吉林大学学报(医学版)  2017, Vol. 43 Issue (03): 663-666

扩展功能

文章信息

孔钧令, 尹飞
颈深肌与慢性颈痛关系的临床研究进展
Clinical research progress in relationship between deep cervical muscles and chronic neck pain
吉林大学学报(医学版), 2017, 43(03): 663-666
Journal of Jilin University (Medicine Edition), 2017, 43(03): 663-666
10.13481/j.1671-587x.20170340

文章历史

收稿日期: 2016-10-07
颈深肌与慢性颈痛关系的临床研究进展
孔钧令, 尹飞     
吉林大学中日联谊医院骨科, 吉林 长春 130033
[摘要]: 慢性颈痛的发病机制尚未完全阐明,颈部深、浅肌肉在颈椎的运动、姿势和稳定性方面起重要作用,针对颈深肌的训练对于缓解疼痛有明显疗效,颈深肌在慢性颈痛诊疗中的重要作用正逐渐被认识。本文从颈深肌的检测方法、评价指标和训练方法3个方面对颈深肌与慢性颈痛的研究进行综述,分析肌电图、核磁共振和超声等方法的特点,评价肌肉厚度、横截面积、肌电振幅、横向弛豫时间和募集等指标的研究成效,介绍颈部屈曲训练(CF)和颅颈屈曲训练(CCF)在针对深颈屈肌训练方面的研究进展,旨在加深对颈深肌与慢性颈痛关系的理解。
关键词: 颈深肌    慢性颈痛    训练方法    评价指标    
Clinical research progress in relationship between deep cervical muscles and chronic neck pain

近年来,随着生活习惯和工作方式的改变,普通人群中慢性颈痛的发病率逐年上升,研究[1]显示:人群中67%的人在一生中某一阶段均遭受过颈痛的困扰。慢性颈痛被定义为持续或短暂性发作[2],症状持续超过3个月的颈痛[3-4]。目前对慢性颈痛的发病机制尚未完全阐明,但临床研究[5]证明针对颈深肌的训练对于缓解疼痛有明显疗效。颈深屈肌主要包括头长肌和颈长肌等肌肉,能够屈头、屈颈;颈深伸肌主要包括头夹肌、头半棘肌、颈半棘肌、多裂肌和回旋肌等肌肉,能够伸颈,同时对于颈部的同侧弯曲和旋转起一定作用。颈部深浅肌肉在颈椎的运动、姿势及稳定性方面起重要作用,研究[6]表明:颈部深、浅肌肉协调性的破坏可导致颈痛患者浅表肌肉出现过度的活动。Cagnie等[7]在2011年第一次通过使用功能性MRI发现面临疼痛时颈深屈肌活性降低而浅表颈肌活性升高,揭示疼痛时肌肉的支配神经发生适应性重建。目前针对浅表颈肌的表面肌电图已有大量研究,而关于颈深肌的研究不多,本文从颈深肌的检测方法、评价指标和颈深屈肌的训练方法3个方面对颈深肌与慢性颈痛的关系进行综述。

1 慢性颈痛患者针对颈深肌的检测方法 1.1 肌电图(electromyography)

肌电图被认为是评估颈屈肌募集测试的金标准[8-9]。深颈屈肌位于口咽的后方,因而可以通过口咽黏膜壁获取记录结果而不需经肌肉内记录。Falla等[9]发明了一种经鼻孔固定于口咽后壁以记录深颈屈肌活动的肌电图方法,该装置由银制双极电极(尺寸2.0 mm×0.6 mm,电极间距10.0 mm)组成,并连接于抽吸导管。电极的位置可经口腔来进行确认,确保电极位于中线旁1 cm及其方向顺着深颈屈肌纤维。通过将1个30 mmHg的抽吸负压的电极经两电极间固定于口咽黏膜,并将电极放置于悬雍垂水平(相当于C2-C3椎间盘水平),以此将周围肌肉对研究结果的影响降到最低。Falla等[10]通过对10名志愿者不同活动度下深颈屈肌活性与颈部和下颌周围肌肉活性进行比较发现:鼻咽电极的最大肌电振幅源自深颈屈肌,从而支持本技术对于深颈屈肌功能和功能障碍的继续研究。肌电图测试有其固有局限性,因口咽部利多卡因局麻药的时间限制,肌电图测验时间一般不超过15 min。而因其侵害性,临床上多难以获得大宗样本的研究结果。

1.2 核磁共振成像(magnetic resonance imaging,MRI)

采用3.0T机器采集颈深肌MRI图像,被观察者保持一个舒适、放松的仰卧位姿势,臀部弯曲至45°,腿由泡沫物支持住,头部保持中立位且不伴有旋转或者侧屈[11-12]。深颈屈肌均在同一间盘水平研究以将节段水平的影响降至最低。肌肉的横截面积值可借助于屏幕标尺测量,采用软件DicomWorks 1.3.5计算特定区域下X轴和Y轴的像素值获取横截面积大小。MRI成像被公认为是肌肉成像的金标准,并且被证实可区分颈部肌肉形态组织的不同[13-14]

1.3 超声

与肌电图和MRI比较,超声具有易操作、无侵袭性、费用低和可靠而有效等优点[15]。超声是一种很好的评估肌肉厚度和肌束长度变化的方法[15-16]。研究者[17]将传感器纵向放置于颈部前方,与气管走行方向平行并距离其中线大约5 cm,以此可观察颈深屈肌。通常在甲状软骨下2 cm的C5-C6水平获取颈长肌的横截面积。在超声分析的过程中存在固有问题,一是在低对比度环境下分辨重要组织及界限,二是补偿图像处理过程中的信息丢失。Kim等[18]的研究基于全自动的方法分析超声采集的颈深屈肌图像,将主观采集信息造成的误差降至最低,更客观、准确地分析研究成果。

2 慢性颈痛患者颈深肌作用的评价指标 2.1 肌肉厚度

研究[19]证实:采用超声技术监测颅颈屈曲试验时颈长肌厚度变化具有可靠性。2011年Fabianna等[20]首次采用超声技术研究了31例慢性颈痛患者训练前和训练的5个阶段过程中肌肉厚度变化的结果表明:超声能更好地观察颈痛患者颈屈肌特别是颈长肌厚度的变化,同时可有效地区分颈痛患者与正常人。2013年Jun等[21]比较了20例颈痛患者(疼痛组)和无颈痛者20人(对照组)在康复训练过程中超声测量肌肉厚度的变化发现:疼痛组患者颈深屈肌与胸锁乳突肌的厚度低于对照组,而且随着颅颈屈曲训练的进行,肌肉厚度变化越来越大,疼痛组患者颈深屈肌厚度也明显低于对照组。关于正常人与慢性颈痛患者颈长肌尺寸比较的研究[22]证明:与正常者比较,颈痛患者的颈长肌厚度更小。2015年Moon等[23]对20名健康成人进行颈深屈肌训练时发现:咀嚼肌在80%最大随意等长收缩(maximal voluntaryisometric contraction,MVC)下可选择性增加颈长肌的厚度而胸锁乳突肌不收缩。

2.2 横截面积

研究[14, 24]显示:颈痛患者的局部肌肉萎缩,从而导致了更小的肌肉横截面积。Cagnie等[25]发现:颅颈屈曲训练时,头长肌在C0-C1水平、颈长肌在C2-C3水平横截面积增加最大。Veerle等[26]通过研究有颈痛症状的F-16飞行员发现:颈痛组飞行员的颈深肌比对照组有更大的横截面积,这可能是由于颈深肌更多的活动造成。此外,2015年Jeong等[11]通过研究后纵韧带骨化症患者的颈深屈肌MRI表现发现:后纵韧带骨化症患者的颈长肌和头长肌比正常人的横截面积更小。

2.3 肌电振幅

Falla等[8]将10例慢性颈痛患者和10名无症状志愿者分组进行颅颈屈曲训练发现:颈深屈肌肌电振幅和颅颈屈曲训练度有很强的线性关系,但颈痛组患者的肌电振幅增幅低于对照组,同时颈深屈肌的低肌电振幅同浅表肌肉的高表现有关联。Falla等[10]通过对颈深屈肌活动和颈部周围肌肉活动比较发现:颈部双侧旋转的颈深屈肌中肌电振幅的增长可能反映这些肌肉主要解剖动作运动时的稳定作用。

2.4 横向弛豫时间(transverse relaxation time,T2)

T2值为横向磁化失量Mxy衰减到其原来值的37%的时间。T2值是机体组织的固有属性,与分子的热运动和分子内的电化学环境相关。Cagnie等[27]使用肌肉功能性MRI研究19名健康志愿者行不同颈椎屈曲训练时肌肉变化发现:颅颈屈曲训练时,与颈长肌和胸锁乳突肌比较,头长肌T2值明显升高;与颅颈屈肌训练比较,颈屈曲训练后的颈长肌和胸锁乳突肌T2值明显升高,而头长肌的T2值无明显改变。一些验证研究[28-29]结果表明:T2值的变化与运动强度呈正比关系。

2.5 募集

募集是指神经肌肉系统控制和激活不同的运动单位(motor unit,MU),并产生特定强度和方式的肌肉收缩过程;其遵循Henneman原则,即当肌肉收缩时,与阈值大而高的MU比较, 阈值小而低的MU先被募集。Lindstrom等[30]报道慢性颈痛患者颈深屈肌功能障碍,疼痛本身和对疼痛的恐惧可导致前后颈深浅肌募集的变化不同。Jesus等[17]采用超声技术研究深颈屈肌募集模式,选择无颈痛史的健康志愿者10人进行5个阶段的CCF发现:颅颈屈曲训练增加颈深屈肌的募集且后3个阶段中有明显增加趋势,但并未发现颈深浅肌募集的不同。

2.6 其他

研究[13]显示:过伸伤患者的头半棘肌和多裂肌中有脂肪组织渗入。Elliott等[31]研究过伸伤患者和健康志愿者的颈伸肌横截面积变化时发现:肌肉组织的脂肪浸润可部分解释颈痛患者颈深伸肌横截面积的变化。Uhlig等[32]研究颈椎功能障碍患者的肌纤维组成时发现:颈痛患者中大量Ⅰ型肌纤维转化为Ⅱ型肌纤维。

3 慢性颈痛患者针对深颈肌的训练方法

临床研究[33]表明:与高强度、长时间的训练比较,低强度训练对深颈屈肌活性的提高更有效。CF要求受训者保持一个舒适仰卧位,上颈椎保持中立位缓慢移动而头部角度则保持不变。CCF是深颈屈肌、头长肌和颈长肌临床评估的一种直接方法[34]。CCF已有20多年的应用历史,是一项主要针对深颈屈肌的低负荷训练方式。1个压力传感器被置于颈下用以监测深颈屈肌收缩时颈椎生理曲度的变化,受训者在压力传感器的指引下进行5个压力等级的训练(20~30 mmHg,每2 mmHg为1个等级)。

颈深屈肌训练是基于颈深肌特别是颈长肌的主要功能,其能够支持颈椎前凸的姿势,而颈痛患者丧失持久保持颈椎前凸的功能[35-36]。研究[37]证实:CCF对深颈屈肌更有效,而对浅表颈肌的效果则较差,传统CF中表面肌肉活动可能掩盖深颈屈肌的障碍表现。Falla等[8]通过对颈痛患者进行CCF发现:颈深屈肌的肌电振幅与CCF压力等级成线性关系,表明CCF减弱的表现同深颈屈肌功能障碍相一致。O’Leary等[38]研究CF与CCF2种训练方法对颈屈肌的再训练结果显示:与传统的CF比较,CCF训练后的肌肉强度和持久度均明显提高。2015年Javanshir等[39]将60例慢性颈痛患者随机分成2组,分别进行CCF训练和CF训练,结果显示:CCF组患者训练后其颈长肌的横截面积、宽度及厚度均明显增加,而CF组患者训练后其胸锁乳突肌仅厚度明显增加,表明在慢性颈痛患者中,针对颈深屈肌的训练对于颈痛症状和功能障碍的缓解均有效果。2013年Iqbal等[5]对30名患有颈痛的教师进行4周颈深屈肌训练的结果表明:其疼痛和功能障碍均获得明显改善,而且压力生物反馈和训练相结合方式的效果优于单独训练。2012年Falla等[40]对14例女性慢性颈痛患者进行6周CCF的结果显示:训练后初始颈深屈肌肌电振幅值最低的患者疼痛缓解也最明显。Thoomes-de等[41]对1例颈痛患者康复训练研究显示:患者颈部活动度得到极大提高,而同时颈痛症状完全消失,日常生活不再出现任何限制。Schomacher等[42]对10名健康志愿者在2个颈椎水平(C2和C5) 进行颈伸肌手法对抗训练发现:该训练对于颈痛患者颈半棘肌活性的增强有一定效果。

综上所述,慢性颈痛患者颈深肌在横截面积、厚度和肌电振幅等方面发生明显变化,而针对性的具体训练对于颈痛和功能障碍的缓解有明显改善作用,且能够减少疾病带来的治疗费用。颈部深层肌肉组群是维持颈椎稳定性的一个整体,颈深伸肌在颈痛患者的康复中同样起重要作用,而目前的研究多集中于颈深屈肌,颈深伸肌的功能评估和再训练仍需进一步研究。

参考文献
[1] Conley MS, Meyer RA, Bloomberg JJ, et al. Noninvasive analysis of human neck muscle function[J]. Spine, 1995, 20(23): 2505–2512. DOI:10.1097/00007632-199512000-00009
[2] Cote P, Cassidy JD, Carroll LJ, et al. The annual incidence and course of neck pain in the general population:a population-based cohort study[J]. Pain, 2004, 112(3): 267–273. DOI:10.1016/j.pain.2004.09.004
[3] Ylinen J, Takala EP, Kautiainen H, et al. Association of neck pain, disability and neck pain during maximal effort with neck muscle strength and range of movement in women with chronic non-specific neck pain[J]. European J Pain, 2004, 8(5): 473–478. DOI:10.1016/j.ejpain.2003.11.005
[4] Guez M, Hildingsson C, Stegmayr B, et al. Chronic neck pain of traumatic and non-traumatic origin:a population-based study[J]. Acta Orthop Scand, 2003, 74(5): 576–579. DOI:10.1080/00016470310017983
[5] Iqbal ZA, Rajan R, Khan SA, et al. Effect of deep cervical flexor muscles training using pressure biofeedback on pain and disability of school teachers with neck pain[J]. J Phys Ther Sci, 2013, 25(6): 657–661. DOI:10.1589/jpts.25.657
[6] Jull G, Kristjansson E, Dall'Alba P. Impairment in the cervical flexors:a comparison of whiplash and insidious onset neck pain patients[J]. Man Ther, 2004, 9(2): 89–94. DOI:10.1016/S1356-689X(03)00086-9
[7] Cagnie B, Dirks R, Schouten M, et al. Functional reorganization of cervical flexor activity because of induced muscle pain evaluated by muscle functional magnetic resonance imaging[J]. Man Ther, 2011, 16(5): 470–475. DOI:10.1016/j.math.2011.02.013
[8] Falla DL, Jull GA, Hodges PW. Patients with neck pain demonstrate reduced electromyographic activity of the deep cervical flexor muscles during performance of the craniocervical flexion test[J]. Spine, 2004, 29(19): 2108–2114. DOI:10.1097/01.brs.0000141170.89317.0e
[9] Falla D, Jull G, Dall'Alba P, et al. An electromyographic analysis of the deep cervical flexor muscles in performance of craniocervical flexion[J]. Phys Ther, 2003, 83(10): 899–906.
[10] Falla D, Jull G, O'Leary S, et al. Further evaluation of an EMG technique for assessment of the deep cervical flexor muscles[J]. J Electromyogr Kinesiol, 2006, 16(6): 621–628. DOI:10.1016/j.jelekin.2005.10.003
[11] Jeong SY, Eun JP, Oh YM. Magnetic resonance imaging analysis of deep cervical flexors in patients with ossification of the posterior longitudinal ligament and clinical implication[J]. Am J Phys Med Rehab, 2015, 94(11): 967–974. DOI:10.1097/PHM.0000000000000288
[12] Cagnie B, O'Leary S, Elliott J, et al. Pain-induced changes in the activity of the cervical extensor muscles evaluated by muscle functional magnetic resonance imaging[J]. Clin J Pain, 2011, 27(5): 392–397. DOI:10.1097/AJP.0b013e31820e11a2
[13] Elliott J, Jull G, Noteboom JT, et al. Fatty infiltration in the cervical extensor muscles in persistent whiplash-associated disorders:a magnetic resonance imaging analysis[J]. Spine, 2006, 31(22): 847–855. DOI:10.1097/01.brs.0000240841.07050.34
[14] Fernandez-de-Las-Penas C, Bueno A, Ferrando J, et al. Magnetic resonance imaging study of the morphometry of cervical extensor muscles in chronic tension-type headache[J]. Cephalalgia, 2007, 27(4): 355–362. DOI:10.1111/cha.2007.27.issue-4
[15] Hodges PW, Pengel LH, Herbert RD, et al. Measurement of muscle contraction with ultrasound imaging[J]. Muscle Nerve, 2003, 27(6): 682–692. DOI:10.1002/(ISSN)1097-4598
[16] McMeeken JM, Beith ID, Newham DJ, et al. The relationship between EMG and change in thickness of transversus abdominis[J]. Clin Biomech, 2004, 19(4): 337–342. DOI:10.1016/j.clinbiomech.2004.01.007
[17] Jesus FM, Ferreira PH, Ferreira ML. Ultrasonographic measurement of neck muscle recruitment:a preliminary investigation[J]. J Manip Ther, 2008, 16(2): 89–92. DOI:10.1179/106698108790818486
[18] Kim KB, Song DH, Park HJ. Computer vision based automatic extraction and thickness measurement of deep cervical flexor from ultrasonic images[J]. Comput Math Method Med, 2016, 2016: 5892051.
[19] Cagnie B, Derese E, Vandamme L, et al. Validity and reliability of ultrasonography for the longus colli in asymptomatic subjects[J]. Man Ther, 2009, 14(4): 421–426. DOI:10.1016/j.math.2008.07.007
[20] Jesus-Moraleida FR, Ferreira PH, Pereira LS, et al. Ultrasonographic analysis of the neck flexor muscles in patients with chronic neck pain and changes after cervical spine mobilization[J]. J Manipulative Physiol Ther, 2011, 34(8): 514–524. DOI:10.1016/j.jmpt.2011.08.006
[21] Jun I, Kim K. A comparison of the deep cervical flexor muscle thicknesses in subjects with and without neck pain during craniocervical flexion exercises[J]. J Phys Ther Sci, 2013, 25(11): 1373–1375. DOI:10.1589/jpts.25.1373
[22] Javanshir K, Rezasoltani A, Mohseni-Bandpei MA, et al. Ultrasound assessment of bilateral longus colli muscles in subjects with chronic bilateral neck pain[J]. Am J Phys Med Rehabil, 2011, 90(4): 293–301. DOI:10.1097/PHM.0b013e31820173e5
[23] Moon HJ, Goo BO, Kwon HY. Changes in the thickness of the cervical flexor depending on the contraction level of the masticatory muscle during deep cervical flexor training[J]. J Phys Ther Sci, 2015, 27(11): 3347–3349. DOI:10.1589/jpts.27.3347
[24] Fernandez-de-las-Penas C, Albert-Sanchis JC, Buil M, et al. Cross-sectional area of cervical multifidus muscle in females with chronic bilateral neck pain compared to controls[J]. J Orthop Sports Phys Ther, 2008, 38(4): 175–180. DOI:10.2519/jospt.2008.2598
[25] Cagnie B, D'Hooge R, Achten E, et al. A magnetic resonance imaging investigation into the function of the deep cervical flexors during the performance of craniocervical flexion[J]. J Manipulative Physiol Ther, 2010, 33(4): 286–291. DOI:10.1016/j.jmpt.2010.03.010
[26] De Loose V, Vanden Oord M, Keser I, et al. MRI study of the morphometry of the cervical musculature in F-16 pilots[J]. Aviat Space Environ Med, 2009, 80(8): 727–731. DOI:10.3357/ASEM.2389.2009
[27] Cagnie B, Dickx N, Peeters I, et al. The use of functional MRI to evaluate cervical flexor activity during different cervical flexion exercises[J]. J Appl Physiol, 2008, 104(1): 230–235.
[28] Dickx N, D'Hooge R, Cagnie B, et al. Magnetic resonance imaging and electromyography to measure lumbar back muscle activity[J]. Spine, 2010, 35(17): 836–842. DOI:10.1097/BRS.0b013e3181d79f02
[29] Fleckenstein JL, Watumull D, Mc Intire DD, et al. Muscle proton T2 relaxation times and work during repetitive maximal voluntary exercise[J]. J Appl Physiol, 1993, 74(6): 2855–2859.
[30] Lindstrom R, Schomacher J, Farina D, et al. Association between neck muscle coactivation, pain, and strength in women with neck pain[J]. Man Ther, 2011, 16(1): 80–86. DOI:10.1016/j.math.2010.07.006
[31] Elliott J, Jull G, Noteboom JT, et al. MRI study of the cross-sectional area for the cervical extensor musculature in patients with persistent whiplash associated disorders (WAD)[J]. Man Ther, 2007, 13(3): 258–265.
[32] Uhlig Y, Weber BR, Grob D, et al. Fiber composition and fibre transformations in neck muscles of patients with dysfunction of the cervical spine[J]. J Orthop Res, 1995, 13(2): 240–249. DOI:10.1002/jor.v13:2
[33] Jull GA, Falla D, Vicenzino B, et al. The effect of therapeutic exercise on activation of the deep cervical flexor muscles in people with chronic neck pain[J]. Man Ther, 2009, 14(6): 696–701. DOI:10.1016/j.math.2009.05.004
[34] Jull G, Barrett C, Magee R, et al. Further clinical clarification of the muscle dysfunction in cervical headache[J]. Cephalalgia, 1999, 19(3): 179–185. DOI:10.1046/j.1468-2982.1999.1903179.x
[35] Falla D, Jull G, Russell T, et al. Effect of neck exercise on sitting posture in patients with chronic neck pain[J]. Phys Ther, 2007, 87(4): 408–417. DOI:10.2522/ptj.20060009
[36] Watson DH, Trott PH. Cervical headache:an investigation of natural head posture and upper cervical flexor muscle performance[J]. Cephalalgia, 1993, 13(4): 272–284. DOI:10.1046/j.1468-2982.1993.1304272.x
[37] O'Leary S, Falla D, Jull G, et al. Muscle specificity in tests of cervical flexor muscle performance[J]. J Electromyogr Kinesiol, 2007, 17(1): 35–40. DOI:10.1016/j.jelekin.2005.10.006
[38] O'Leary S, Jull G, Kim M, et al. Specificity in retraining craniocervical flexor muscle performance[J]. J Orthop Sports Phys Ther, 2007, 37(1): 3–9. DOI:10.2519/jospt.2007.2237
[39] Javanshir K, Amiri M, Mohseni Bandpei MA, et al. The effect of different exercise programs on cervical flexor muscles dimensions in patients with chronic neck pain[J]. J Back Musculoskelet Rehabil, 2015, 28(4): 833–840. DOI:10.3233/BMR-150593
[40] Falla D, O'Leary S, Farina D, et al. The change in deep cervical flexor activity after training is associated with the degree of pain reduction in patients with chronic neck pain[J]. Clin J Pain, 2012, 28(7): 628–634. DOI:10.1097/AJP.0b013e31823e9378
[41] Thoomes-de GM, Schmitt MS. The effect of training the deep cervical flexors on neck pain, neck mobility, and dizziness in a patient with chronic nonspecific neck pain after prolonged bed rest:a case report[J]. J Orthop Sports Phys Ther, 2012, 42(10): 853–860. DOI:10.2519/jospt.2012.4056
[42] Schomacher J, Erlenwein J, Dieterich A, et al. Can neck exercises enhance the activation of the semispinalis cervicis relative to the splenius capitis at specific spinal levels[J]. Man Ther, 2015, 20(5): 694–702. DOI:10.1016/j.math.2015.04.010