吉林大学学报(医学版)  2018, Vol. 44 Issue (03): 483-486

扩展功能

文章信息

俞冬升, 蔡大敏, 陈婕妤, 吕方怡, 花扣珍, 银国利, 王俊娟
YU Dongsheng, CAI Damin, CHEN Jieyu, LYU Fangyi, HUA Kouzhen, YIN Guolin, WANG Junjuan
纤维型肌动蛋白对间充质干细胞衰老的调节作用及其机制
Regulation effect of F-actin on senescence of mesenchymal stem cells and its mechanism
吉林大学学报(医学版), 2018, 44(03): 483-486
Journal of Jilin University (Medicine Edition), 2018, 44(03): 483-486
10.13481/j.1671-587x.20180305

文章历史

收稿日期: 2017-12-13
纤维型肌动蛋白对间充质干细胞衰老的调节作用及其机制
俞冬升1 , 蔡大敏2 , 陈婕妤2 , 吕方怡2 , 花扣珍2 , 银国利2 , 王俊娟2     
1. 浙江省人民医院 杭州医学院附属人民医院骨科, 浙江 杭州 310014;
2. 杭州医学院解剖学与组织胚胎学教研室, 浙江 杭州 310014
[摘要]: 目的: 探讨纤维型肌动蛋白(F-actin)调节人骨髓来源间充质干细胞(hBMSCs)衰老的作用,初步阐明hBMSCs衰老的分子生物学机制。方法: 将分离得到的hBMSCs进行体外培养并分为对照组(P2代hBMSCs)、F-actin抑制剂组(2.5 μmol·L-1 F-actin抑制剂Latrunculin B处理P2代hBMSCs 1 h)和P11代hBMSCs组(P2代hBMSCs连续传代得到P11代hBMSCs)。成骨、成脂和成软骨诱导液诱导各组hBMSCs,采用茜素红染色、SO染色和油红O染色确定诱导效果。免疫荧光染色观察各组hBMSCs中Ki67阳性细胞数、F-actin的形态和聚合情况、YAP在细胞内的亚细胞定位。SA-β-Gal染色检测各组hBMSCs中SA-β-Gal染色阳性细胞数。结果: 茜素红染色、SO染色和油红O染色,hBMSCs具有成骨、成脂和成软骨分化的能力。免疫荧光染色和SA-β-Gal染色,对照组hBMSCs中的微丝纤维束较多较粗,F-actin长度较长,YAP主要集中在细胞核(YAP在细胞核内为活化态);与对照组比较,P11代hBMSCs组中Ki67阳性细胞数较少,SA-β-Gal阳性细胞较多,F-actin更短更细,YAP主要集中在胞浆,且YAP出核的细胞SA-β-Gal染色呈阳性;F-actin抑制剂组hBMSCs中YAP出核失活,SA-β-Gal染色阳性的hBMSCs衰老细胞更多。结论: 抑制YAP入核可以促进hBMSCs衰老,F-actin可以通过调节YAP活性影响hBMSCs衰老。
关键词: 间充质干细胞    纤维型肌动蛋白    YAP蛋白    衰老    
Regulation effect of F-actin on senescence of mesenchymal stem cells and its mechanism
YU Dongsheng1, CAI Damin2, CHEN Jieyu2, LYU Fangyi2, HUA Kouzhen2, YIN Guolin2, WANG Junjuan2     
1. Department of Orthopaedics, Affiliated Hostpial, Hangzhou Medical College, People's Hospital, Zhejiang Province, Hangzhou 310014, China;
2. Department of Anatomy and Histology and Embryology, Hangzhou Medical College, Hangzhou 310014, China
[Abstract]: Objective: To investigate the regulation effects of fibrous-actin (F-actin) on senescent of the human bone marrow mesenchymal stem cells (hBMSCs), and to elucidate the molecular mechanisms of senescence the of hBMSCs. Methods: The hBMSCs were cultured in vitro and divided into control group (P2 hBMSCs), F-actin inhibitor group (P2 hBMSCs were treated with 2.5 μmol·L-1 F-actin inhibitor Latrunculin B for 1 h) and P11 hBMSCs group (P11 hBMSCs passaged from P2 hBMSCs continuously). The hBMSCs in various groups were induced by osteogenic, adipogenic and chondrogenic induction mediums and the induction effects were identified by Alizarin red staining, SO staining and oil red O staining. The number of Ki67 positive cells, polymerization and morphology of F-actin and YAP subcellular localization were detected by immunofluorescence staining. SA-β-Gal staining was uesd to detect the SA-β-Gal staining positive cells in the hBMSCs in various groups. Results: The Alizarin red staining, SO staining and oil red O staining results showed that the hBMSCs in various groups had the osteogenic, adipogenic and chondrogenic abilities.The immunofluorescence staining and SA-β-Gal staining results showed that the microfilament bundles in the hBMSCs in control group were more thick, the F-actin length was longer, and the YAP mainly concentrated in the nucleus (YAP was activated in the nucleus). Compared with control group, the number of Ki67 positive cells in P11 hBMSCs group was less and the number of SA-β-Gal positive cells was more; the Factin was shorter and thinner, the YAP mainly concentrated in the cytoplasm, and the high cytoplasmic YAP cells was positive for SA-β-Gal staining; in F-actin inhibitor group, the high cytoplasmic YAP inactivation was found in the hBMSCs and the SA-β-Gal staining positive hBMSCs had more senescent cells. Conclusion: To inhibit the entering of YAP into the nucleus can promote the senescence of hBMSCs and F-actin can affect the senescence of hBMSCs by regulating the YAP activity.
Key words: mesenchymal stem cells     fibrous-actin YAP protein     senescence    

间充质干细胞(mesenchymal stem cells,MSCs)是一类具有自我更新、复制和多向分化潜能的细胞[1-2]。多项动物研究和早期临床试验[3-5]证明:异体MSCs移植可用于治疗多种疾病。MSCs移植需要大量细胞,需要对分离的MSCs在移植前进行体外扩增[6]。随着MSCs体外培养传代次数的增加,其分化潜能和增殖能力逐渐降低,细胞呈现衰老的特征[7],成为限制临床应用的严重瓶颈。细胞形态的改变是细胞衰老的重要特征[8]。通常衰老的细胞体积增大,并呈现扁平状。有研究[9-10]比较年老和年轻供者来源的骨髓MSCs特征显示:与年轻供者比较,年老供者的MSCs虽具一定的增殖和分化能力,但细胞骨架流动性和重塑性降低,导致了细胞结合、物质转运和物质代谢等功能明显降低,同时细胞对外界理化环境刺激的反应迟缓,从而在功能上影响了MSCs在组织再生修复中的作用。然而细胞骨架影响MSCs衰老的具体机制尚未见相关报道。

细胞骨架由微丝、微管和中间纤维3种结构构成,其中微丝由纤维型肌动蛋白(fibrous actin,F-actin)聚合而成[11],细胞骨架蛋白F-actin的聚合可以影响细胞的迁移、增殖和分化等能力[12-15]。本研究采用人骨髓间充质干细胞(human bone marrow mesenchymal stem cells,hBMSCs)体外复制性衰老模型,探讨F-actin及其下游分子YAP在hBMSCs复制性衰老中的变化,使用F-actin抑制剂处理hBMSCs,检测hBMSCs中衰老相关指标的改变,初步阐明其相关分子机制。

1 材料与方法 1.1 细胞、主要试剂和仪器

本实验所用细胞为hBMSCs,取自车祸患者截肢骨内的骨髓,已获得杭州医学院伦理委员会批准。DMEM培养基和胎牛培养基(美国Gibco公司),青霉素、链霉素、胰蛋白酶、牛血清白蛋白(BSA)、PBS、4%多聚甲醛、L-谷氨酰胺、鬼丙环肽Phalloidin和Actin-stain 555 Phalloidin(美国Cytoskeleton公司),F-actin抑制剂Latrunculin B(美国Abcam公司),YAP一抗和Ki67一抗(上海Santa Cruz公司),SA-β-Gal染液、成骨诱导液、成软骨诱导液和成脂诱导液(美国Oricell cyagen公司),488二抗(美国Abbkine公司)。生物安全柜(上海博迅医疗生物仪器股份有限公司),超净台(苏州医疗器械七厂),80℃超低温冰箱(美国Thermo公司),冰冻切片机(德国Microm公司),水浴锅(美国Millipore公司),PCR仪(美国Thermo Fisher公司),灭菌锅(上海博迅医疗生物仪器股份有限公司),CO2培养箱和纯水仪(美国Millipore公司),烘箱和离心机(德国Eppendoff公司),倒置荧光电子显微镜(日本Olympus公司),水浴锅(上海医疗器械七厂),高速离心机(德国Eppendoff公司),电泳仪(北京六一生物科技有限公司),Hitachi S-3000扫描电子显微镜(日本Hitachi公司)等。

1.2 hBMSCs的分离和培养

取车祸患者截肢骨中的骨髓,将取得的骨髓置于无菌肝素管中离心去上清,采用PBS液调整骨髓细胞浓度至1×106 mL-1,按体积比1:1分别加入Ficoll分离液和骨髓细胞悬液,1 800 r·min-1离心20 min,吸取界面单个核细胞,采用PBS洗涤2次,加入细胞培养液后以1×106cm-1的密度接种于25 cm2培养瓶中,置于含5%CO2、37℃孵箱中培养。

1.3 hBMSCs三系分化能力的检测

采用胰酶消化hBMSCs(37℃、2 min)后,采用含血清培养基终止胰酶作用,吹打离心(×200 g、5 min)去上清。将细胞重悬于含10%胎牛血清的L-DMEM培养基后进行细胞计数。分别接种至相应孔板中,在成骨诱导液中诱导培养2周,成脂诱导液中诱导培养3周,成软骨诱导液中诱导培养5周,诱导结束后弃去诱导液。分别用茜素红染色、SO染色和油红O染色确定诱导效果。

1.4 细胞分组

原代hBMSCs长满后按1:3传代,在含5%CO2、37℃孵箱中培养。细胞长至80%左右时将细胞分组,分为对照组(P2代hBMSCs,不进行任何处理)、F-actin抑制剂组(2.5 μmol·L-1 F-actin抑制剂Latrunculin B处理P2代hBMSCs1 h)和P11代hBMSCs组(P2代hBMSCs连续传代得到P11代hBMSCs)。

1.5 免疫荧光染色观察各组hBMSCs中Ki67阳性细胞、F-actin的形态和聚合情况及YAP在细胞内的亚细胞定位

待各组细胞分别长满至约60%,吸去培养基,PBS清洗3次,每次5 min。4%多聚甲醛溶液固定15 min后,PBS洗去多余固定液。采用0.2%TritonX-100透膜5 min,采用PBS清洗3次,每次5 min。用5% BSA室温封闭30 min,用1%BSA稀释一抗(YAP、Ki67和Acti-stain 555 Phalloidin),加入稀释好的一抗,置于湿盒里孵育,4℃过夜。次日,采用PBS洗涤3次,每次5 min。在孵育了YAP、Ki67一抗的样本中加入1%BSA稀释的488二抗(山羊抗鼠)避光孵育1 h后,采用PBS洗涤3次。加入DAPI进行细胞核染色5 min,采用PBS洗涤3次,每次5 min。采用免疫荧光封片剂封片,暗盒保存。在激光共聚焦显微镜下观察hBMSCs中Ki67阳性细胞、F-actin的形态和聚合情况及YAP在细胞内的亚细胞定位。

1.6 SA-β-Gal染色检测各组hBMSCs中SA-β-Gal染色阳性细胞数

待各组hBMSCs分别长至约70%,吸去培养基,采用PBS洗涤细胞2次,加入1 mL SA-β-Gal染色固定液固定15 min。PBS洗涤3次,每次5 min,每孔加入1 mL染色工作液,37℃孵育过夜。普通光学显微镜下观察显示细胞衰老的SA-β-Gal染色阳性细胞数。

2 结果 2.1 hBMSCs的成骨、成脂和成软骨分化能力

成功分离并培养得到hBMSCs,人骨髓中分离得到的hBMSCs为类成纤维细胞(图 1A,见插页一),细胞融合时呈现螺旋旋涡样生长。细胞分别在成骨、成脂和成软骨诱导液中诱导后采用茜素红染色、油红O染色和SO染色检测诱导效果。成骨分化诱导后茜素红染色阳性(图 1B,见插页一),成脂肪分化诱导后油红O染色阳性(图 1C,见插页一),成软骨分化诱导后SO染色阳性(图 1D,见插页一),证明分离得到的hBMSCs具有成骨、成脂和成软骨分化的能力。

A: hBMSCs under light microscope(Bar = 200 μm); B: Osteogenic differentiation ability, Alizarin red staining(Bar = 50μm); C:Adipogenic differentiation ability, Oil red staining(Bar =100 μm); D:Chondrogenic differentiation ability, SO staining (Bar = 50 μm). 图 1 hBMSCs的成骨、成脂和成软骨分化能力 Figure 1 Osteogenic adipogenic and chondrogenic differentiation abilities of hBMSCs(seen on page 485in paragraph)
2.2 各组hBMSCs中Ki67阳性细胞数和SA-β-Gal染色阳性细胞数

通过Ki67荧光染色标记各组hBMSCs中处于增殖周期中的细胞,通过SA-β-Gal染色标记各组细胞中衰老的细胞。与对照组比较,P11代hBMSCs组SA-β-Gal染色阳性细胞数明显增多,而Ki67阳性细胞数明显减少。见图 2(插页二)。

图 2 各组hBMSCs在传代过程中细胞衰老的鉴定(Bar = 100 μm) Figure 2 Identification of cell senescence during passage of hBMSCs in various groups(Bar = 100 μm)(seen on page 485in paragraph)
2.3 各组hBMSCs中F-actin的形态和聚合情况及YAP在细胞内的亚细胞定位

对照组hBMSCs中的微丝纤维束较多较粗,F-actin长度较长,YAP主要集中在细胞核(YAP在细胞核内为活化态);P11代hBMSCs组细胞中的微丝纤维束明显减少,F-actin长度变短,YAP主要集中在胞浆(YAP在胞浆为失活态);同时hBMSCs中YAP出核的细胞SA-β-Gal染色阳性;F-actin抑制剂组F-actin聚合异常,YAP出核失活,SA-β-Gal染色阳性细胞数明显增多。见图 3~5(插页二)。

图 3 免疫荧光染色检测各组hBMSCs中YAP分布和F-actin形态表现(Bar=50 μm) Figure 3 YAP distribution and morphology of F-actin in hBMSCs in various groups detected by immunofluorescence staining(Bar = 50 μm)(seen on page 485in paragraph)
图 4 荧光染色和SA-β-Gal染色共定位检测P2和P11 hBMSCs中YAP分布(Bar=50 μm) Figure 4 YAP distribution in P2 and P11 hBMSCs detected by fluorescence staining and SA -β- Gal dyeing positioning (Bar = 50 μm)(seen on page 485in paragraph)
A-E:Control group(Bar=50 μm); F-I:F-actin inhibitor group(Bar=50 μm); J: F-actin inhibitor group (Bar=100 μm); A, F:DAPI fluorescence staining; B, G:Phalloidin fluorescence staining; C, H:YAP fluorescence staining; D, I:Merge; E, J: SA-β-Gal staining. 图 5 荧光染色检测各组hBMSCs衰老形态表现 Figure 5 Morphology of senescence of hBMSCs in various groups detected by fluorescence staining(seen on page 485in paragraph)
3 讨论

干细胞衰老影响体外培养的MSCs数量和质量,传代次数较多的MSCs临床疗效明显不如传代次数较少的MSCs,使得MSCs衰老成为其临床应用的制约因素[16]。研究[17]表明:细胞衰老是老年性疾病的关键致病因子,因此研究MSCs的衰老及相关分子机制具有重要意义。研究[8]显示:MSCs在传代过程中伴随细胞形态表现的改变,而细胞骨架蛋白决定了细胞的形态结构。本研究结果表明:随着细胞代数的增加,细胞表面积明显增大,微丝纤维束减少,F-actin长度变短、变细且聚合减少。

YAP作为一种多功能转录共激活因子,在MSCs周期进程中起关键作用[18]。同时,YAP也被认为参与了细胞的衰老过程,YAP表达随着细胞传代次数的增加而逐渐降低,通过敲除YAP可直接诱导人胚肺成纤维细胞和肝脏卫星细胞的衰老[19-20]。本研究结果显示:YAP在不同代数hBMSCs中的亚细胞定位呈现明显差异,且YAP出核的细胞SA-β-Gal染色阳性。

YAP的生物活性可受F-actin调控,细胞中F-actin的聚合差异可以导致YAP的细胞定位不同,从而影响细胞的迁移、增殖或分化[11-14, 21]。因此本文作者探讨了F-actin是否通过调节YAP活性影响hBMSCs的衰老。本研究结果显示:F-actin抑制剂可以促进YAP出核失活,同时明显增加SA-β-Gal染色阳性的细胞。

综上所述,F-actin和YAP参与了hBMSCs的衰老过程,F-actin抑制剂可以抑制F-actin聚合,进一步调节YAP的出入核从而影响hBMSCs的衰老。本研究结果从分子生物学角度为MSCs的衰老提供了新的认知,MSCs具有广阔的临床应用前景。

参考文献
[1] Baldari S, Di GR, Piccoli M, et al. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies[J]. Int J Mol Sci, 2017, 18(10): 2087. DOI:10.3390/ijms18102087
[2] Kim HJ, Park JS. Usage of human mesenchymal stem cells in cell-based therapy:advantages and disadvantages[J]. Dev Reprod, 2017, 21(1): 1–10. DOI:10.12717/DR.2017.21.1.001
[3] Afizah H, Hui JH. Mesenchymal stem cell therapy for osteoarthritis[J]. J Clin Orthop Trauma, 2016, 7(3): 177–182. DOI:10.1016/j.jcot.2016.06.006
[4] de Windt TS, Vonk LA, Slaper-Cortenbach IC, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons[J]. Stem Cells, 2017, 35(1): 256–264. DOI:10.1002/stem.2475
[5] Liu S, Liu D, Chen C, et al. MSC transplantation improves osteopenia via epigenetic regulation of notch signaling in lupus[J]. Cell Metab, 2015, 22(4): 606–618. DOI:10.1016/j.cmet.2015.08.018
[6] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143–147. DOI:10.1126/science.284.5411.143
[7] Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells:functional changes and implications in stem cell-based therapy[J]. Int J Mol Sci, 2016, 17(7): 1164. DOI:10.3390/ijms17071164
[8] Wagner W, Horn P, Castoldi M, et al. Replicative senescence of mesenchymal stem cells:a continuous and organized process[J]. PLoS One, 2008, 3(5): e2213. DOI:10.1371/journal.pone.0002213
[9] Kasper G, Mao L, Geissler S, et al. Insights into mesenchymal stem cell aging:involvement of antioxidant defense and actin cytoskeleton[J]. Stem Cells, 2009, 27(6): 1288–1297. DOI:10.1002/stem.v27:6
[10] Kretlow JD, Jin YQ, Liu W, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells[J]. BMC Cell Biol, 2008, 9(1): 60. DOI:10.1186/1471-2121-9-60
[11] Kim S, Coulombe PA. Emerging role for the cytoskeleton as an organizer and regulator of translation[J]. Nat Rev Mol Cell Biol, 2010, 11(1): 75–81. DOI:10.1038/nrm2818
[12] Wada K, Itoga K, Okano T, et al. Hippo pathway regulation by cell morphology and stress fibers[J]. Development, 2011, 138(18): 3907–3914. DOI:10.1242/dev.070987
[13] Liu F, Lagares D, Choi KM, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 308(4): L344–357. DOI:10.1152/ajplung.00300.2014
[14] Aragona M, Panciera T, Manfrin A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors[J]. Cell, 2013, 154(5): 1047–1059. DOI:10.1016/j.cell.2013.07.042
[15] Fernández BG, Gaspar P, Brás-Pereira C, et al. Actin-capping protein and the hippo pathway regulate F-actin and tissue growth in Drosophila[J]. Development, 2011, 138(11): 2337–2346. DOI:10.1242/dev.063545
[16] Baker N, Boyette LB, Tuan RS. Characterization of bone marrow-derived mesenchymal stem cells in aging[J]. Bone, 2015, 70: 37–47. DOI:10.1016/j.bone.2014.10.014
[17] Childs BG, Durik M, Baker DJ, et al. Cellular senescence in aging and age-related disease:from mechanisms to therapy[J]. Nat Med, 2015, 21(12): 1424–1435. DOI:10.1038/nm.4000
[18] Caliari SR, Vega SL, Kwon M, et al. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments[J]. Biomaterials, 2016, 103: 314–323. DOI:10.1016/j.biomaterials.2016.06.061
[19] Xie Q, Chen J, Feng H, et al. YAP/TEAD-mediated transcription controls cellular senescence[J]. Cancer Res, 2013, 73(12): 3615–3624. DOI:10.1158/0008-5472.CAN-12-3793
[20] Jin H, Lian N, Zhang F, et al. Inhibition of YAP signaling contributes to senescence of hepatic stellate cells induced by tetramethylpyrazine[J]. Eur J Pharm Sci, 2016, 96: 323–333.
[21] 刘源, 王海萍, 吕洋, 等. 不同浓度Wnt-11诱导骨髓间充质干细胞向心肌样细胞定向分化的实验研究[J]. 西安交通大学学报:医学版, 2017, 38(2): 199–205.