2.甘肃省肿瘤医院,兰州 730050;
3. 兰州理工大学生命科学与工程学院,兰州 730050
2.Gansu Provincial Cancer Hospital,Lanzhou 730050;
3.College of Life Science and Engineering,Lanzhou University of Technology,Lanzhou 730050
大量研究表明,整个真核生物基因组转录产物几乎是非编码RNA (ncRNAs)[1]。ncRNAs曾被一度认为是基因组中无功能的转录噪音[2],根据其长短分为长链、中链和短链ncRNAs。短链ncRNAs是一类长度介于18-25 nt之间的RNA分子[3],如microRNA,作为肿瘤标志物已经得到广泛的认同和应用。长链非编码RNA (Long non-coding RNAs,lncRNAs)广泛存在于哺乳动物基因组中,是一类长度在200-100 000 nt之间的内源性细胞RNA,缺乏明显的可编码蛋白的开放阅读框,其占RNA总量的98%。尽管大多数lncRNAs的功能尚不明确,但许多研究发现,在正常发育和疾病发生过程中,lncRNAs参与基因表达调控,并发挥重要作用。根据lncRNAs在基因组中的位置不同及特性差异[4],将其分为正义长非编码RNA (Sense lncRNA);反义长非编码RNA (Antisense lncRNA);双向长非编码RNA (Bidirectional lncRNA);基因间RNA (Large intergenic noncoding RNA);内含子非编码RNA (Intronic transcript)。lncRNAs作为一类重要的遗传调控因子,具有种类多、数量多、作用模式多等特点。随着对lncRNAs的深入研究发现,lncRNAs与肿瘤的发生、发展密切相关,并且在干细胞全能性和自我更新方面发挥至关重要的作用。本研究通过国内外最新研究就lncRNAs在肿瘤和干细胞中的功能及相关机制作一综述。 1 lncRNAs与肿瘤
lncRNAs作为一类有功能的转录本,参与各种生物学过程。近年来,随着高通量测序及芯片技术的快速发展,科学家采用多种不同的技术手段,测定正常组织和肿瘤组织中lncRNAs的表达水平,发现其表达量在两者中存在显著差异。研究表明,lncRNAs是肿瘤发生、发展过程中的重要调控分子,起着致癌或抑癌作用。一些lncRNAs表现出不同的基因表达模式,并在各种类型的恶性肿瘤细胞中起着重要作用[5, 6]。此外,lncRNAs与肿瘤的侵袭、浸润、转移及预后有关,有望成为肿瘤治疗的新靶标。 1.1 lncRNAs与前列腺癌
前列腺癌是男性常见的恶性肿瘤之一。前列腺癌抗原3(PCA3)是仅在前列腺癌组织中表达的lncRNA,具有较好的组织特异性。PCA3通过调节雄激素受体(AR)信号转导通路使其表达上调进而促进前列腺癌细胞(PCa)的增殖[7]。LNCaP细胞通过siRNA靶向沉默PCA3的表达,可抑制PCa的增殖[8]。因此,PCA3作为高敏感性和高特异性的生物标志物用于前列腺癌的诊断[9, 10],可提高诊断的准确率。PCEGM1是具有高特异性的前列腺癌相关的lncRNA,其表达上调可促进细胞增殖,与前列腺癌的发生和发展密切相关,有望成为前列腺癌治疗的潜在靶标[11]。Malik等[12]发现敲除lncRNA PCAT29,能够促进前列腺癌细胞的增殖和迁移,且低表达的PCAT29显示预后不良。H19-衍生的MicroRNA675能够抑制前列腺癌转移,为晚期前列腺癌的治疗提供了新的突破口[13]。 1.2 lncRNAs与胃癌
根据全球癌症统计,胃癌发病率排名第4位[14, 15]。最新研究发现的FENDRR是一种在胃癌中低表达的lncRNA,其长度为3 099 nts,FENDRR通过与多梳抑制复合体2(PCR2)结合进而从表观遗传学水平调控靶基因的表达,如通过影响纤维连接蛋白1(FN1)和MMPs的表达量调控胃癌细胞的转移,其介导的FN1和MMPs表达下调会抑制胃癌细胞的转移。同时,FENDRR的低表达显示胃癌预后不良[16]。此外,新型的lncRNA GACAT1的表达水平与胃癌转移情况呈明显的负相关[17]。Sun等[18]研究发现的母系印迹基因3(MEG3)编码的lncRNA在胃癌组织中表达上调,可刺激P53蛋白表达量进而抑制胃癌细胞生长并促进细胞凋亡。临床结果显示,低表达的MEG3 lncRNA患者预后不良,肿瘤分期越晚,其表达水平越低,患者存活时间越短。因此,MEG3 lncRNA可作为胃癌预后的一项指标。 1.3 lncRNAs与乳腺癌
多项研究表明,lncRNAs作为致癌因子在乳腺癌中异常表达。在lncRNAs分子水平上,研究其在乳腺癌中发生的分子机制,对乳腺癌的治疗提供一定的理论依据[19]。HOTAIR是一种lincRNA分子,具有致癌作用,在大多数实体瘤中过表达,通过染色质重组促进癌转移。1/4乳腺癌患者中HOTAIR的表达水平上调,对其进行siRNA干扰,能够明显抑制乳腺癌细胞的转移[20],这表明,HOTAIR可以作为乳腺癌的治疗靶点。lncRNA GAS5在乳腺癌中表达下调,不利于患者预后[21]。lncRNA PINX1作为乳腺癌中主要的抑癌基因之一,在乳腺癌细胞系中过表达,为乳腺癌发生的分子机制的进一步研究提供了信息[22]。与正常组织相比,lncRNAloc554202在乳腺癌组织中的表达水平显著增加,敲除loc554202能有效的降低乳腺癌细胞增殖,诱导细胞凋亡,抑制体内肿瘤生长、体外肿瘤迁移和侵袭等[23]。Ding等[24]发现了538种在乳腺癌组织中异常表达的lincRNAs,作为肿瘤抑制基因在乳腺癌的发展中发挥了重要作用。例如,lincRNA-BC8与孕激素受体水平呈负相关,BC5的表达水平与患者的年龄、病理分期、孕激素受体呈正相关,BC4在乳腺癌晚期高表达。 1.4 lncRNAs与结肠癌
与结肠癌相关的转录因子CCAT1,是长度为2 628 nt的lncRNA,位于转录因子C-Myc的附近。C-Myc通过直接结合在它的启动子区域促进CCAT1转录[25]。研究发现,CCAT1在许多癌症中高表达,包括胃癌和结肠腺瘤癌,其表达量增加的幅度与患者临床分期、淋巴结转移、术后生存率有关。CCAT1在结肠癌细胞中表达上调能促进细胞增殖和侵袭,以此预测结肠癌的临床结果。lncRNA OCC-1在结肠癌患者中的表达量明显升高,对肠癌亚型的鉴别提供了有价值的参考[26]。 1.5 lncRNAs与肺癌
近年来研究发现,寻找非小细胞肺癌(Non-small cell lung cancer,NSCLC)有效的诊断和预后生物标志物至关重要。MALAT1是最早被发现于NSCLC中与肺腺癌转移相关的lncRNA,在转移患者与非转移患者中其表达量具有显著的差异[27, 28]。Luo等[29]发现,肺癌患者组织中lncRNA CARLO-5表达上调,临床预后较差,这表明CARLO-5可以作为肺癌的一个新型预后指标和NSCLC潜在的治疗靶点。White等[30]从肺腺癌和肺鳞状细胞癌中检测出111个差异表达的与肺癌相关的lincRNAs (LCALs),许多LCALs的表达水平与肺癌中关键致癌基因的突变密切相关,对肺癌细胞增殖过程的调控发挥重要作用。研究报道的HOTAIR在转移性肺癌组织中过表达,从而促进肿瘤细胞侵袭和转移[31]。Sun等[32]研究的lncRNA SPRY4的内含子转录物1(SPRY4-1T1)在NSCLC细胞中具有显著的抗癌作用,表达下调会导致细胞生长停滞、侵袭抑制和凋亡率上升,并且SPRY4-1T1低表达量患者存活时间较短,可以判断NSCLC预后不良。Sox2是肺鳞状细胞癌(SCCs)相关的lncRNA,Sox2高表达患者的存活时间较短,其可以成为疾病的预后因素[33]。此外,研究发现的SCAL1是与烟草介导的肺癌相关的lncRNA[34]。 1.6 lncRNAs与膀胱癌(Urothelial carcinoma,UC)
Peter等[35]通过芯片技术分别检测83个正常组和UC患病组样本发现,17 112个lncRNAs和22 074个mRNAs。根据肿瘤的表型鉴定发现,UC中的lncRNAs表达上调,其中32种lncRNAs在UC病情恶化时扮演重要角色。研究表明,lncRNAs可以作为UC的预后标志物。 1.7 lncRNAs与食管癌
食管鳞状细胞癌(Esophageal squamous cell carcinoma,ESCC)是东亚地区最常见且致命率很高的肿瘤之一。近来研究表明,HOTAIR和POU3F3是与ESCC发病率密切相关的lncRNAs,高表达的HOTAIR与食管癌的TNM分期有关。同时,lncRNA ESCCAL-1参与食管癌的病理进程,在食管癌组织中表达上调[36]。最新发现的牛磺酸上调基因1(Taurine-upregulated gene 1,TUG1)能招募结合至PRC2,与癌旁组织相比,ESCC中的TUG1过表达,可能与上段食管癌或家族史有关,通过体外siRNA沉默TUG1可以抑制ESCC细胞的增殖和迁移,并且能够阻断细胞周期的进程,TUG1在ESCC中具有潜在的致癌作用[37]。很多lncRNAs与相邻的编码基因具有协同作用,可以形成lncRNA-mRNA基因对,研究报道的FOXCUT (FOXC1上游启动子转录)及其邻近的基因FOXC1在ESCC的形成及发展中有望成为潜在的预后生物标志物和治疗靶标[38]。但ESCC的预后仍然较差,因此仍需进一步探索作用机制和治疗靶标。 2 lncRNAs与干细胞
近年来,通过对干细胞中lncRNAs的诸多研究发现,lncRNAs能够维持干细胞全能性,参与调控干细胞基因表达,并有助于调节一些干细胞的自我更新和分化。 2.1 lncRNAs与胚胎干细胞(Embryonic stem cell,ESCs)
人们最先在小鼠ESCs中发现了与全能性相关的lncRNAs,其作为ESCs调节回路中的重要组成成员[39],受多种多能性相关转录因子的调控(如Oct4、Sox2、cMyc、nMyc、TCF3、Smad、Nanog、KLF4和ZFX等)[40]。Sheik Mohamed等[41]研究小鼠ESCs中全基因组的转录调控网络揭示了许多内源性lincRNAs。通过对其中两种lincRNAs (Ak028326和Ak141205)的研究发现,lincRNAs在维持ESCs全能性方面发挥了重要作用。此外,ESCs中的lincRNAs可以直接作为多能性转录因子的靶基因。Guttman等[42]研究发现了226种ESCs中表达的lincRNAs,其中93%以上的lincRNAs能够影响ESCs中基因表达模式。有26种lincRNAs能够显著影响干细胞多能性重要因子Nanog的表达水平,表明lincRNAs参与维持ESCs多能性。同时,他们通过对ESCs分化过程的研究发现,多种与之相关的lincRNAs,验证了lincRNAs是ESCs特异性分化的关键调节器。最后,他们还发现了74种lincRNAs与ESCs中染色质修饰蛋白密切相关。Huarte等[43]提出lincRNAs可通过采取顺式调控或者反式调控的方式实现对基因表达的调控。而lincRNAs与染色质重构蛋白复合物结合形成的物质也是维持ESCs全能性所必需的,能起到基因支架的作用。Loewer等[44]发现的linc-RoR被认为是一种重要的重新编码调控器,在核心多能性转录因子TFs的调控下,其表达水平与全能性密切相关。Wang等[45]通过检测linc-RoR不同时间点的的表达水平,发现人类胚胎干细胞(hESCs)分化过程中linc-RoR的表达急剧下调,可以作为衡量hESCs自我更新和多能性方面潜在的标志物。
总之,受多能性转录因子调控的lncRNAs的过表达或者低表达都可能影响ESCs全能性的维持,并且lncRNAs能够调控ESCs细胞系的特殊分化[42]。 2.2 lncRNAs与成体干细胞
研究表明,许多lncRNAs能够调节成体干细胞的自我更新和分化能力。Zuo等[46]研究早期C3H10T1/2骨髓间充质干细胞(BMSCs)向成骨细胞诱导分化,在诱导因子BMP-2处理组和未处理组中发现了116个差异表达的lncRNAs。Ramos等[47]发现,神经胶质细胞向成体神经干细胞分化的过程中,lncRNAs Six3os和Dixlas调节其分化。此外,他们全面分析了成体小鼠的脑室下区神经干细胞系中lncRNAs的表达水平发现,特定的lncRNAs与神经细胞类型相关。Yildirimet等[48]发现lncRNAs Xist是造血干细胞长期生存所必需的。Kretz等[49]在上皮细胞中发现了名为反变异非编码RNA (ANCR)的lncRNA在维持细胞未分化态方面起重要作用。 2.3 lncRNAs与多能干细胞(Induced pluripotent stem cells,iPSCs)
Loewer等[44]通过研究人类iPSCs中lincRNAs的转录重组可以推断许多lincRNAs与iPSCs的全能性相关。此外,在iPSCs中发现了10种高表达的lincRNAs,可以作为关键多能性转录因子的直接目标。linc-RoR在iPSCs中表达上调,能够促使iPSCs形成集落。 2.4 lncRNAs与间充质干细胞(Mesenchymal stem cells,MSCs)
Li等[50]通过多种技术手段测定多发性骨髓瘤MSCs中lncRNA MALAT1的表达水平发现,MALAT1转录子通过促进LTBP3启动子的关键转录因子Sp1的转录激活,招募Sp1到LTBP3基因进而调控TGF-β的生物利用度。LTBP3启动子的转录激活机制取决于MALAT1启动LTBP3邻近基因和参与Sp1和LTBP3启动子特异性激活的直接作用。结果显示,MALAT1直接作用于Sp1和LTBP3,进而促进LTBP3基因的过表达。因此,lncRNA MALAT1在细胞转化中能够作为潜在的生物标志物,为肿瘤治疗提供新思路。 3 小结
首先,lncRNAs作为一种优于传统肿瘤标志物的新型分子,具有时间、空间特异性及良好的稳定性,能够反应重要的生物学和病理学信息。其次,lncRNAs作为肿瘤和干细胞生物学中关键的基因表达调控分子,通过与DNA、RNA、蛋白质分子等相互作用,参与癌症发展的一系列过程,如表观遗传调控、染色质重组、转录、转录后调控等。研究显示[51],lncRNAs在癌前病变组织中异常表达,为肿瘤早期诊断、预防肿瘤发生等方面奠定了坚实的基础。此外,肿瘤患者体液中可检测到具有较高敏感性和特异性的肿瘤相关的lncRNAs,为肿瘤的无创性诊断提供了新方法。但目前对基因转录调控网络的研究还不完善,lncRNAs的种类、数量、功能尚不明确,对其具体作用机制也知之甚少,同时,很多lncRNAs的组织、器官特异性比较低。因此,对lncRNAs在肿瘤和干细胞中分子机制的研究应成为当前研究的重点,这样便于深入了解疾病发生的机理,使得lncRNAs在肿瘤诊断、临床分期和预后判断等方面显示出广阔的应用前景,同时作为潜在的治疗靶点为新型靶向药物的研发提供了重要依据。此外,使人们进一步明确lncRNAs调控干细胞中复杂信号通路的机制及调控肿瘤干细胞的机理,进而为肿瘤治疗提供新的突破口。
[1] | Mathieu EL, Belhocine M, Dao LT, et al. Functions of lncRNA in development and diseases[J]. Medecine Sciences, 2014, 30(8-9): 790-796. |
[2] | Van Bakel H, Nislow C, Blencowe BJ, et al. Most“ dark matter” transcripts are associated with known genes[J]. PLoS Biology, 2010, 8(5):e1000371. |
[3] | Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs[J]. Cell, 2011, 145 :178-181. |
[4] | Maruyama R, Suzuki H. Long noncoding RNA involvement in cancer[J]. BMB Reports, 2012, 45(11):604-611. |
[5] | Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell, 2007, 129(7):1311-1323. |
[6] | Lin R, Maeda S, Liu C, et al. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas[J]. Oncogene, 2007, 26(6):851-858. |
[7] | Ferreira LB, Palumbo A, de Mello KD, et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling[J]. BMC Cancer, 2012, |
[8] | Wang Y, Liu XJ, Yao XD. Function of PCA3 in prostate tissue and clinical research progress on developing a PCA3 score[J]. Chinese Journal of Cancer Research, 2014, 26(4):493-500. |
[9] | Hessels D, Klein Gunnewiek JM, van Oort I, et al. DD3(PCA3)- based molecular urine analysis for the diagnosis of prostate cancer[J]. European Urology, 2003, 44(1):8-15. |
[10] | Lee GL, Dobi A, Srivastava S. Prostate cancer :diagnostic performance of the PCA3 urine test[J]. Nature Reviews Urology, 2011, 8(3):123-124. |
[11] | He JH, Zhang JZ, Han ZP, et al. Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells[J]. Journal of Experimental &Clinical Cancer Research, 2014, 33(1):72. |
[12] | Malik R, Patel L, Prensner JR, et al. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer[J]. Molecular Cancer Research, 2014, 12(8):1081-1087. |
[13] | Zhu M, Sun Q, Chen Q, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI[J]. The FEBS Journal, 2014, 81(16):3766-3775. |
[14] | Moore MA, Attasara P, Khuhaprema T, et al. Cancer epidemiology in mainland South-East Asia-past, present and future.[ J]. Asian Pacific Journal of Cancer Prevention, 2010, 11(2):67-80. |
[15] | Jemal A, Bray F, Center MM. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61 :69-90. |
[16] | Xu TP, Huang MD, Rui X, et al. Decreased expression of the long non-coding RNA FENDRRis associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression[J]. Journal of Hematology & Oncology, 2014, 7 :63. |
[17] | Wu Y, Zhang L, Wang Y, et al. Long noncoding RNA HOTAIR involvement in cancer[J]. Tumour Biology, 2014, 35(10): 9531-9538. |
[18] | Sun M, Xia R, Jin F, et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer[J]. Tumour Biology, 2014, 35(2): 1065-1073. |
[19] | Ye N, Wang B, Quan ZF, et al. Functional roles of long non-coding RNA in human breast cancer[J]. Asian Pacific Journal of Cancer Prevention, 2014, 15(15):5993-5997. |
[20] | Gupta RA, Shah N, Wang KC, et al. Longnon-coding RNA HOTAR reprograms chromatin state to promote caneer metastasis[J]. Nature, 2010, 464(7291):1071-1076. |
[21] | Pickard MR, Williams GT. Regulation of apoptosis by long noncoding RNA GAS5 in breast cancer cells :implications for chemotherapy[J]. Breast Cancer Research and Treatment, 2014, 145(2):359-370. |
[22] | Shi R, Zhou JY, Zhou H, et al. The role of PinX1 in growth control of breast cancer cells and its potential molecular mechanism by mRNA and lncRNA expression profiles screening[J]. Biomed Research International, 2014 :978-984. |
[23] | Shi Y, Lu J, Zhou J, et al. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells[J]. Biochemical and Biophysical Research Communications, 2014, 446 (2):448-453. |
[24] | Ding X, Zhu L, Ji T, et al. Long Intergenic Non-Coding RNAs (LincRNAs)Identified by RNA-Seq in Breast Cancer[J]. PLoS One, 2014, 9(8):e103270. |
[25] | He L, Tan X, Wang X, et al. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion[J]. Tumour Biology, 2014, 35(12):12181-12188. |
[26] | Pibouin L, Villaudy J, Ferbus D, et al. Cloning of the mRNA of overexptession in colon carcinoma-l :a sequerne overepressed in a subset of colon carcinomas[J]. Cancer Genetics and Cytogenetics, 2002, 133(1):55-60. |
[27] | Ji Q, Zhang L, Liu X, et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex[J]. British Journal of Cancer, 2014, 111(4):736- 748. |
[28] | Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291):1071-1076. |
[29] | Luo J, Tang L, Zhang J, et al. Long non-coding RNA CARLo-5 is a negative prognostic factor and exhibits tumor pro-oncogenic activity in non-small cell lung cancer[J]. Tumour Biology, 2014, 35(11): 11541-11549. |
[30] | White NM, Cabanski CR, silva-Fisher JM, et al. Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer[J]. Genome Biology, 2014, 15(8):429. |
[31] | Zhao W, An Y, Liang Y, et al. Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer[J]. European Review for Medical and Pharmacological Sciences, 2014, 18(13): 1930-1936. |
[32] | Sun M, Liu XH, Lu KH, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelialmesenchymal transition[J]. Cell Death & Disease, 2014, 5 : e1298. |
[33] | Hou Z, Zhao W, Zhou J, et al. A long noncoding RNA Sox2ot regulates lung cancer cell proliferation and is a prognostic indicator of poor survival[J]. The International Journal of Biochemistry & Cell Biology, 2014, 53 :380-388. |
[34] | Thai P, Statt S, Chen CH, et al. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines[J]. American Journal of Respiratory Cell and Molecular Biology, 2013, 49(2):204-211. |
[35] | Peter S, Borkowska E, Drayton RM, et al. Identification of differentially expressed long non-coding RNAs in bladder cancer[J]. Clinical Cancer Research, 2014, 20(20). DOI : 10. 1158/1078-0432. CCR-14-0706. |
[36] | Cao W, Shi F, Wu L, et al. Genome wide screening and characterization of long non-coding RNAs in esophageal cancer[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2014, 31(5): 587-590. |
[37] | Xu Y, Wang J, Qiu M, et al. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma[J]. Tumour Biology, 2014, 36(3):1643-1651. |
[38] | Pan F, Yao J, Chen Y, et al. A novel long non-coding RNA FOXCUT and mRNA FOXC1 pair promote progression and predict poor prognosis in esophageal squamous cell carcinoma[J]. International Journal of Clinical and Pathology, 2014, 7(6): 2838-2849. |
[39] | Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature, 2009, 458(7235):223-227. |
[40] | Eades G, Zhang YS, Li QL, et al. Long non-coding RNAs in stem cells and cancer[J]. World Journal of Clinical Oncology, 2014, 5 (2):134-141. |
[41] | Sheik Mohamed J, Gaughwin PM, Lim B, et al. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells[J]. RNA, 2010, 16(2):324-337. |
[42] | Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation[J]. Nature, 2011, 477(7364):295-300. |
[43] | Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response[J]. Cell, 2010, 142(3):409-419. |
[44] | Loewer S, Cabili MN, Guttman M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells[J]. Nature Genetics, 2010, 42(12):1113-1117. |
[45] | Wang Y, Xu Z, Jiang J, et al. Endogenous miRNA sponge lincRNARoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal[J]. Developmental Cell, 2013, 25(1):69- 80. |
[46] | Zuo C, Wang Z, Lu H, et al. Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation[J]. Molecular Medicine Reports, 2013, 8(2): 463-467. |
[47] | Ramos AD, Diaz A, Nellore A, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo[J]. Cell Stem Cell, 2013, 12(5):616-628. |
[48] | Yildirim E, Kirby JE, Brown DE, et al. Xist RNA is a potent suppressor of hematologic cancer in mice[J]. Cell, 2013, 152(4): 727-742. |
[49] | Kretz M, Webster DE, Flockhart RJ, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR[J]. Genes Development, 2012, 26(4):338-343. |
[50] | Sun L, Goff LA, Trapnell C, et al. Long noncoding RNAs regulate adipogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3387- 3392. |
[51] | Tang H, Wu Z, Zhang J, et al. Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis[J]. Molecular Medicine Reports, 2013, 7(3)761-766. |