扩展功能
文章信息
- 严齐会, 朱慧勇
- 转录因子KLFs家族与口腔鳞状细胞癌关系的研究进展
- Research progress in relationship between transcription factor KLFs family and oral squamous cell carcinoma
- 吉林大学学报(医学版), 2018, 44(03): 679-683
- Journal of Jilin University (Medicine Edition), 2018, 44(03): 679-683
- 10.13481/j.1671-587x.20180342
-
文章历史
- 收稿日期: 2017-08-02
2. 浙江省台州市立医院口腔科, 浙江台州 318000
口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)是世界上最常见的十大恶性肿瘤之一[1],占头颈部肿瘤的95%[2]。仅2012年全球就有529500例新发病例和292300例死亡病例,占所有癌症患者的3.8%和癌症死亡者的3.6%[3-4]。随着人口结构的变化,预测到2035年新发病例将增加62%,达到856000例[4]。由于口腔癌具有早期广泛淋巴结转移的特点,而且约有60%的患者处于癌症的第Ⅲ和Ⅳ期,其生存率很低,目前的临床诊断和先进的治疗方法均不能有效地提高患者的生存率[5],其5年生存率仅为64%[6]。随着分子生物学和基因工程的不断发展与突破,近年来,众多研究[7-9]表明转录因子KLFs家族参与肿瘤的发生发展或抑制等过程。然而,KLFs在人类口腔癌中作用的研究仍然相对较少,国内外少有相关报道,作用机制尚未明确。本文作者查阅国内外相关文献报道,对KLFs与OSCC的关系及其作用机制进行综述。
1 KLFs与肿瘤 1.1 KLFsKLFs是具有锌指结构的高度保守的转录因子家族,因其与黑腹果蝇的分节蛋白Krüppel的DNA结合序列具有同源性故而得名。目前在哺乳动物体内已有17个KLFs成员被鉴定出来,分别被命名为KLF1~17[10]。这一家族成员以其在羧基末端有3个高度保守的半胱氨酸/组氨酸(Cys2/His2)锌指结构为特征,通过锌指结构结合到目标靶基因序列上相似的GC/GT/CACCC位点,发挥特定的基因转录调控功能。由于KLFs的末端氨基有多样性,包含活化和(或)抑制结构域,其可以与特定的激活因子或抑制因子结合相互作用,从而使每个家族中成员具有独特、多样的功能[11]。据此特点,可以将KLFs分为3组:第1组作为转录抑制因子主要与碳末端结合蛋白结合,包括KLF3、8和12;第2组主要起转录激活作用,包括KLF1、2、4、5、6和7;第3组主要通过与常见的转录协调抑制因子Sin3A结合而发挥抑制功能,包括KLF 9、10、11、13、14和16。而KLF15和KLF17是在系统发育分析中基于亲缘关系较远的,不包含明确蛋白质相互作用的基序,不能划分至上述的任何组别中[12]。
1.2 KLFs与肿瘤研究[12]表明:KLFs家族广泛存在于各个组织器官中,包括心血管系统、消化系统、呼吸系统、血液系统、内分泌系统和免疫系统等,不仅参与调节细胞的生长、发育、分化、增殖和胚胎发育等生理过程,而且还涉及很多疾病的发病机制,包括炎症性疾病和肿瘤等。研究[13]表明:KLF4表达水平与肝癌细胞分化程度相关,KLF4可以通过诱导肝核因子6(hepatocyte nuclear factor-6,HNF6)的表达提高肝癌细胞的分化能力,在肝细胞中发挥抑癌基因的作用。KLF8在胃癌中具有致癌作用,与非肿瘤组织比较,KLF8在胃癌组织的细胞核和细胞质中表达水平升高,其表达水平的升高与肿瘤大小、肿瘤血管的生成、肿瘤的局部侵袭、淋巴结转移和TNM分期等有关联[14-15]。KLFs在肿瘤调控中的机制涉及肿瘤血管的生成、肿瘤上皮间充质转化(epithelial mesenchymal transition,EMT)、细胞的生长周期、肿瘤的侵袭与转移等多个方面[11],在不同的组织器官中,KLFs的表达不同且发挥不同的功能,具有多样性和特殊性。
2 KLFs与OSCC自第1个KLFs因子被发现以来,人们不断地深入研究和阐释KLFs的生物特性和功能机制。目前关于KLFs与肝癌、肺癌、胃癌、乳腺癌和前列腺癌等关系的研究相对较多,而KLFs与口腔癌的关系研究仍相对较少。KLFs家族中被认为与OSCC相关的主要有KLF2、4、5、6、7、8和13。
2.1 KLF4与OSCC 2.1.1 KLF4的结构和功能人类的KLF4基因位于染色体9q31,包含6300个编码区,有5个外显子,采用Northern印记法在人脐静脉内皮细胞和其他细胞RNA中检测到其转录区大小为3500。人类KLF4的cDNA编码的蛋白质包含513个氨基酸,相对分子质量约为54000[11],其蛋白质可以分为4个独立的功能区域:①氨基末端激活域(1~157氨基酸);②位于中间的抑制结构域(158~385氨基酸);③多肽类PKRGRR重复的核定位序列(NLS)(386~401氨基酸);④高度保守的DBD羟基末端(402~483氨基酸)[12, 16-17]。KLF4作为KLFs家族中重要的一员,在许多不同的细胞生理活动中具有重要作用,包括细胞的生长、分化、增殖、凋亡以及维持正常组织稳态等,在体细胞重编程形成可诱导的多能性干细胞和维持多能性胚胎干细胞生长过程中发挥作用[12, 18],并在许多肿瘤的发生发展中发挥重要的作用,例如胃癌、结肠癌、皮肤癌、食管癌、肝癌、膀胱癌、淋巴细胞肿瘤和OSCC等。
2.1.2 KLF4在OSCC中的作用KLF4广泛表达于各个组织器官中,作为转录因子发挥着重要作用。尽管其在OCSS中的作用机制尚不完全明确,但是已有较多的研究证实KLF4与OSCC有密切关联。研究[19-21]显示:在致癌基因介导和化学诱导的小鼠模型中,在低级别的OSCC中KLF4表达水平比在高级别OSCC中的高,其消耗促进肿瘤的发展。研究[19]表明:KLF4的表达水平在正常口腔黏膜、癌前病变和OSCC患者中呈降低趋势,在高、中和低分化OSCC患者中其表达水平亦呈明显降低趋势,且KLF4在OSCC中具有致癌和抑癌的两面性:①KLF4基因启动子的超甲基化使KLF4表达水平降低或沉默使其在OSCC中起致癌作用;②敲除KLF4基因能提升OSCC细胞生长和集落形成,降低基质金属蛋白酶9(MMP-9)的表达水平从而抑制OSCC细胞迁移、侵袭,体现了其抑癌方面的作用。Yamaguchi等[22]研究也证实了在KLF4启动子239bp区域超甲基化状态与KLF4表达的关系密切,超甲基化使KLF4在口腔癌中表达水平下调。改变DNA甲基化状态与人类癌症的发生有关联,甲基化顺式调控元件调节KLF4基因反式激活和细胞迁移,导致染色质重塑和转录激活[23]。Kim等[24]研究指出:过表达的KLF4通过MMP-9依赖机制在早期OSCC发生中起抑癌作用,但在肿瘤晚期进展中起促进肿瘤侵袭的作用。减少细胞核中KLF4的表达水平与OSCC高增殖活动及不良预后密切相关,可能是一个不利的生存因素[25]。Yoshihama等[26]研究显示:KLF4的表达水平与OSCC的淋巴转移和远处转移有密切关系,高表达的KLF4与肿瘤的侵袭有关,可能参与了肿瘤的恶化,其是一项预测肿瘤预后的指标。
2.2 KLF5与OSCC 2.2.1 KLF5的结构和功能人类的KLF5基因位于染色体13q22.1,包含5个外显子,编码458个氨基酸的蛋白质。作为KLFs家族中的一员,与其他KLF类似,KLF5主要包括3个功能区域:核定位序列结构域、转录激活结构域和DNA结合结构域[27]。KLF5在多个生长因子信号通路中发挥重要作用,其中包括转化生长因子β(transforming growth factor beta,TGF-β)、肿瘤坏死因子(tumor necrosis factor,TNF)、蛋白激酶C、类视黄醇和雄激素等[28]。KLF5可以靶向调控TNFRSF11a的表达,促进宫颈癌HeLa细胞的增殖、迁移和侵袭[29]。David等[30]研究指出:KLFs在TGF- β诱导的胰腺导管癌的发生中起关键作用。研究[31-34]显示:KLF5在乳腺癌、肝癌和结肠癌等不同种类的恶性肿瘤发生发展过程中的高表达能够促进肿瘤的增殖、迁移及侵袭。KLF5能够促进三阴性乳腺癌细胞增殖、生存、迁移和侵袭以及多能性[35]。最近大量研究[27, 36-38]表明:KLF5是一个关键的转录因子,可以作为转录激活或抑制因子,促进或抑制细胞的生长和存活,可作为一个癌基因或者抑癌基因。
2.2.2 KLF5在OSCC中的作用与KLF6和KLF10等的表达方式不同,KLF5和KLF4均优先表达于上皮细胞中。但是两者在口腔被覆上皮中的位置不同,KLF4位于基底上层,而KLF5位于基底层细胞。KLF4表达于有丝分裂后期已分化的上皮细胞中,而KLF5表达于较少分化的增殖期上皮细胞中[12]。由于DNA基因序列顺式作用位点不同,KLF5和KLF4在调节基因转录和细胞增殖中的作用相反[39]。研究[40]表明:KLF5可以在上游通过竞争阻遏KLF4与自身的启动子结合。KLF5与KLF4之间表达水平的持续增减可以强烈地诱导细胞表型的变化,如发生EMT这种侵袭性的改变。KLF4表达水平降低和KLF5表达水平升高能促进肿瘤细胞去分化从而导致OSCC的恶化[41]。研究[42-43]显示:KLF5对P53蛋白有明显的调控作用,而突变型P53蛋白可以促进肿瘤的形成和进展。在p53基因突变或缺失的环境下,KLF5的损失通过NOTCH1的反式激活,导致角化细胞发生EMT和侵袭[44]。研究[45]显示:miR-375可以直接结合KLF5的3′-UTR,通过KLF5调节细胞增殖使OSCC恶化。
2.3 其他KLFs与OSCC除KLF4和KLF5外,其他一些KLFs亦与OSCC有一定关联。早期研究[46]显示:维司力农可以通过上调KLF2而抑制趋化因子受体CXCR4在口腔癌细胞中的表达。研究[47]显示:KLF13是细胞周期蛋白D1启动子的一个有效的反式激活因子。OSCC患者局部细胞周期蛋白D1的过度表达使正常的细胞生长周期调节紊乱,导致细胞的过度增殖,促进OSCC的进展,预示着OSCC的不良预后[48]。除此之外,Henson等[49]也证实了KLF13促进OSCC患者的细胞增殖。研究[50]证实:KLF8是CAL27肿瘤细胞生长的要素,通过shRNA介导下调KLF8的表达水平可以抑制人类口腔癌细胞CAL27的增殖。最新研究[51]证实:KLF7的过表达可以改变OSCC细胞的迁徙行为,通过snail基因的表达,诱导EMT的发生和促进淋巴结转移。最新研究[52]表明:KLF6可以下调MMP-9的活性,抑制间质细胞标记物(如snail、slug和vimentin等)的表达从而逆转EMT,减少了口腔癌SAS细胞的迁移和入侵,其可作为一个肿瘤抑制基因防止口腔癌细胞转移。
3 展望尽管关于KLFs与OSCC的作用机制尚未完全明确,但越来越多的研究证实了KLFs在OSCC发生发展中起重要作用。KLF2、4、5、6、7、8和13参与了OSCC细胞的增殖、分化、迁移和侵袭等过程。通过未来更深入的研究,关于KLFs在OSCC中作用机制以及各KLFs成员之间相互作用机制将被阐明,这可为OSCC早期发现与诊断,以及基因靶向治疗OSCC寻找到新的突破口。
[1] | Rivera C. Essentials of oral cancer[J]. Int J Clin Exp Pathol, 2015, 8(9): 11884–11894. |
[2] | Taghavi N, Yazdi I. Prognostic factors of survival rate in oral squamous cell carcinoma:Clinical, histologic, genetic and molecular concepts[J]. Arch Iran Med, 2015, 18(5): 314–319. |
[3] | Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide:sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359–386. DOI:10.1002/ijc.29210 |
[4] | Shield KD, Ferlay J, Jemal A, et al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012[J]. CA Cancer J Clin, 2017, 67(1): 51–64. DOI:10.3322/caac.21384 |
[5] | D'cruz A, Lin T, Anand AK, et al. Consensus recommendations for management of head and neck cancer in Asian countries:a review of international guidelines[J]. Oral Oncol, 2013, 49(9): 872–877. DOI:10.1016/j.oraloncology.2013.05.010 |
[6] | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J, 2017, 67: 7–30. DOI:10.3322/caac.21387 |
[7] | He H, Li S, Hong Y, et al. Kruppel-like factor 4 promotes esophageal squamous cell carcinoma differentiation by up-regulating keratin 13 expression[J]. J Biol Chem, 2015, 290(21): 13567–13577. DOI:10.1074/jbc.M114.629717 |
[8] | Li S, Qin X, Cui A, et al. Low expression of KLF17 is associated with tumor invasion in esophageal carcinoma[J]. Int J Clin Exp Pathol, 2015, 8(9): 11157–11163. |
[9] | Gu Y, Wu YB, Wang LH, et al. Involvement of Kruppel-like factor 9 in bleomycin-induced pulmonary toxicity[J]. Mol Med Rep, 2015, 12(5): 154–155. |
[10] | Suske G, Bruford E, Philipsen S. Mammalian SP/KLF transcription factors:bring in the family[J]. Genomics, 2005, 85(5): 551–556. DOI:10.1016/j.ygeno.2005.01.005 |
[11] | Limame R, Op de Beeck K, Lardon F, et al. Krüppel-like factors in cancer progression:three fingers on the steering wheel[J]. Oncotarget, 2014, 5(1): 29–48. |
[12] | McConnell BB, Yang VW. Mammalian krüppel-like factors in health and diseases[J]. Physiol Rev, 2010, 90(4): 1337–1381. DOI:10.1152/physrev.00058.2009 |
[13] | Sun H, Tang H, Xie D, et al. Kruppel-like factor 4 blocks hepatocellular carcinoma dedifferentiation and progression through activation of hepatocyte nuclear factor-6[J]. Clin Cancer Res, 2016, 22(2): 502–512. DOI:10.1158/1078-0432.CCR-15-0528 |
[14] | Wang WF, Li J, Du LT, et al. Kruppel-like factor 8 overexpression is correlated with angiogenesis and poor prognosis in gastric cancer[J]. World J Gastroenterol, 2013, 19: 4309–4315. DOI:10.3748/wjg.v19.i27.4309 |
[15] | Hsu LS, Wu PR, Yeh KT, et al. Positive nuclear expression of KLF8 might be correlated with shorter survival in gastric adenocarcinoma[J]. Ann Diagn Pathol, 2014, 18(2): 74–77. DOI:10.1016/j.anndiagpath.2013.12.001 |
[16] | Yet SF, McA'Nulty MM, Folta SC, et al. Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains[J]. J Biol Chem, 1998, 273(2): 1026–1031. DOI:10.1074/jbc.273.2.1026 |
[17] | Geiman DE, Ton-That H, Johnson JM, et al. Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction[J]. Nucleic Acids Res, 2000, 28(5): 1106–1113. DOI:10.1093/nar/28.5.1106 |
[18] | Jeon H, Waku T, Azami T, et al. Comprehensive identification of krüppel-like factor family members contributing to the self-renewal of mouse embryonic stem cells and cellular reprogramming[J]. PLoS One, 2016, 11(3): e0150715. DOI:10.1371/journal.pone.0150715 |
[19] | Li W, Liu M, Su Y, et al. The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells[J]. Oncotarget, 2015, 6(42): 44480–44494. |
[20] | Abrigo M, Alvarez R, Paparella ML, et al. Impairing squamous differentiation by Klf4 deletion is sufficient to initiate tongue carcinoma development upon K-Ras activation in mice[J]. Carcinogenesis, 2014, 35(3): 662–669. DOI:10.1093/carcin/bgt349 |
[21] | Paparella ML, Abrigo M, Bal de Kier Joffe E, et al. Oral-specific ablation of Klf4 disrupts epithelial terminal differentiation and increases premalignant lesions and carcinomas upon chemical carcinogenesis[J]. J Oral Pathol Med, 2015, 44(10): 801–809. DOI:10.1111/jop.2015.44.issue-10 |
[22] | Yamaguchi A, Kuroyama K, Tokura A, et al. Kruppel-like factor 4 expression in oral carcinoma cells and hypermethylation at the gene promoter[J]. BMC Oral Health, 2016, 16: 13. DOI:10.1186/s12903-016-0172-5 |
[23] | Wan J, Su Y, Song Q, et al. Methylated cis-regulatory elements mediate KLF4-dependent gene transactivation and cell migration[J]. Oncotarget, 2017, 8(27): 44705–44719. |
[24] | Kim CK, He P, Bialkowska AB, et al. SP and KLF transcription factors in digestive physiology and diseases[J]. Gastroenterology, 2017, 152(8): 1845–1875. DOI:10.1053/j.gastro.2017.03.035 |
[25] | Chen CJ, Hsu LS, Lin SH, et al. Loss of nuclear expression of kruppel-like factor 4 is associated with poor prognosis in patients with oral cancer[J]. Hum Pathol, 2012, 43(7): 1119–1125. DOI:10.1016/j.humpath.2011.09.003 |
[26] | Yoshihama R, Yamaguchi K, Imajyo I, et al. Expression levels of SOX2, KLF4 and brachyury transcription factors are associated with metastasis and poor prognosis in oral squamous cell carcinoma[J]. Oncol Lett, 2016, 11(2): 1435–1446. DOI:10.3892/ol.2015.4047 |
[27] | Diakiw SM, D'Andrea RJ, Brown AL. The double life of KLF5:Opposing roles in regulation of gene-expression, cellular function, and transformation[J]. IUBMB Life, 2013, 65(12): 999–1011. DOI:10.1002/iub.v65.12 |
[28] | Adam PJ, Regan CP, Hautmann MB, et al. Positive and negative-acting Kruppel-like transcription factors bind a transforming growth factor be-ta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo[J]. J Biol Chem, 2000, 275(48): 37798–37806. DOI:10.1074/jbc.M006323200 |
[29] | Chang L, Ma D, Li O, et al. Expressions and functions of Krüppel like factor 5 and tumor necrosis factor receptor superfamily member 11a in cervical cancer tissues and cells[J]. Acta Academ Med Sini, 2017, 39(2): 196–205. |
[30] | David CJ, Huang YH, Chen M, et al. TGF-β tumor suppression through a lethal EMT[J]. Cell, 2016, 164(5): 1015–1030. DOI:10.1016/j.cell.2016.01.009 |
[31] | Jia L, Zhou Z, Liang H, et al. KLF5 promotes breast cancer proliferation, migration, and invasion in part by upregulating the transcription of TNF AIP2[J]. Oncogene, 2016, 35(16): 2040–2051. DOI:10.1038/onc.2015.263 |
[32] | Guo L, He P, No YR, et al. Kruppel-like factor 5 incorporates into the β-catenin/TCF complex in response to LPA in colon caner cells[J]. Cell Singal, 2015, 27(5): 961–968. |
[33] | Nandan MO, Ghaleb AM, Liu Y, et al. Inducible intestine-specific deletion of Kruppel-like factor 5 is characterized by a regenerative response in adult mouse colon[J]. Dev Biol, 2014, 387(2): 191–202. DOI:10.1016/j.ydbio.2014.01.002 |
[34] | Farrugia MK, Sharma SB, Lin CC, et al. Regulation of anti-apoptotic signaling by Kruppel-like factor 4 and 5 mediates lapatinib resistance in breast cancer[J]. Cell Death Dis, 2015, 19(6): e1699. |
[35] | Liu R, Shi P, Nie Z, et al. Mifepristone suppresses basal triple-negative breast cancer stem cells by down-regulating KLF5 expression[J]. Theranostics, 2016, 6(4): 533–544. DOI:10.7150/thno.14315 |
[36] | Mao X, Miao S, He H, et al. Krüppel-like factor 5:A novel biomarker for lymph node metastasis and recurrence in supraglottic squamous cell laryngeal carcinoma[J]. Tumour Biol, 2014, 35(1): 623–629. DOI:10.1007/s13277-013-1086-3 |
[37] | Gao Y, Ding Y, Chen HY, et al. Targeting kruppel-like factor 5 (KLF5) for cancer therapy[J]. Curr Top Med Chem, 2015, 15(8): 699–713. DOI:10.2174/1568026615666150302105052 |
[38] | Dong JT, Chen C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases[J]. Cell Mol Life Sci, 2009, 66(16): 2691–2706. DOI:10.1007/s00018-009-0045-z |
[39] | Gale AM, Nandan MO, Chanchevalap S, et al. Kruppel-like factors 4 and 5:the yin and yang regulators of cellular proliferation[J]. Cell Res, 2005, 15(2): 92–96. DOI:10.1038/sj.cr.7290271 |
[40] | Dang DT, Zhao W, Mahatan CS, et al. Opposing effects of Kruppel-like factor 4 (gut-enriched Kruppel-like factor) and Kruppel-like factor 5 (intestinal-enriched Kruppel-like factor) on the promoter of the Krupple-like factor 4 gene[J]. Nucleic Acid Res, 2002, 30(13): 2736–2741. DOI:10.1093/nar/gkf400 |
[41] | Shibata M, Chiba T, Matsuoka T, et al. Kruppel-like factors 4 and 5 expression and their involvement in differentiation of oral carcinomas[J]. Int J Clin Exp Pathol, 2015, 8(4): 3701–3709. |
[42] | Yang Y, Tarapore RS, Jarmel MH, et al. p53 mutation alters the effect of the esophageal tumor suppressor KLF5 on keratinocyte proliferation[J]. Cell Cycle, 2012, 11(21): 4033–4039. DOI:10.4161/cc.22265 |
[43] | Lu M, Hoffman R. p53 as a target in myeloproliferative neoplasms[J]. Oncotarget, 2012, 3(10): 1052–1053. |
[44] | Yang Y, Nakagawa H, Tetreault MP, et al. Loss of transcription factor KLF5 in the context of p53 ablation drives invasive progression of human squamous cell cancer[J]. Cancer Res, 2011, 71(20): 6475–6484. DOI:10.1158/0008-5472.CAN-11-1702 |
[45] | Shi W, Yang J, Li S, et al. Potential involvement of miR-375 in the premalignant progression of oral squamous cell carcinoma mediated via transcription factor KLF5[J]. Oncotarget, 2015, 6(37): 40172–40185. |
[46] | Uchida D, Onoue T, Begum NM, et al. Vesnarinone downregulates CXCR4 expression via upregulation of Kruppel-like factor 2 in oral cancer cells[J]. Mol Cancer, 2009, 8(1): 62. DOI:10.1186/1476-4598-8-62 |
[47] | Nemer M, Horb ME. The KLF family of transcriptional regulators in cardiomyocyte proliferation and differentiation[J]. Cell Cycle, 2007, 6(2): 117–121. |
[48] | Huang SF, Cheng SD, Chuang WY, et al. CyclinD1 overexpression and poor clinical outcomes in Taiwanese oral cavity squamouscel lcarcinoma[J]. World J Surg Oncol, 2012, 10(1): 40. DOI:10.1186/1477-7819-10-40 |
[49] | Henson BJ, Gollin SM. Overexpression of KLF13 and FGFR3 in oral cancer cells[J]. Cytogenet Genome Res, 2010, 128(4): 192–198. DOI:10.1159/000308303 |
[50] | Zhang B, Li KY, Zhang WF, et al. Downregulation of KLF8 expression by shRNA induces inhibition of cell proliferation in CAL27 human oral cancer cells[J]. Med Oral Patol Oral Cir Bucal, 2013, 18(4): e591–e596. |
[51] | Ding X, Wang X, Gong Y, et al. KLF7 overexpression in human oral squamous cell carcinoma promotes migration and epithelial-mesenchymal transition[J]. Oncol Lett, 2017, 13(4): 2281–2289. DOI:10.3892/ol.2017.5734 |
[52] | Hsu LS, Huang RH, Lai HW, et al. KLF6 inhibited oral cancer migration and invasion via downregulation of mesenchymal markers and inhibition of MMP-9 activities[J]. Int J Med Sci, 2017, 14(6): 530–535. DOI:10.7150/ijms.19024 |