扩展功能
文章信息
- 苑荣爽, 李贺, 孙靖辉, 庄文越, 陈建光, 王春梅
- YUAN Rongshuang, LI He, SUN Jinghui, ZHUANG Wenyue, CHEN Jianguang, WANG Chunmei
- 北五味子多糖对高脂诱导非酒精性脂肪性肝病大鼠的降血脂作用及其抗氧化活性
- Lipid-lowering effect and antioxidant activity of polysaccharide from Schisandra Chinensis in rats with non-alcoholic fatty liver disease induced by high-fat diet
- 吉林大学学报(医学版), 2017, 43(06): 1103-1108
- Journal of Jilin University (Medicine Edition), 2017, 43(06): 1103-1108
- 10.13481/j.1671-587x.20170607
-
文章历史
- 收稿日期: 2017-02-08
2. 北华大学医学检验学院分子生物学教研室, 吉林 吉林 132013
2. Department of Molecular Biology, College of Laboratory Medicine, Beihua University, Jilin 132013, China
近年来,随着生活水平的提高,非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)发病率逐年升高,已影响了全球20%~40%的人口,平均患病率约为30%,已成为21世纪危害人类健康的主要疾病之一[1-2]。NAFLD发病机制复杂,与脂质氧化、氧化应激、促炎症因子和线粒体功能障碍等因素有关, 其中氧化应激损伤对于NAFLD的发生发展起关键作用[3-4]。五味子(Schisandra Chinensis)为我国传统保肝药物,含有木脂素和多糖等有效成分[5]。现代药理学研究[6-7]表明:五味子多糖(Schisandra Chinensis polysacchride, SCP)具有保护肝脏、调节血脂代谢、改善胰岛素抵抗、抗氧化和提高免疫力等多方面作用,但其对NAFLD是否具有防治作用少见报道。本研究采用高脂饮食诱导NAFLD大鼠模型,观察SCP对NAFLD大鼠血脂、肝脂质水平、肝脏病理形态表现、血清和肝组织中氧化及抗氧化指标的影响,探讨SCP对NAFLD的防治作用及其作用机制,为五味子的进一步开发利用提供实验依据。
1 材料与方法 1.1 实验动物、主要试剂和仪器32只雄性Wistar大鼠,体质量180~200 g,由长春亿斯实验动物技术有限公司提供,许可证编号:SCXK(吉)2011-0004,为无特定病原体(specific pathogen free,SPF)级。大鼠采取分笼饲养,饲料供给充足,自由饮水。SCP由吉林省五味子开发及产业化科学研究中心制备,首先通过超临界CO2流涕萃取,将五味子中水溶性成分和脂溶性成分分离,然后利用超声波产生的强烈震动、高加速度、强烈空化效应及搅拌作用,经超声波预处理40 min进行浸提,再经酶法与三氯乙酸结合脱蛋白得到SCP,提取率为77.6%,纯度为50%。血清低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)检测试剂盒、高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)检测试剂盒、甘油三酯(triglyceride,TG)检测试剂盒及总胆固醇(total cholesterol,TC)检测试剂盒购于中生北控生物科技股份有限公司,组织TG检测试剂盒及TC检测试剂盒购于北京普利来基因技术有限公司,丙氨酸氨基转移酶(alanine aminotransferase,ALT)检测试剂盒、门冬氨酸氨基转移酶(aspartate aminotransferase,AST)检测试剂盒、丙二醛(malondialdehyde,MDA)检测试剂盒、超氧化物歧化酶(superoxide dismutase,SOD)检测试剂盒和还原型谷胱甘肽(glutathione,GSH)检测试剂盒由南京建成生物工程研究所提供。全自动酶标仪(infiniteM200)购自瑞士TECAN集团公司,超声波细胞粉碎机(JY92-IID)购自宁波新生生物科技股份有限公司;手提式高速分散器(S10)购自宁波新生生物科技股份有限公司,微量振荡器(MH-1)购自江苏省海门市其林贝尔仪器制造有限公司,超低温冰箱(-80 ℃)购自日本SANYO公司。
1.2 动物分组和给药从32只雄性Wistar大鼠中选取16只随机分成正常对照组(给予普通饲料)和SCP组(给予普通饲料喂养+50 mg·kg-1 SCP)。其余16只用于建立NAFLD大鼠模型,高脂饲料喂养4周后,禁食不禁水12 h,大鼠尾静脉采血,检测血清TC和TG水平,确定大鼠出现NAFLD并继续给予高脂饲料喂养。将高脂血症大鼠随机分成NAFLD组和NAFLD+SCP组,每组各8只。SCP组大鼠给予50 mg·kg-1SCP,正常对照组及NAFLD组大鼠给予等体积溶媒,NAFLD+SCP组大鼠给予NAFLD和SCP。每日灌胃1次,持续12周,每周测量大鼠体质量。
1.3 大鼠血清中TC、TG、LDL-C、HDL-C、AST、ALT和MDA水平及SOD活性检测末次给药后,大鼠禁食12 h,采用乌拉坦(100 mg·kg-1)腹腔注射麻醉,经腹主动脉取血,3 500 r·min-1、4 ℃离心20 min分离血清,取上层血清分装至EP管中,-80 ℃冻存待测。按照试剂盒说明书方法测定血清中TG、TC、LDL-C、HDL-C、ALT、AST和MDA水平及SOD活性。
1.4 大鼠肝组织中TC和TG水平检测按照体积比为1:10的比例将肝组织溶于试剂盒的裂解液中,于离心管内,4 ℃放置1 h后,用电动匀浆16 000 r·min-1(在冰水混合物中进行,匀浆时间为每次10 s,间隔30 s,连续3次),匀浆之后,于70 ℃水浴中加热10 min,3500 r·min-1离心5 min,取上清,再次以上述方法离心,放置在EP管中待测。采用酶学方法检测肝脏组织中TC和TG水平,具体操作方法严格按照试剂盒说明书。
1.5 大鼠肝组织中MDA、GSH水平和SOD活性检测制备10%肝组织匀浆,MDA水平采用TBA法进行测定,SOD活性通过黄嘌呤氧化酶法进行测定,GSH水平采用微量酶标法进行测定,具体操作方法严格按照试剂盒说明书进行。
1.6 HE染色观察大鼠肝组织病理形态表现取10%甲醛固定的肝组织,石蜡包埋,切成5μm厚的切片,常规HE染色。在光镜下观察肝组织病理形态表现。
1.7 统计学分析采用SPSS 20.0软件进行统计学分析。各组大鼠血清中ALT、AST、TG、TC、LDL-C、HDL-C水平,肝组织中TC、TG水平,血清及肝组织中MDA、GSH水平及SOD活性均以x ±s表示,多组间比较采用单因素方差分析(One Way ANOVA),组间两两比较采用t检验。以P<0.05为差异有统计学意义。
2 结果 2.1 各组大鼠体质量和肝脂数与正常对照组和SCP组比较,NAFLD组大鼠肝指数明显增加(P<0.01);与NAFLD组比较,治疗12周后,NAFLD+SCP组大鼠体质量和肝指数明显降低(P<0.05)。见表 1。
(n=8, x ±s) | ||
Group | Body weight(m/g) | Liver index (η/%) |
Normal control | 332.32±54.83 | 3.25±0.32 |
SCP | 337.89±38.52 | 3.33±0.45 |
NAFLD | 355.98±40.35 | 4.97±0.54*△ |
NAFLD+SCP | 336.20±48.43# | 4.32±0.60# |
*P < 0.01 compared with normal control group; △P < 0.05 compared with SCP group; #P < 0.05 compared with NAFLD group. |
与正常对照组和SCP组比较,NAFLD组大鼠血清中TC、TG、LDL-C、ALT和AST水平均明显升高(P<0.01),HDL-C水平无明显变化。与NAFLD组比较,NAFLD+SCP组大鼠血清中TC、TG、LDL-C、ALT和AST水平均明显降低(P<0.01)。见表 2。
(n=8, x ±s) | ||||||
Group | TC [cB/ (mmol·L-1)] |
TG [cB/ (mmol·L-1)] |
LDL-C [cB/ (mmol·L-1)] |
HDL-C [cB/ (mmol·L-1)] |
ALT [λB/ (IU·L-1)] |
AST [λB/ (IU·L-1)] |
Normal control | 2.17±0.41 | 0.54±0.06 | 0.99±0.12 | 7.18±1.52 | 27.03±1.35 | 29.50±2.25 |
SCP | 2.73±0.52 | 0.62±0.08 | 1.08±0.20 | 6.82±0.96 | 29.41±2.32 | 26.81±3.95 |
NAFLD | 16.11±3.76*△ | 0.98±0.13*△ | 10.92±2.29*△ | 6.49±0.99 | 112.09±11.25*△ | 160.33±15.62*△ |
NAFLD+SCP | 6.09±1.04# | 0.70±0.12# | 5.74±0.58# | 7.08±1.23 | 49.96±3.56# | 63.32±5.26# |
* P < 0.01 compared with normal control group; △P < 0.01 compared with SCP group; #P < 0.01 compared with NAFLD group. |
饲喂高脂饮食12周后,与正常对照组和SCP组比较,NAFLD组大鼠肝组织中TC和TG水平明显升高(P<0.01)。与NAFLD组比较,NAFLD+SCP组大鼠肝组织中TC和TG水平降低(P<0.01)。见表 3。
(n=8, x ±s) | ||||||
Group | TC [cB/(mmol·L-1)] |
TG [cB/(mmol·L-1)] |
||||
Normal control | 1.85±0.28 | 2.13±0.45 | ||||
SCP | 1.69±0.18 | 1.91±0.20 | ||||
NAFLD | 18.56±1.24*△ | 6.51±0.51*△ | ||||
NAFLD+SCP | 11.89±1.07# | 3.62±0.78# | ||||
*P < 0.01 compared with normal control group; △P < 0.01 compared with SCP group; #P < 0.01 compared with NAFLD group. |
与正常对照组和SCP组比较,NAFLD组大鼠血清和肝组织中MDA水平明显升高,而SOD活性明显降低(P<0.01);SCP治疗12周后,与NAFLD组比较,NAFLD+SCP组大鼠血清和肝组织中MDA水平明显降低,SOD活性升高(P<0.01)。见图 1。
与空白对照组[(78.94±13.02)μmol·g-1]比较,NAFLD组大鼠肝组织中GSH水平[(43.52±6.59)μmol·g-1]明显降低(P<0.05);NAFLD+SCP组大鼠肝组织中GSH水平[(82.78±10.15)μmol·g-1]高于NAFLD组[(43.52±6.59)μmol·g-1](P<0.01)。
2.5 各组大鼠肝组织病理形态表现空白对照组大鼠肝小叶结构完整,肝细胞形态呈圆形,细胞核位于中央,胞浆染色均匀呈粉色,小叶周边汇管区结构正常;NAFLD组大鼠肝小叶结构紊乱,小叶中央静脉扩张,小叶内可见肝细胞脂肪变性,出现以大泡性脂肪变性为主的混合性脂肪变性,肝细胞体积增大,胞浆内可见脂肪空泡,小叶内可见肝细胞点状坏死;与NAFLD组比较,NAFLD+SCP组大鼠肝小叶结构基本正常,小叶内肝细胞脂肪变性明显减轻,偶可见肝细胞点状坏死。见图 2(插页三)。
3 讨论NAFLD是一种与血脂紊乱密切相关的代谢应激性肝损伤。随着人们生活水平的提高,饮食结构及生活方式改变,高脂饮食摄入逐年增加,使得NAFLD患病率不断升高,研究NAFLD的病理生理学机制及治疗对策是目前的研究热点之一[8]。依据“二次打击学说”,NAFLD的形成首先是过多的脂肪在肝脏堆积,而肝细胞一方面从血液中摄取脂肪酸(FFA)合成TG,另一方面是以极低密度脂蛋白(VLDL)的形式将TG转运出肝细胞[9]。不论任何步骤发生异常都会引起肝细胞脂肪合成能力增加和(或)转运入血能力降低,从而导致脂类物质在肝细胞内积聚,形成脂肪肝[10]。本研究结果表明:高脂饮食喂养16周可致大鼠脂代谢发生紊乱,血脂和肝脂质水平升高,经SCP治疗后,NAFLD大鼠血清TG、TC和LDL-C水平明显降低,肝组织中TC和TG水平降低,肝脏脂质堆积减轻。
NAFLD的发病机制较为复杂, 迄今尚未完全阐明。研究[11]表明:氧自由基生成增多和脂质过氧化连锁反应是肝细胞损伤的主要机制之一,也是NAFLD发生发展的关键因素。氧自由基在体内蓄积,过量的自由基可与生物膜中多价不饱和脂肪酸发生脂质过氧化反应,产生大量脂质过氧化物MDA,破坏生物膜的正常结构和功能,造成肝细胞损伤。MDA可使肝细胞膜的流动性和通透性发生障碍引发肝细胞功能失调、肝细胞破裂甚至死亡。因此,MDA常常可以反映机体内脂质过氧化程度,间接地反映机体细胞受自由基攻击导致细胞损伤的严重程度[12-13]。本研究结果表明:NAFLD组大鼠血清和肝组织中MDA水平明显升高,提示大鼠在高脂饮食的影响下,机体受自由基攻击导致细胞损伤。而SCP治疗能有效降低NAFLD大鼠体内MDA的水平,说明SCP可能通过抑制细胞内脂质过氧化反应进而减轻细胞的损伤。当肝脏发生脂肪性病变时,致病因素会导致体内活性氧(ROS)的异常增多,进而机体抗氧化能力的降低,肝脏对于氧化应激/脂质过氧化的损伤耐受性降低,最终引发肝脏进一步损伤。SOD和GSH是评价体内抗氧化能力的重要指标[14-15]。SOD是机体内对抗氧自由基,清除超氧阴离子的重要蛋白酶,对调节体内的氧化与抗氧化平衡起主要作用。GSH是一种自由基清除剂,可清除体内的超氧化物自由基(O2-)、过氧化氢(H2O2)和脂质羟类化合物(LOOH)。SOD和GSH是衡量机体抗氧化能力大小的重要因素。Sundaram等[16]报道:抗氧化能力降低可明显影响NAFLD肝脏脂质氧化应激和脂质代谢的水平。本研究结果显示:SCP能明显提高NAFLD大鼠血清及肝组织中SOD活性和GSH水平,降低脂质过氧化的同时增强体内清除氧自由基能力,减轻脂质代谢紊乱所致的氧化应激损伤。
综上所述,SCP可明显降低高脂饮食诱导的NAFLD大鼠血清中TC、TG、LDL-C、ALT及AST水平和肝组织中TC、TG水平,改善了NAFLD大鼠的脂质代谢紊乱,保护了肝细胞。同时,SCP使脂质过氧化产物MDA水平明显降低,SOD活性升高,GSH水平升高,表明SCP治疗NAFLD可能与其抗氧化机制有关。
[1] | 中华医学会肝脏病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南[J]. 中华肝脏病杂志, 2006, 14(3): 161–163. |
[2] | 张声生, 李乾构, 李军祥. 非酒精性脂肪性肝病中医诊疗共识意见[J]. 中国中西医结合消化杂志, 2011, 30(2): 276–279. |
[3] | 杜婷婷, 杜佳, 吴汉妮. 脂肪性肝病的氧化应激及其治疗对策[J]. 内科急危重症杂志, 2013, 19(4): 239–242. |
[4] | Wei B, Li Q, Fan R, et al. UFLC-MS/MS method for simultaneous determination of six lignans of Schisandra chinensis (Turcz.) Baill. in normal and insomniac rats brain microdialysates and homogenate samples:towards an in-depth study for its sedative-hypnotic activity[J]. JMass Spectrom, 2013, 48(4): 448–458. DOI:10.1002/jms.3176 |
[5] | 王佳丽, 杨洪涛. 五味子主要化学成分的药理研究[J]. 河南中医, 2014, 34(2): 357–359. |
[6] | 刘宏, 李贺, 苑荣爽, 等. 北五味子总木脂素对C57BL/6小鼠高脂血症的影响[J]. 食品科学, 2016, 37(11): 218–221. DOI:10.7506/spkx1002-6630-201611038 |
[7] | 郭冷秋, 张鹏, 黄莉莉, 等. 五味子药理作用研究进展[J]. 中医药学报, 2006, 34(4): 51–53. |
[8] | 陈宝芝, 李生, 吴金滢, 等. 北五味子粗多糖对四氯化碳致小鼠急性肝损伤的保护作用及其机制[J]. 吉林大学学报:医学版, 2014, 40(1): 92–96. |
[9] | 李生, 李贺, 高晓旭, 等. 北五味子粗多糖对酒精诱导小鼠急性肝损伤的保护作用及其机制研究[J]. 北华大学学报:自然科学版, 2014, 15(4): 472–475. |
[10] | Sookoian S, Pirola CJ. Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease[J]. Publ Library Sci, 2013, 8(3): e58895–e589105. |
[11] | Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome[J]. Hepatology, 2003, 37(4): 917–923. DOI:10.1053/jhep.2003.50161 |
[12] | Zhu X, Bian H, Gao X. The potential mechanisms of berberine in the treatment of nonalcoholic fatty liver disease[J]. Molecules, 2016, 21(10): 1336–1347. DOI:10.3390/molecules21101336 |
[13] | Kohjima M, Enjoji M, Higuchi N, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease[J]. Internat J Molecul Med, 2007, 20(3): 351–358. |
[14] | Sakaguchi S, Takahashi S, Sasaki T, et al. Progression of alcoholic and non-alcoholic steatohepatitis:common metabolic aspects of innate immune system and oxidative stress[J]. Drug Metabol Pharmacokinet, 2011, 26(1): 30–46. DOI:10.2133/dmpk.DMPK-10-RV-087 |
[15] | Parola M, Vajro P. Nocturnal hypoxia in obese-related obstructive sleep apnea as a putative trigger of oxidative stress in pediatric NAFLD progression[J]. J Hepatol, 2016, 65(3): 470–472. DOI:10.1016/j.jhep.2016.05.042 |
[16] | Sundaram S, Halbower A, Pan Z, et al. Nocturnal hypoxia-induced oxidative stress promotes progression of pediatric non-alcoholic fatty liver disease[J]. JHepatol, 2016, 65(3): 560–569. DOI:10.1016/j.jhep.2016.04.010 |