文章快速检索     高级检索
  空气动力学学报  2018, Vol. 36 Issue (4): 571-576  DOI: 10.7638/kqdlxxb-2016.0142

引用本文  

韩鹏, 刘晓晨, 胡赞远, 等. 一种用于获得飞机部件气动载荷的网格向量法[J]. 空气动力学学报, 2018, 36(4): 571-576.
HAN P, LIU X C, HU Z Y, et al. Grid-vector method for computation of aerodynamic loads on airplane components[J]. Acta Aerodynamica Sinica, 2018, 36(4): 571-576.

作者简介

韩鹏(1987-), 男, 陕西人, 工程师, 硕士, 研究方向:飞行载荷与气动弹性设计.E-mail:hanpeng02110501@163.com

文章历史

收稿日期:2016-11-08
修订日期:2016-12-15
一种用于获得飞机部件气动载荷的网格向量法
韩鹏 , 刘晓晨 , 胡赞远 , 闫中午     
上海飞机设计研究院, 上海 201210
摘要:提出了一种网格向量法用于计算飞机气动载荷,此方法以风洞测压数据为基础,网格化部件外形,使用网格点构造基础向量,采用空间向量法求解网格气动载荷的几何要素(如作用点、面积、单位法失、力臂及夹角等),进而获取飞机部件的总载荷及分布载荷。批量飞行载荷分析时,采用网格向量法先求得力与力矩系数的基础数据库,然后通过插值以获取批量计算工况下的载荷结果,计算效率得到显著提高。以某飞机起落架内舱门为例,分析了舱门气动载荷的计算特点,使用所提方法对主起落架内舱门进行了载荷计算分析,方法实施过程及计算结果表明所提方法操作简便、结果准确、普适高效,对飞机非典型翼面类部件的气动载荷求解,具有显著的优越性。
关键词气动载荷    网格    向量法    部件载荷    分布载荷    
Grid-vector method for computation of aerodynamic loads on airplane components
HAN Peng , LIU Xiaochen , HU Zanyuan , YAN Zhongwu     
Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
Abstract: A grid-vector method based on pressure database from wind tunnel tests has been proposed and can be used to analyze aerodynamic loads of airplanes. This method is achieved by meshing grid for the surface of aerodynamic component and constructing basic vectors. For the calculation of grid aerodynamic loads, a space vector method is employed to compute the main factors including centers of grids, areas of grids, unit normal vectors, arms of grid forces, and angles. When large numbers of loads need to be analyzed, the basic database of force coefficient and moment coefficient are firstly acquired by the grid-vector method, and then all loads result can be computed by interpolation method to improve computing efficiency significantly. The results of a main landing gear inner door show that the grid-vector method is convenient, effective, and widely applicable. The advantage of this method is predominant for untypical components.
Key words: aerodynamic load    grid    vector method    component load    distributing load    
0 引 言

一架飞机,在整个飞行过程中,无时无刻不承受着载荷。从不同受载情况中找出各个部件的最大受载情况,其载荷的大小及分布情况将作为飞机结构与强度的设计依据。选用合适的飞行载荷规范和可靠的计算方法是获得合理、可靠的载荷的重要条件[1]

确定一架飞机的飞行载荷,需要解决两方面问题:第一,总载荷计算,即机动模拟。根据规范要求和工程设计经验选定计算的原始数据,将问题抽象为一定的物理模型,并通过数学方法对此物理模型做出描述,求解这些数学问题即可确定飞机的运动参数及总载荷;第二,分布载荷求解。确定了飞机的运动参数 及总载荷,为了进行强度计算,还要知道这些力的分布。

目前,国内外大量的相关文献和研究方向主要集中在机动模拟和CFD及理论计算方面。王世安、尹贵鲁等采用CFD方法确定基本气动载荷,并引入工程估算方法得到的偏副翼附加量[2]。国外的Patil、Hodges及国内的杨超、王立波等在机动模拟中考虑了气动载荷与结构变形的耦合作用,即气动弹性效应[3-9]。万志强、严德等在考虑静气弹影响的载荷计算时引入试验气动力修正[10-11]。以上研究都是建立在理论计算和数值模拟的基础上,并且都是以飞机的主要部件载荷(如机翼、尾翼)为研究重点,而关于飞机小部件(如舱门类部件)的载荷计算研究文献则相对较少。吴继飞、王明等利用风洞试验对舱门类载荷的气动特性进行了研究[12-13]。对于舱门类部件的载荷求解,由于其外形不规则且绕流特性复杂,无论是网格生成还是流动模拟都十分困难,所以通常采用风洞试验的手段确定其气动载荷。

在飞机详细设计阶段,要完成大量的风洞测压试验以确定飞机真实载荷。此方法通过在部件外形表面布置测压传感器以获取压力分布,将其积分即可得到各部件的总载荷。常规的测压数据处理方法包括剖面积分法[14-16]和投影法,剖面积分法通常只适用于典型翼面类部件,如机翼、尾翼等;投影法的实质是把飞机部件上的载荷进行投影分解,然后在投影面内获取计算部件气动载荷的基本要素(如作用中心、面积、力臂等),获得这些因素往往需要大量人工测量操作,并且此方法无法考虑飞机部件的真实外形,特别是对形状不规则的小部件,其计算精度不足,效率不高。因此,本文提出采用网格向量法求解飞机部件气动载荷。此方法通过网格化飞机部件气动外形以获取网格点坐标,构造出基础向量,使用空间向量法求解气动载荷的几何要素,进而获得飞机部件在不同情况下的总载荷与分布载荷。

1 物理模型分析

飞机部件气动载荷的计算问题可以简化为一个基本物理模型,即飞机部件上任意分块上所受气动力的计算问题。如图 1所示有一任意气动分块,当地压强为Pe 为空间任意方向向量,AB为任意轴。此分块的气动载荷问题包括两个方面:1)此分块所受气动力 FF 在任意方向上的分量(因为有不同的分块,求部件总力时,需要分解到不同的方向);2)此分块气动载荷 F 对任意轴AB产生的力矩M


图 1 部件气动载荷物理模型 Figure 1 Physical model of aerodynamic loads on airplane

其中,获取力矩M需要先确定力 F 垂直于轴AB的分解力和作用力臂,如图 2所示。


图 2 气动力分解及作用力臂 Figure 2 Component forces and the arm of force

气动力及力矩的计算公式为:

$ \left\{ \begin{array}{l} \mathit{\boldsymbol{F}} = q \cdot {C_p} \cdot s \cdot \mathit{\boldsymbol{n}}\\ M = \left| \mathit{\boldsymbol{F}} \right|{\rm{sin}}\theta \cdot d \end{array} \right. $ (1)

式(1)中,q为速压,可由载荷计算工况确定;Cp为压力系数,通常由风洞试验和CFD计算获得;s为气动分块面积;n 为气动分块的单位法向向量;θF 与轴AB的夹角(如图 2所示);dF 到轴AB的距离。其中,速压q和压力系数Cp是气动载荷计算的气动要素,在载荷计算的过程中是输入条件;snθd是气动载荷计算的几何要素,可通过飞机部件的几何模型获取,本文采用空间向量法求解这些几何要素。

2 网格向量法

要获取部件的总力和总力矩,需要把部件进行网格化离散,先分别求取各小分块的气动载荷,然后通过叠加求和获得部件的总力和总力矩。

2.1 网格化几何模型

飞机部件的气动外形可用空间中的曲面表示。如图 3所示,网格化空间曲面,获取网格点坐标。参考转轴(如铰链轴)可由其上任意两点代表。网格点和参考轴上任意两点组成能够代表几何模型特征的基础点库,用于构造基础向量。


图 3 曲面网格化 Figure 3 Mesh grid of surface

网格化时,需要注意以下三点:1)按气流流动特性,尽量顺气流方向划分网格;2)为了保证计算效率,网格密度不宜太高,但要高于测压点密度,以保证数据完整性;3)划分网格时,建议全部采用四边形网格,以保证网格格式一致,方便程序化处理。

2.2 单个网格的气动载荷

通过网格化,空间曲面被划分为多个气动网格分块,第i个网格如图 4所示:


图 4 网格分块及构造向量 Figure 4 A grid and vectors

图 4可以看出,气动网格有g1g2g3g4四个网格点,网格气动力的作用点可用网格中心点gCi表示:

$ \left\{ \begin{array}{l} x_C^i = ({x_1} + {x_2} + {x_3} + {x_4})/4\\ y_C^i = ({y_1} + {y_2} + {y_3} + {y_4})/4\\ z_C^i = ({z_1} + {z_2} + {z_3} + {z_4})/4 \end{array} \right. $ (2)

如式(3)所示,g1g3构成向量 v1g2g4构成向量 v2

$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{v}}_1} = ({x_3} - {x_1}, {y_3} - {y_1}, {z_3} - {z_1})\\ {\mathit{\boldsymbol{v}}_2} = ({x_4} - {x_2}, {y_4} - {y_2}, {z_4} - {z_2}) \end{array} \right. $ (3)

设点A和点B为参考转轴上任意两点。参考式(3),点A和点B构成向量 v3,点A(或点B)和点gCi构成向量 v4。向量 v1v2v3v4为此网格的基础向量组,用于计算网格气动力的几何要素。

气动网格可以简化等效为由向量 v1v2构成的平面(如图 4所示),则网格面积为:

$ {s_i} = 0.5\left| {{\mathit{\boldsymbol{v}}_1} \times {\mathit{\boldsymbol{v}}_2}} \right| $ (4)

网格的单位法向向量为:

$ {\mathit{\boldsymbol{n}}_i} = \frac{{{\mathit{\boldsymbol{v}}_1} \times {\mathit{\boldsymbol{v}}_2}}}{{\left| {{\mathit{\boldsymbol{v}}_1} \times {\mathit{\boldsymbol{v}}_2}} \right|}} $ (5)

网格单位法向向量与参考转轴之间的夹角为:

$ {\theta _i} = {\rm{arccos}}\left( {\frac{{{\mathit{\boldsymbol{n}}_i} \cdot {\mathit{\boldsymbol{v}}_3}}}{{\left| {{\mathit{\boldsymbol{n}}_i}} \right|\left| {{\mathit{\boldsymbol{v}}_3}} \right|}}} \right) $ (6)

网格气动力到参考转轴之间的距离,即力臂为:

$ {d_i} = \frac{{\left| {{\mathit{\boldsymbol{v}}_{\rm{4}}} \cdot {\mathit{\boldsymbol{n}}_i} \times {\mathit{\boldsymbol{v}}_3}} \right|}}{{\left| {{\mathit{\boldsymbol{n}}_i} \times {\mathit{\boldsymbol{v}}_3}} \right|}} $ (7)

由式(4)-(7),可以得到网格气动载荷的四个几何要素,把siniθidi带入式(8),即可得到网格气动载荷:

$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{F}}_i} = q \cdot {C_{pi}} \cdot {s_i} \cdot {\mathit{\boldsymbol{n}}_i}\\ {M_i} = \left| {{\mathit{\boldsymbol{F}}_i}} \right|{\rm{sin}}{\theta _i} \cdot {d_i} \end{array} \right. $ (8)

其中,速压q可由计算工况条件计算得到(如高度和马赫数);Cpi为网格中心gCi处的压力系数,基于压力系数数据库,通过插值获得。

2.3 部件总载荷及限制载荷

获得了网格气动载荷,通过叠加求和即可得到部件总载荷。由于网格气动载荷的方向不尽相同(法向向量不同),叠加载荷时,需要先进行分解,空间中的力可以分解到正交的三个方向,如 e1e2e3三个单位方向向量,则总载荷为:

$ \left\{ \begin{array}{l} {F_e} = \sum {\left( {{\mathit{\boldsymbol{F}}_i} \cdot \mathit{\boldsymbol{e}}} \right) = q \cdot \sum {\left( {{C_{pi}} \cdot {s_i} \cdot {\mathit{\boldsymbol{n}}_i} \cdot \mathit{\boldsymbol{e}}} \right)} } \\ M = \sum {\left( {{M_i}} \right) = q \cdot \sum {\left( {{C_{pi}} \cdot {s_i} \cdot {\rm{sin}}\theta \cdot {d_i}} \right)} } \end{array} \right. $ (9)

其中,Fe表示 e 方向的总气动力,e 代表 e1e2e3。对总载荷进行无量纲化,得到力系数与力矩系数为:

$ \left\{ \begin{array}{l} {C_{{F_e}}} = \sum {\left( {{C_{pi}} \cdot {s_i} \cdot {\mathit{\boldsymbol{n}}_i} \cdot \mathit{\boldsymbol{e}}} \right)} /{S_{{\rm{ref}}}}\\ {C_M} = \sum {\left( {{C_{pi}} \cdot {s_i} \cdot {\rm{sin}}\theta \cdot {d_i}} \right)} /\left( {{S_{{\rm{ref}}}} \cdot \bar C} \right) \end{array} \right. $ (10)

其中,Sref为参考面积;${\bar C}$为参考长度。从式(10)可以看出,力系数与力矩系数与速压q无关,只与部件几何外形和压力分布数据库有关。因此,对压力分布数据库(如测压试验数据库)进行处理计算,获得部件总载荷系数数据库,即 {CFe }和{CM} 。基于总载荷系数数据库,通过插值并计算即可获得任意计算工况下的部件总载荷,如式(11)所示:

$ \left\{ \begin{array}{l} F_\mathit{\boldsymbol{e}}^j = C_{{F_\mathit{\boldsymbol{e}}}}^j \cdot {q^j} \cdot {S_{{\rm{ref}}}}\\ {M^j} = C_M^j \cdot {q^j} \cdot {S_{{\rm{ref}}}} \cdot \bar C \end{array} \right. $ (11)

式中,上标j表示第j种计算工况。此种情况下的分布载荷为:

$ \left\{ {\mathit{\boldsymbol{F}}_i^j} \right\} = {q^j} \cdot \left\{ {C_{{p_i}}^j \cdot {s_i} \cdot {\mathit{\boldsymbol{n}}_i}} \right\} $ (12)

对于载荷专业,常常需要从几万或几十万种计算工况中挑选出最大载荷作为限制载荷提供强度专业使用。通常,求解策略有两种:1)从压力系数数据库到分布载荷,再到总载荷,然后从中挑选出最大载荷及对应情况分布载荷;2)从压力系数数据库到总载荷系数数据库,再到总载荷,从中挑选出最大载荷,再由压力系数数据库给出对应情况的分布载荷。在进行批量计算时,推荐使用第二种策略,因为第二种策略省去了大量中间计算环节,能够显著提高计算效率。

3 算例分析 3.1 实例介绍

在飞机的所有部件中,选取具有典型性的起落架内舱门作为研究对象。如图 5所示,起落架内舱门外形不规则,不是典型的翼面类部件,经典的剖面积分法无法实施,通过投影获取气动载荷的几何要素也较难操作,因此,本文采用网格向量法完成风洞试验测压数据库的处理,进而用于求解内舱门气动载荷。


图 5 飞机模型 Figure 5 airplane model

风洞试验给出了舱门打开时,不同位置、不同迎角、侧滑角时的压力分布,模拟了起落架舱门在空中打开过程中的气动受载情况。试验的迎角范围为-6°~18°,侧滑角范围-18°~18°。

根据规范要求完成飞机的各种机动模拟,根据经验选取出需要分析的飞行状态作为起落架舱门的计算工况,其中包括纵向情况1万多种,横向情况2万多种,载荷专业需要对以上所有情况进行计算求解,因为工况数量较大,为提高计算效率,本文采用2.3节提出的第二种求解策略。

3.2 测压试验数据处理

因为起落架内舱门的厚度相对于其他两个方向的长度较小,气动外形模型可用空间曲面表示。如图 6所示,网格化离散气动外形,得到98个网格,获取网格点坐标信息。需要注意的是,网格多为四边形网格,而边界上较难划分成四边形的,有呈现为三边形的,此种情况,可另外选取较长边界的中点坐标信息,以满足每个网格由四个网格点表示。


图 6 气动网格 Figure 6 Aerodynamic mesh

得到了能够代表舱门气动外形的网格点坐标信息,采用网格向量法完成风洞试验压力分布数据库的数据处理,得到力与力矩系数的数据库,其中,力与力矩系数的公式及定义详见本文2.3节式(10)。由于数据较多,这里只展示内舱门打开到图 5所示位置的力系数与力矩系数的侧向结果,如图 7所示,给出了力系数CF1CF2与力矩系数CM在迎角0°、4°和8°情况下随侧滑角变化的曲线。


图 7 力与力矩系数 Figure 7 Force coefficient and moment coefficient

在起落架左侧内舱门的局部坐标系中(如图 6中所示),x向(前后方向)载荷分量较小,可以忽略,另外两个方向的力分别为F1和F2。规定F1的正方向为y轴正向,F2的正方向为z轴负向,M的正方向为x轴负向,F1、F2和M为正时,表示使舱门关闭。从图 7可以看出,随着侧滑角负向(飞机左侧来流)增大,左侧舱门打开载荷增大,随着迎角增大,舱门关闭载荷增大,其与真实流动规律一致。

基于力与力矩系数数据库,参考式(11)通过插值即可快速高效完成起落架内舱门气动载荷的批量计算。

3.3 结果验证及两种策略计算效率对比

为了验证计算方法的有效性,将某工况的分布载荷加载到有限元模型上,得到累积总载荷并与本文方法的求解结果进行比较,详见表 1

表 1 不同方法的总载荷结果 Table 1 Total loads of different methods

表 1可以看出:此工况下,两种网格向量法求解策略的计算结果与有限元模型获得的累积总载荷基本一致,说明本文提出的网格向量法正确有效;两种策略获得的总力矩与有限元模型上的累积总力矩稍有偏差,主要是由于网格载荷作用点与有限元结点位置稍有偏差;策略一是对压力系数进行插值,使用式(9)完成总载荷求解,策略二是对总载荷系数进行插值,使用式(12)完成总载荷求解,两种策略的结果差异在于插值带来的误差,只要数据库密度合适,这种误差相当小,正如表中结果显示,两种求解策略结果高度一致,说明风洞试验的状态密度选取合适。特别说明,为了避免个别样本的独一性,另对多个计算工况进行了求解,得到的结果均与表 1类似,这里不再给出。

通过以上分析,说明两种计算策略的精度都能够满足工程要求,而对于批量载荷求解,还需要方法具有一定的计算效率,因此对两种计算策略的效率做以下对比,详见表 2

表 2 两种方法的计算时间 Table 2 Computing time of two methods

两种计算策略均采用Matlab软件编程计算实现,表 2给出了两种计算策略求解不同工况数量时的计算耗时。由表 2可以看出:策略一的计算耗时随计算工况数量的增加单调线性增加,这是因为在此计算策略下,每一种工况都要单独完整运算,计算时间会随着工况数增加而增加;策略二的计算耗时基本不随计算工况数量的变化而变化,因为此种计算策略的计算耗时主要在于力与力矩系数数据库的计算处理上,而总载荷的获得只需要对总载荷系数数据库进行线性插值即可完成,所以计算耗时基本不随计算工况数增加而变化;工况数量较大时,策略二的计算效率显著优于策略一,这是因为策略二通过对总载荷系数数据库插值获取批量总载荷替代了策略一中大量的中间计算环节,从而显著提高了计算效率。

4 结论

通过以上理论分析、方法介绍和算例分析,得到以下主要结论:

1) 网格向量法原理正确、操作简单、结果有效。适用于飞机的所有部件,特别对飞机小部件气动载荷计算具有显著的优越性。

2) 批量载荷求解时,先完成对压力分布数据库的处理,得到部件总载荷系数数据库,进而通过插值快速高效地完成批量载荷计算。这种计算策略,能够显著提高计算效率。

3) 为了获得足够精度的计算结果和较高的计算效率,划分网格时,需要特别注意:尽量顺气流方向划分网格;网格全部采用四边形格式;网格密度略高于测压点密度。

参考文献
[1]
Sun B H. Calculation method of flight load for military aircraft[J]. Acta Aerodynamica Sinica, 2006, 24(2): 238-242. (in Chinese)
孙本华. 军用飞机飞行载荷计算方法研究[J]. 空气动力学学报, 2006, 24(2): 238-242. DOI:10.3969/j.issn.0258-1825.2006.02.019 (0)
[2]
Wang S A, Yin G L, Zhou X J. The research of computational method of aerodynamic load based on numerical simulation[J]. Acta Aerodynamica Sinica, 2004, 22(2): 160-164. (in Chinese)
王世安, 尹贵鲁, 周喜军. 基于数值模拟的气动载荷计算方法研究[J]. 空气动力学学报, 2004, 22(2): 160-164. DOI:10.3969/j.issn.0258-1825.2004.02.008 (0)
[3]
Patil M J. Nonlinear aeroelastic analysis of joined-wing aircraft[R]. AIAA 2003-1487. (0)
[4]
Patil M J, Hodges D H. On the importance of aerodynamic and structural nonlinearities in aeroelastic behavior of high-aspect-ratio wings[R]. AIAA 2000-14448. https://www.sciencedirect.com/science/article/pii/S0889974604000738 (0)
[5]
Patil Hodges, Cesnik. Nonlinear aeroelastic analysis of complete aircraft in sub-sonic flow[J]. Journal of Aircraft, 2000, 44(3): 1024-1026. (0)
[6]
Palacios R, Cesnik C. Static nonlinear aeroelasticity of flexible slender wings in compressible flow[R]. AIAA 2005-1945. https://spiral.imperial.ac.uk:8443/handle/10044/1/1337 (0)
[8]
Yang C H, Wang L B, et al. Aeroelastic trim and flight loads analysis of flexible aircraft with large deformations[J]. Science China, 2012, 42(10): 1137-1147. (in Chinese)
杨超, 王立波, 等. 大变形飞机配平与飞行载荷分析方法[J]. 中国科学, 2012, 42(10): 1137-1147. (0)
[9]
Liu Y, Xie C C, et al. Non-planar aerodynamic computation and trim analysis under large deflection of flexible aircraft[J]. Engineering Mechanics, 2015, 32(10): 239-249. (in Chinese)
刘燚, 谢长川, 等. 柔性飞机大变形曲面气动力计算及配平分析[J]. 工程力学, 2015, 32(10): 239-249. DOI:10.6052/j.issn.1000-4750.2014.04.0284 (0)
[10]
Wan Z Q, Deng L D, Yang C, et al. Aircraft static aeroelastic response analysis based on nonlinear experimental aerodynamic data[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 439-445. (in Chinese)
万志强, 邓立东, 杨超, 等. 基于非线性试验气动力的飞机静气动弹性响应分析[J]. 航空学报, 2005, 26(4): 439-445. DOI:10.3321/j.issn:1000-6893.2005.04.012 (0)
[11]
Yan D, Yang C. Flight loads analysis of longitudinal manueuver using experimental aerodynamic forces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3): 253-256. (in Chinese)
严德, 杨超. 基于试验气动力的纵向机动飞行载荷分析[J]. 北京航空航天大学学报, 2007, 33(3): 253-256. DOI:10.3969/j.issn.1001-5965.2007.03.001 (0)
[12]
Wang M, Chen L, et al. Research on aerodynamic load of aircraft door components in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 18-20. (in Chinese)
王明, 陈丽, 等. 飞机舱门类部件气动载荷风洞试验研究[J]. 实验流体力学, 2012, 26(4): 18-20. DOI:10.3969/j.issn.1672-9897.2012.04.004 (0)
[13]
Wu J F, Xu L W, et al. Investigation on aerodynamic characteristics of internal bay's door[J]. Acta Aeronautica et Astro-nautica Sinica, 2012, 29(6): 744-748. (in Chinese)
吴继飞, 徐来武, 等. 内埋弹舱舱门气动特性研究[J]. 空气动力学学报, 2012, 29(4): 744-748. (0)
[14]
Huang L Y, Wang G L. Research on pressure measuring test of a certain type of A/C[J]. Hongdu Science and Technology, 2010, 1: 29-31. (in Chinese)
黄礼耀, 王国良. 某型飞机测压试验研究[J]. 洪都科技, 2010, 1: 29-31. (0)
[15]
Sheng G H, Yu G P, et al. Analysis of wind load on large hyperbolic cooling tower considering interaction between internal and external pressure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 29(6): 439-446. (in Chinese)
沈国辉, 余关鹏, 等. 考虑内外压共同作用的大型冷却塔风载荷分析[J]. 空气动力学学报, 2011, 29(4): 439-446. DOI:10.3969/j.issn.0258-1825.2011.04.007 (0)
[16]
Chen X R, Gu Z F, et al. Wind tunnel research on wind loading on a CD-disk shape structure[J]. Acta Aeronautica et Astronautica Sinica, 2008, 26(1): 126-130. (in Chinese)
陈学锐, 顾志福, 等. 光盘形结构风载荷的风洞实验研究[J]. 空气动力学学报, 2008, 26(1): 126-130. DOI:10.3969/j.issn.0258-1825.2008.01.024 (0)