Role in Plant Stress Response
ZHANG Tao , DONG Chun-hai     
College of Life Sciences, Qingdao Agricultural University, Qingdao 266109
Abstract: The gaseous phytohormone ethylene affects many aspects of plant growth, development, and stress responses. In the model plant Arabidopsis thaliana, ethylene binding to receptors triggers a kinase cascade that is propagated through a number of components to the nuclear transcription factors involved in the ethylene responsive gene expression and plant responses. This article reviews the update research on regulation of the ethylene receptors, the ethylene signal transduction, and the key regulators. Meanwhile, functional roles of the ethylene signaling and regulators in plant stress responses are also discussed.
Key words: ethylene     receptors     signaling     stress response    

乙烯是一种结构简单的小分子化合物,作为一种重要的气态植物激素,参与调节植物生长发育的多个过程;此外,乙烯也在植物响应生物和非生物胁迫过程中起重要的调控作用。典型的乙烯反应是黑暗条件下幼苗生长呈特别的“三重反应”,在拟南芥中表现为下胚轴变粗变短,主根生长受到抑制,并且顶端弯钩加剧。依据“三重反应”表型,在模式植物拟南芥中鉴定了一系列乙烯反应的突变体。通过对突变体进行分子遗传学研究,在拟南芥中建立了从内质网膜上对乙烯信号感知到细胞核内转录调控的一条线性乙烯信号转导模型[1, 2]。拟南芥乙烯受体家族由5个成员构成,ETR1、ERS1、ETR2、ERS2和EIN4,正常情况下,乙烯受体处于激活状态,与一个Raf类的Ser/Thr蛋白激酶CTR1结合并定位在内质网膜上,当乙烯结合到受体上时会改变其构象,使其进入无活性或关闭状态,处于关闭状态的受体无法与CTR1结合;失活后的受体-CTR1复合体不再磷酸化下游组分EIN2,此时EIN2因不被降解而激活,使得乙烯信号得以向下游传递[3, 4]。EIN2定位于细胞的内质网膜,EIN2的C端可以发生剪切并进入细胞核激活乙烯的下游信号分子。位于EIN2下游的是EIN3/EILs转录因子,激活的乙烯信号会阻断F-box蛋白成员EBF1和EBF2介导的EIN3降解;EIN3/EIL1作为乙烯信号传递中的初级转录因子激活ERFs、EBF2、PORA和PORB等下游基因表达,完成乙烯应答反应[5-8]。本文主要以模式植物拟南芥为例,对乙烯受体、乙烯信号转导途径的关键组分及其分子调控的最新研究进展进行综述;同时对乙烯信号转导在植物响应逆境胁迫反应中的作用进行探讨。

1 乙烯受体及其调控因子

乙烯信号的感知开始于乙烯分子与其受体的相互识别和结合,乙烯与其受体的高度亲和需要铜离子(Cu+)作为辅助因子。在模式植物拟南芥中共发现5个乙烯受体蛋白,包括ETR1、ERS1、ETR2、ERS2和EIN4;乙烯受体定位于内质网膜上,以负反馈形式控制乙烯信号的输出。根据乙烯受体蛋白氨基酸序列的相似性,5个受体成员又进一步分为了两个亚族,亚族1包括ETR1和ERS1,亚族2包括ETR2、ERS2和EIN4。乙烯受体蛋白结构比较保守,与细菌和真菌中存在的双组分蛋白激酶结构类似,N末端为结合乙烯的疏水性跨膜域;中部有1个保守的GAF域;C末端有一个与下游信号组分蛋白互作相关的组氨酸激酶信号输出域[1-3]

研究发现,进化上保守的RTE1(REVERSION-TO-ETHYLENE SENSITIVITY1)能够与乙烯受体互作并且负调控乙烯反应[9, 10]。RTE1在真核生物中普遍存在,已从不同物种中克隆了RTE1同源基因,例如番茄的SlGRSlGR1[11, 12]。遗传分析表明,拟南芥RTE1特异性地作用于乙烯受体ETR1,对其它的乙烯受体没有显著影响[13]。为了深入了解RT-E1的分子调控作用,Chang等[14]通过Split-Ub筛选得到了RTE1的互作蛋白细胞色素b5和一个脂类转运蛋白分子LTP1[15],初步分析表明细胞色素b5和LTP1参与乙烯受体ETR1信号转导的分子调控。

2 乙烯信号转导中的内质网-核桥接通路

CTR1是乙烯受体下游的另一个负调控因子。CTR1的N端可以与内质网上的乙烯受体相结合。利用Co-IP分析在体内与CTR1结合蛋白发现,可以从内质网组分中纯化得到ETR1蛋白,直接证明CTR1存在于内质网并与ETR1形成复合物[16]。CTR1的C端具有类似于哺乳动物Raf的丝氨酸/苏氨酸蛋白激酶的结构,体外磷酸化实验表明CTR1具有丝氨酸/苏氨酸蛋白激酶活性,活性特征类似于Raf1,但是CTR1与Raf相比,缺少锌指结构和结合Ras蛋白的结构域,说明CTR1与MAPKKK还存在一定的不同。

EIN2是位于CTR1下游的乙烯信号转导组分,EIN2的功能缺失突变体对乙烯完全不敏感,是乙烯信号转导中的正调控组分。EIN2基因编码一个定位于内质网膜的跨膜蛋白。研究结果表明,EIN2的N端作为一个跨膜结构接受上游的信号,而C端参与了乙烯的信号转导并将信号向下转导,即EIN2激活下游乙烯信号的“剪切、穿梭”模型。当细胞内乙烯浓度较高时,EIN2被激活且其C端(CEND)被蛋白酶剪切而脱离内质网进入细胞核并以某种方式激活EIN3/EIL1和乙烯反应[4, 5, 17]。Li等[18]发现细胞质中的EIN2识别并结合EBF1/2 mRNA的3' -UTR,并通过招募EIN5等相关调节因子形成点状结构P-body,进而抑制EBF1/2 mRNA的翻译,导致EBF1/2蛋白含量急剧减少,使得EIN3/EIL1在细胞核内大量积累,从而激活下游乙烯反应。

3 乙烯信号下游的转录调控因子

EIN3编码一个细胞核内的转录因子蛋白,在乙烯信号转导途径中位于EIN2下游[19]。拟南芥中有5个EIN3的类似蛋白EILs(EIN3-like proteins),分别为EIL1-EIL5,对拟南芥EIN3/EILs家族6个成员的研究发现,其中EIL1与EIN3的相似度最高,正调控拟南芥乙烯反应。EIN3/EIL1s作为转录因子直接结合下游的ERF基因启动子上的特定DNA序列,来诱导ERF基因的转录。属于泛素连接酶类的SCF复合体中的两种F-box蛋白EBF1/EBF2位于EIN3/EILs上游,可以在细胞核内直接与之发生互作。EBF1和EBF2调控EIN3/EIL1蛋白的积累和稳定性,间接对乙烯反应起负调控作用[22]。同时EIN3/EIL1可作为连接乙烯信号和茉莉酸信号调控植物发育和逆境胁迫[20, 21]

4 乙烯信号在植物逆境响应中的作用 4.1 在盐胁迫响应中的作用

盐胁迫是影响植物生长最主要的逆境因素之一,乙烯作为一种逆境胁迫响应激素在植物抗盐过程中起着重要的作用。一定水平的乙烯合成速率有利于增强植物体的盐胁迫抗性,例如,乙烯合成前体ACC处理可以显著增加野生型拟南芥幼苗在高盐环境下的抗盐能力和成活率[23]。同时,盐胁迫也会诱导乙烯的合成。高盐胁迫下,拟南芥中ACC合成酶基因AtACS4AtACS7的表达水平明显提高;烟草中NtACS1NtACO1NtACO2NtACO3基因的表达也受盐胁迫的诱导[24]

此外,乙烯信号转导途径中的各个组分也参与植物的盐胁迫反应。研究发现,在盐和渗透胁迫条件下,拟南芥乙烯受体基因ETR1的转录水平和蛋白丰度都显著下降;与野生型相比,功能获得性突变体etr1-1ein4-1etr2-1在种子萌发和幼苗生长发育阶段表现出对盐的敏感性;相反,功能缺失突变体etr1-7则表现出耐盐的表型特征[25-27]。在烟草中也发现,烟草乙烯受体基因NTHK1受盐诱导,异源表达烟草NTHK1的转基因拟南芥对盐的敏感性明显增加,而且也改变了盐应答相关基因的表达,例如促进了AtERF4COR6.6RD17RD21AVSP2基因的表达,但抑制了BBC1LEAAtNAC2基因的表达[26, 28-30]。乙烯信号转导的负调控因子CTR1也参与植物的盐胁迫反应。与野生型相比,ctr1-1突变体在种子萌发和幼苗生长阶段表现组成型的乙烯反应和盐胁迫抗性[27]。EIN2在响应盐胁迫的过程中起着正调控作用,拟南芥功能缺失突变体ein2-1ein2-5在种子萌发、幼苗生长及营养生长阶段都表现出盐敏感的表型,种子萌发和幼苗生长均延迟[29-31]。EIN3是乙烯信号转导中的正调控因子,在盐胁迫下,EIN3的表达水平达到最大,EIN3蛋白积累。拟南芥功能缺失突变体ein3-1对盐的敏感性明显增加;过表达EIN3株系则表现出较强的耐盐性[29]。作为乙烯信号途径下游组分,ERFs转录因子家族通过识别不同的顺式作用元件,调节多种功能基因的表达,参与植物逆境胁迫应答。许多ERF基因,例如拟南芥AtERF1AtERF5ESE1ESE2ESE3,小麦TaERF1,大豆GmERF7,茉莉酸和乙烯响应因子JERF1/3的表达都受乙烯和盐胁迫诱导[31-35]。拟南芥Aterf98-1、白菜BrERF4、枸杞子LchERF、苜蓿MsERF11和番茄SlERF5基因的过表达都提高了转基因株系的盐胁迫抗性[31, 35-38]

综上可见,无论是外施乙烯还是过表达乙烯合成基因,或是加强乙烯信号转导,都会增加植物对盐胁迫的耐受性。但也有报道指出,增加体内乙烯含量会提高植物对盐胁迫的敏感性,例如,ACS7和MPK9在促进乙烯合成后又导致植物对盐敏感性增加[39, 40];在水稻中SIT1促进乙烯合成后降低耐盐性,并且过表达OsEIL1或OsEIL2都使植物对盐敏感性增加[41]。这些结果表明乙烯的动态平衡在植物的盐胁迫反应中可能发挥更重要的作用。

4.2 在干旱胁迫响应中的作用

干旱是影响农业生产的主要非生物胁迫因子,严重威胁着作物的生存及其产量。研究显示,干旱胁迫下植物体内积累乙烯并影响植物的抗旱能力。大豆中干旱胁迫上调乙烯合成相关基因的表达,但抑制乙烯信号途径中的CTR1表达[42]。利用基因沉默技术抑制转基因玉米中的乙烯水平,能显著提高干旱环境下的玉米产量[43]。干旱环境下,植物通过调控基因表达实现对环境条件的适应,其中在转录水平的调控研究较多。植物中有许多胁迫相关的转录因子家族,例如bZIPWRKYAP2/ERFMYB[44-47]。其中ERF转录因子早期被称作乙烯应答元件结合蛋白(EREBP),是植物特有的一类转录因子,属于AP2/ERF转录因子家族。在已经发现的ERF转录因子中,一部分ERF转录因子通过与GCC-box的结合调控植物抗病相关基因及其它信号途径的基因表达;另一部分ERF转录因子则通过与DRE顺式作用元件的结合调控植物对非生物胁迫的响性。目前已经证实了很多ERF类转录因子与植物抗旱性有关。在烟草乙烯不敏感突变体中,干旱胁迫可诱导烟草NtAP2NtERF基因家族成员的高水平表达,耐旱性显著提高[48]。在水稻、烟草﹑番茄和小麦中过表达JERF3GmERF3SlERF5,可提高对干旱胁迫的抗性[49, 51-53]。同时,ERF转录因子在植物胁迫应答中,除了作为转录激活子激活植物胁迫相关的基因表达外,某些ERF转录因子也可作为转录抑制子,抑制某些胁迫相关基因的表达,例如,拟南芥中的ERF转录因子RAP2.1可以在体内直接和干旱和低温响应的功能基因(RD/COR)启动子区域的DRE元件结合从而抑制这些基因的表达[54]。拟南芥AtERF4也通过负调节植物防卫基因PDF1.2的表达,进而调控乙烯反应;在拟南芥中过量表达AtERF4将导致植株对干旱更为敏感[55]

4.3 在低温胁迫响应中的作用

与其他环境胁迫不同,低温胁迫下植物体内乙烯含量明显降低并维持在较低水平。乙烯合成基因过表达或外施ACC会提高内源乙烯含量从而降低植物体的耐寒性;相反,外施乙烯抑制剂AVG或AgNO3时则会增强植物体对低温的抵抗能力,说明乙烯在植物响应低温胁迫中起负调控作用。另外,乙烯不敏感突变体如etr1-1ein4-1ein2-5ein3-1ein3都表现出抗寒性增强,过表达EIN3则会降低植物的抗寒性[56]

乙烯参与植物抗寒性主要是通过CBF依赖的冷响应基因和A-型的ARRs基因而实现的。CBF基因属于AP2/ERF转录因子家族中的成员,调控上百种COR基因的表达,它们的启动子含有保守基序CCGAC,称为CRT/DRE顺式调节元件。CBF可以识别并结合启动子区的CRT序列,调控这类COR基因的表达。拟南芥中参与低温信号途径的CBF基因有3个,CBF1/DREB1BCBF2/DREB1CCBF3/DREB1ACBF1CBF3敲除株系表现冷敏感的表型,cbf2缺失突变体植株则表现抗低温;拟南芥中过表达CBFs植株表现出比野生型植株更加抗冷、抗旱和抗盐的表型;说明CBFs是低温信号途径中的正调控因子[57, 58]。还有一些AP2/ERF转录因子也参与植物的低温胁迫应答。例如,TERF2/LeERF2可结合ACSACO等乙烯合成基因的启动子元件,激活它们的表达,乙烯进而激活低温胁迫相关基因PRB-1bOsmotin的表达,提高植物对低温的耐受性[59]。过表达烟草TERF2的番茄植株体内的渗透调节物质含量和叶绿素水平明显提高,ROS、MDA含量和离子渗漏明显降低;同时还激活了低温相关基因OsFer1OsTrx23OsLti6等的表达,对低温胁迫的抗性明显提高;而反义表达TERF2的番茄植株则降低了对低温的耐受能力,但喷施外源乙烯可恢复番茄植株的低温抗性,表明TERF2通过乙烯信号途径来调控对低温胁迫的抗性反应[60]。在葡萄中,低温促进乙烯释放,施用乙烯合成抑制剂降低其抗冷性,而过量表达VaERF057则提高转基因拟南芥的抗冷性,说明乙烯在调控植物的低温胁迫反应中作用不同,可能与植物种类有关[61]

4.4 在生物胁迫响应中的作用

乙烯不仅在植物的非生物胁迫响应中发挥作用,植物中还存在大量与生物胁迫响应有关的ERF型转录因子。拟南芥AtERF1AtERF2AtERF14基因通过乙烯和茉莉酸信号转导途径,在抵抗生物胁迫过程中起着至关重要的作用,过表达AtERF2表现出较强的抗病性以及能诱导大量抗病相关基因的表达[62]。转基因植株中过量表达海岛棉乙烯反应相关因子GbERF1,通过激活木质素合成提高了黄萎病抗性[63]。烟草中分离的Tsi1基因,特异地与GCC盒和DRE/CRT元件结合;过表达Tsi1的转基因烟草植株对盐胁迫和细菌的耐受能力明显提高[64]。在拟南芥中超量表达番茄基因Pti4,能够激活水杨酸调控基因PR1PR2的表达,同时激活茉莉素及乙烯调控基因PR3PR4、PDF1.2Thi2.1的表达。番茄Pti4在拟南芥中超表达也提高了其对真菌病原物和细菌病原物的抵抗能力[65]。研究表明,植物激素参与不同的防御相关基因的激活,在激素介导的逆境胁迫防御中起着重要的桥梁作用[66, 67]

5 展望

乙烯信号转导是一个复杂的分子调控过程,信号传导途径的每个重要组分在不同分子水平上受到严格的调节和控制。过去几年,虽然人们对乙烯信号传导途径及其重要组分的分子调控取得了一些进展,但关于乙烯信号转导的分子机制和乙烯反应调控因子的作用机制仍远未探究清楚,很多乙烯反应和乙烯信号转导的重要调控因子尚未挖掘出来。特别是乙烯受体的调控因子有哪些,乙烯受体的信号转导如何调控,调控因子的分子作用机制等,都是亟需回答的重要科学问题。同时,乙烯信号传导途径并不是独立存在的,与其它植物激素如生长素、赤霉素、脱落酸等具有交互作用,因此,通过继续挖掘每个信号组分的功能与作用机制,从而建立完善的乙烯信号网络可以为今后构建植物各个生理阶段的激素互作调控模型奠定基础。

近年来全球气候变暖,人口数量增加,环境条件恶化,植物所面临的生存逆境,如高温、干旱、高盐、低温及病害等问题日趋严峻,对农业生产构成了较大的威胁。目前,植物激素的抗逆机理受到科研工作者的高度关注,乙烯同植物抗逆性的关系研究取得了一定的进展,初步认识到乙烯在植物抗逆性中的复杂作用。但是,乙烯在植物响应逆境胁迫过程中的具体调控机制尚不明确,逆境胁迫下乙烯的作用机理有待于进一步深入探索,特别是如何应用乙烯来合理调控植物的生长发育,增强植物的环境适应能力,最终培育筛选出抗性高产的优良品种。

参考文献
[1] Binder BM, Chang C, Schaller GE. Perception of ethylene by plants-ethylene receptors[M]// McManus MT. Annual plant reviews vol. 44: The plant hormone ethylene. Oxford: Wiley-Blackwell, 2012: 117-45.
[2] Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol , 2004, 7 : 40–49. DOI:10.1016/j.pbi.2003.11.011
[3] Bisson MMA, Groth G. New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant , 2010, 3 : 882–889. DOI:10.1093/mp/ssq036
[4] Ju C, Yoon GM, Shemansky JM, et al. CTR1phosphorylates EIN2 to control ethylene signaling from the ER membrane o the nucleus. Proc Natl Acad Sci USA , 2012, 9 : 19486–19491.
[5] Wen X, Zhang C, Ji Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res , 2012, 22 : 1613–6. DOI:10.1038/cr.2012.145
[6] Li W, Ma M, Feng Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell , 2015, 163 : 670–83. DOI:10.1016/j.cell.2015.09.037
[7] Merchante C, Brumos J, Yun J, et al. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell , 2015, 163 : 684–97. DOI:10.1016/j.cell.2015.09.036
[8] An F, Zhao Q, Ji Y, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2in Arabidopsis. Plant Cell , 2010, 22 : 2384–401. DOI:10.1105/tpc.110.076588
[9] Resnick JS, Wen CK, Shockey JA, et al. REVERSION-TOETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA , 2006, 103 : 7917–7922. DOI:10.1073/pnas.0602239103
[10] Dong CH, Jang M, Scharein B, et al. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. J Biol Chem , 2010, 285 : 40706–40713. DOI:10.1074/jbc.M110.146605
[11] Barry CS, Giovannoni JJ. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA , 2006, 103 : 7923–7928. DOI:10.1073/pnas.0602319103
[12] Ma Q, Du W, Brandizzi F, et al. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato. Plant Physiol , 2012, 160 : 1968–1984. DOI:10.1104/pp.112.205476
[13] Rivarola M, Mcclellan CA, Resnick JS, et al. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1. Plant Physiol , 2009, 150 : 547–551. DOI:10.1104/pp.109.138461
[14] Chang JH, Clay JM, Chang C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. Plant J , 2014, 77 : 558–567. DOI:10.1111/tpj.2014.77.issue-4
[15] Wang H, Sun Y, Chang J, et al. Regulatory function of Arabidopsis lipid transfer protein 1(LTP1)in ethylene response and signaling. Plant Molecular Biology , 2016, 91 : 471–484. DOI:10.1007/s11103-016-0482-7
[16] Gao Z, Chen YF, Randlett MD, et al. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem , 2003, 278 : 34725–34732. DOI:10.1074/jbc.M305548200
[17] Ji Y, Guo H. From endoplasmic reticulum(ER)to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant , 2013, 6 : 11–14. DOI:10.1093/mp/sss150
[18] Li WY, Ma MD, Feng Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell , 2015, 163 : 670–683. DOI:10.1016/j.cell.2015.09.037
[19] Solano R, Stepanova A, Chao Q, et al. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE -FACTOR1. Genes Dev , 1998, 12 : 3703–3714. DOI:10.1101/gad.12.23.3703
[20] Zhu Z, An F, Feng Y, et al. Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA , 2011, 108 : 12539–12544. DOI:10.1073/pnas.1103959108
[21] Song S, Huang H, Gao H, et al. Interaction between MYC2 and ETHYLENEIN SENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell , 2014, 26 : 263–79. DOI:10.1105/tpc.113.120394
[22] An F, Zhao Q, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2in Arabidopsis. Plant Cell , 2010, 22 : 2384–401. DOI:10.1105/tpc.110.076588
[23] Achard P, Cheng H, De Grauwel, et al. Integration of plant responses to environmentally activated phytohormonal signals. Science , 2006, 311 (5757) : 91–94. DOI:10.1126/science.1118642
[24] Wang NN, Shih MC, Li N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot , 2005, 56 (413) : 909–920. DOI:10.1093/jxb/eri083
[25] Cao WH, Liu J, Zhou QY, et al. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ , 2006, 29 : 1210–1219. DOI:10.1111/pce.2006.29.issue-7
[26] Wang Y, Wang T, Li K, et al. Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress. Plant Growth Regul , 2008, 54 : 261–269. DOI:10.1007/s10725-007-9249-0
[27] Cao Y, Chen S, Zhang J. Ethylene signaling regulates salt stress response. Plant Signaling & Behavior , 2008, 3 : 761–763.
[28] He X, Mu R, Cao W, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J , 2005, 44 : 903–916. DOI:10.1111/tpj.2005.44.issue-6
[29] Wang Y, Liu C, Li K, et al. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol , 2007, 64 : 633–644. DOI:10.1007/s11103-007-9182-7
[30] Peng J, Li Z, Wen X, et al. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet , 10 : e1004664. DOI:10.1371/journal.pgen.1004664
[31] Zhang L, Li Z, Quan R, et al. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiology , 2011, 157 : 854–865. DOI:10.1104/pp.111.179028
[32] Xu Z, Xia L, Chen M, et al. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1(TaERF1)that increases multiple stress tolerance. Plant Mol Biol , 2007, 65 : 719–732. DOI:10.1007/s11103-007-9237-9
[33] Wang H, Huang Z, Chen Q, et al. Ectopic over-expression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol , 2004, 55 : 183–192. DOI:10.1007/s11103-004-0113-6
[34] Zhai Y, Wang Y, Li Y, et al. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene , 2013, 513 : 174–183. DOI:10.1016/j.gene.2012.10.018
[35] Zhang H, Huang Z, Xie B, et al. The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta , 2004, 220 : 262–270. DOI:10.1007/s00425-004-1347-x
[36] Chen T, Yang Q, et al. An alfalfa(Medicago sativa L.)ethylene response factor gene, MsERF11, enhances salt tolerance in transg-enic Arabidopsis. Plant Cell Rep , 2012, 31 : 1737–1746. DOI:10.1007/s00299-012-1287-z
[37] Wu D, Ji J, Wang G, et al. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Rep , 2014, 33 : 2033–2045. DOI:10.1007/s00299-014-1678-4
[38] Liu W, Wang Y, Gao C. The ethylene response factor(ERF)genes from Tamarix hispida respond to salt, drought and ABA treatment. Trees , 2014, 28 : 317–327. DOI:10.1007/s00468-013-0950-5
[39] Dong H, Zhen Z, Peng J, et al. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J Exp Bot , 2011, 62 (14) : 4875–4887. DOI:10.1093/jxb/err143
[40] Xu J, Li Y, Wang Y, et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem , 2008, 283 (40) : 26996–27006. DOI:10.1074/jbc.M801392200
[41] Yang C, Ma B, et al. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol , 2015, 169 : 148–165. DOI:10.1104/pp.15.00353
[42] Arraes FBM, Beneventi MA, Sa MELD, et al. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. Bmc Plant Biology , 2015, 15 (1) : 1–20. DOI:10.1186/s12870-014-0410-4
[43] Habben JE, Bao X, et al. Transgenic alteration of ethylene biosynt-hesis increases grain yield in maize under field drought-stress con-ditions. Plant Biotechnology Journal , 2014, 12 (6) : 685–693. DOI:10.1111/pbi.2014.12.issue-6
[44] Wan L, Zhang J, Zhang H, et al. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One , 2011, 6 : e25216. DOI:10.1371/journal.pone.0025216
[45] Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis. Trends Plant Sci , 2002, 7 : 106–111. DOI:10.1016/S1360-1385(01)02223-3
[46] Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley. Plant Mol Bio , 2004, l55 : 399–416.
[47] Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell , 1997, 9 : 1859–1868.
[48] Wang H, Wang F, Zheng F, et al. Ethylene-insensitive mutants of Nicotiana tabacum exhibit drought stress resistance. Plant Growth Regulation , 2016, 79 : 107–117. DOI:10.1007/s10725-015-0116-0
[49] Wu L, Zhang Z, Zhang H, et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol , 2008, 148 : 1953–1963. DOI:10.1104/pp.108.126813
[50] Zhang Z, Zhang H, Quan R, et al. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol , 2009, 150 : 365–377. DOI:10.1104/pp.109.135830
[51] Pan Y, Seymour GB, Lu C, et al. An ethylene response factor(ERF5)promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep , 2012, 31 : 349–360. DOI:10.1007/s00299-011-1170-3
[52] Quan R, Hu S, Zhang Z, et al. Overexpression of an ERF transcription factor TSRF1, improves rice drought tolerance. Plant Biotechnology Journal , 2010, 8 (4) : 476–88. DOI:10.1111/pbi.2010.8.issue-4
[53] Rong W, Qi L, et al. The ERF transcription factor TaERF3 prom-otes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal , 2014, 12 (4) : 468–479. DOI:10.1111/pbi.2014.12.issue-4
[54] Dong CJ, Liu JY. The Arabidopsis EAR-motif-containing protein RAP2. 1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol , 2010, 10 : 47. DOI:10.1186/1471-2229-10-47
[55] Yang Z, Tian L, Latoszek-Green M, et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol , 2005, 58 : 585–596. DOI:10.1007/s11103-005-7294-5
[56] Shi Y, Tian S, Hou L, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and Type-A ARR genes in Arabidopsis. The Plant Cell , 2012, 24 : 2578–2595. DOI:10.1105/tpc.112.098640
[57] Miura K, Furumoto T. Cold signaling and cold response in plants. International Journal of Molecular Sciences , 2013, 14 (3) : 5312–5337. DOI:10.3390/ijms14035312
[58] Ye S K, Lee M, Lee J H, et al. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Molecular Biology , 2015, 89 (1-2) : 1–15. DOI:10.1007/s11103-015-0347-5
[59] Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol , 2010, 73 : 241–249. DOI:10.1007/s11103-010-9609-4
[60] Tian Y, Zhang H, Pan X, et al. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res , 2011, 20 : 857–866. DOI:10.1007/s11248-010-9463-9
[61] Sun X, Zhao T, Gan S, et al. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Scientific Reports , 2016, 6 .
[62] O?ate-Sánchez L, Anderson JP, Young J, et al. AtERF14, a member of the ERF family of transcription factors, plays a non redundant role in plant defense. Plant Physiol , 2007, 143 : 400–409.
[63] Guo W, Li J, Miao Y, et al. An ethylene response-related factor, GbERF1 -like, from Gossypium barbadense, improves resistance to Verticillium dahliae, via activating lignin synthesis. Plant Molecular Biology , 2016, 91 (3) : 1–14.
[64] Nishiuchi T, Suzuki K, Kitajima S, et al. Wounding activates immediate early transcription of genes for ERFs in tobacco plants. Plant Mol Biol , 2002, 49 : 473–482. DOI:10.1023/A:1015553232309
[65] Gu YQ, Wildermuth MC, Chakravarthy S, et al. Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell , 2002, 14 : 817–831. DOI:10.1105/tpc.000794
[66] Guo W, Li J, Miao Y, et al. An ethylene response-related factor, GbERF1 -like, from Gossypium barbadense, improves resistance to Verticillium dahliae, via activating lignin synthesis. Plant Molecular Biology , 2016, 91 (3) : 1–14.
[67] Yang Y X, Ahammed G J, et al. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Current Protein & Peptide Science , 2015, 16 (5) .