扩展功能
文章信息
- 李彩, 魏洁, 甄永占, 代明鹤, 胡刚, 郭立新, 林雅军
- LI Cai, WEI Jie, ZHEN Yongzhan, DAI Minghe, HU Gang, GUO Lixin, LIN Yajun
- 赖氨大黄酸对KK/HlJ糖尿病小鼠胰岛素抵抗的改善作用及其机制
- Improvement effect of rhein lysinate on insulin resistance of KK/HlJ diabetic mice and its mechanism
- 吉林大学学报(医学版), 2017, 43(06): 1074-1079
- Journal of Jilin University (Medicine Edition), 2017, 43(06): 1074-1079
- 10.13481/j.1671-587x.20170602
-
文章历史
- 收稿日期: 2017-03-07
2. 北京医院国家老年医学中心 卫生部老年医学重点实验室, 北京 100730;
3. 华北理工大学基础医学院组织学与胚胎学教研室, 河北 唐山 063000
2. National Center of Gerontology, Beijing Hospital, Key Laboratory of Geriatrics, Ministry of Health, Beijing 100730, China;
3. Department of Histology and Embryology, College of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
糖尿病(diabetes mellitus,DM)是一种慢性代谢紊乱疾病,分为1型和2型。2型DM约占DM病例的95%, DM具有胰岛素抵抗。胰岛素抵抗由遗传和环境因素引起,机体对胰岛素生理作用的反应性降低。KK/HlJ小鼠在DM饮食喂养条件下容易出现血糖水平升高,并发胰岛素抵抗[1-2],因此本研究选择KK/HlJ DM小鼠为研究对象。赖氨大黄酸(rhein lysinate,RHL)是本室合成的由大黄酸与赖氨酸反应生成的盐。本品较大黄酸更易溶于水,溶解度为8 g·L-1[3]。以往研究[4-6]表明:RHL能够通过抑制炎症反应对早衰小鼠肾脏和DM小鼠肝脏起保护作用,但其对胰腺组织及胰岛素抵抗的治疗作用尚不明确。与本课题组先前研究比较,本研究首次在KK/HlJDM小鼠模型中探讨了RHL对胰腺组织的保护作用和对胰岛素抵抗的改善作用,旨在为RHL治疗DM提供理论依据。
1 材料与方法 1.1 实验动物和主要试剂雄性C57BL/J小鼠12只;雄性KK/HlJ小鼠36只,体质量(20±2) g,6~8周龄。动物合格证号:SCXK(京)2014-0004。DM专属饲料(水分≤8.0%、粗蛋白≥18.0%、粗脂肪≥6.0%、粗纤维≤5.0%、粗灰分≤7.0%以及钙、磷等微量元素),链脲佐菌素(streptozotocin,STZ,美国Sigma公司),小鼠C反应蛋白(C reactive protein,CRP)、小鼠肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)和小鼠白细胞介素6(interleukin-6,IL-6)酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)检测试剂盒(武汉华美生物工程有限公司),胰岛素、磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)、p-PI3K(p85)、蛋白激酶B(protein kinase B,AKT)、p -AKT(Ser473)、糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)、p-GSK-3β(Ser9)、β-actin抗体、辣根过氧化物酶(horseradish peroxidase,HRP)标记的山羊抗兔或山羊抗小鼠IgG抗体(美国Cell Signaling Technology公司),预染蛋白Marker(美国Fermentas公司),即用型SABC-AP(兔IgG)免疫组织化学试剂盒(武汉博士德生物工程有限公司)。
1.2 动物分组和给药方式12只C57BL/J小鼠作为正常对照组,将36只KK/HlJ小鼠随机分为3组,每组12只,分别为模型组、低剂量RHL治疗组(25 mg·kg-1)和高剂量RHL治疗组(50 mg·kg-1)。模型组、低和高剂量RHL治疗组小鼠在接受治疗前,每天腹腔注射50 mg·kg-1STZ,连续注射5 d;然后分别灌胃给予生理盐水、25和50 mg·kg-1RHL,同时喂以DM专属饲料。正常对照组小鼠也灌胃给予生理盐水,持续给药16周,每周称量小鼠体质量1次。
1.3 各组小鼠生化指标测定各组小鼠末次给药前禁食12 h,给药1 h后摘眼球取血,离心取血清,采用日立全自动生化分析仪检测空腹血糖(FBG)、总胆固醇(TC)和甘油三酯(TG)水平。采用ELISA试剂盒分别检测各组小鼠血清中胰岛素、CRP及肝脏组织中TNF-α和IL-6水平。
1.4 各组小鼠胰腺组织形态表现观察16周后处死小鼠,取小鼠部分胰腺组织立即置入新配置的4%多聚甲醛溶液中固定48 h,制备石蜡切片,进行常规HE和免疫组织化学染色。免疫组织化学染色步骤参照试剂盒说明书进行。胰腺组织中胰岛的棕色信号表示胰岛素染色阳性,根据棕色信号的强弱和多少间接判断胰岛素水平。胰腺组织中棕色颗粒状物质为不溶的胰岛。随机选取5个200倍镜视野,采用病例图像分析系统计数胰岛个数及胰岛体积,在显微镜下观察胰岛免疫组织化学染色信号强弱。
1.5 蛋白质提取和Western blotting检测16周后处死小鼠,取小鼠部分肝脏组织,加入RIPA组织裂解液和蛋白酶抑制剂cocktail,使用IKA高速组织匀浆机匀浆。12 000 r·min-1离心20 min,收集上清于新的微量离心管中,采用BCA法测定蛋白浓度。各取样品等量总蛋白40μg在10%十二烷基磺酸钠-聚丙烯酰胺凝胶(SDS-PAGE)上进行电泳。电泳后转移到硝酸纤维素膜上,5%牛血清白蛋白封闭1 h,一抗4℃孵育过夜,洗涤5次,加入二抗孵育2 h,洗涤5次,在膜上滴加化学发光剂,采用凝胶成像仪照相。采用Scion image软件对Western blotting条带蛋白的灰度值进行分析计算。
1.6 统计学分析采用SPSS 13.0统计软件对数据进行统计学分析。所有计量资料均符合正态分布。各组小鼠体质量、FBG、胰岛素、CRP、TNF-α和IL-6水平以x ± s表示,多组间样本均数比较采用单因素方差分析。以P < 0.05为差异有统计学意义。
2 结果 2.1 各组小鼠体质量和FBG、TG及TC水平实验结束时,模型组小鼠体质量较正常对照组升高(P < 0.05);高剂量RHL治疗组小鼠体质量较模型组降低(P < 0.05),但与正常对照组比较差异无统计学意义(P>0.05)。模型组小鼠FBG水平较正常对照组升高(P < 0.05);低和高剂量RHL治疗组小鼠FBG水平较模型组均降低(P < 0.05),但仍高于正常对照组(P < 0.05)。模型组小鼠TG和TC水平较正常对照组明显升高(P < 0.05);低和高剂量RHL治疗组小鼠TG和高剂量RHL治疗组小鼠TC水平均低于模型组(P < 0.05),但仍高于正常对照组(P < 0.05)。低和高剂量RHL治疗组小鼠体质量和FBG、TG及TC水平比较差异无统计学意义(P>0.05)。见表 1。
(n=12, x ±s) | ||||
Group | Body weight (m/g) | FBG [cB/(mmol·L-1)] | TG [cB/(mmol·L-1)] | TC [cB/(mmol·L-1)] |
Normal control | 47.0±3.4 | 6.53±0.51 | 0.89±0.08 | 1.82±0.31 |
Model | 49.5±1.3* | 12.36±3.00* | 2.78±0.21* | 7.57±0.54* |
Low dose of RHL | 49.0±1.4* | 9.53±2.81*△ | 1.87±0.12*△ | 6.01±0.48* |
High dose of RHL | 46.0±3.7△ | 8.50±1.90*△ | 1.55±0.13*△ | 5.58±0.42*△ |
*P < 0.05 vs normal control group; △P < 0.05 vs model group. |
模型组小鼠胰岛素水平较正常对照组升高(P < 0.01),低和高剂量RHL治疗组小鼠胰岛素水平与模型组比较差异无统计学意义(P>0.05)。模型组小鼠血清CRP水平较正常对照组升高(P < 0.01);低和高剂量RHL治疗组小鼠血清CRP水平较模型组均降低(P < 0.01),但仍高于正常对照组(P < 0.01)。模型组小鼠肝脏组织中TNF-α和IL-6水平较正常对照组升高(P < 0.01);低和高剂量RHL治疗组小鼠肝脏组织中TNF-α和IL-6水平较模型组均降低(P < 0.01),但仍高于正常对照组(P < 0.01)。与低剂量RHL治疗组比较,高剂量RHL治疗组小鼠血清CRP水平及肝脏组织中TNF-α和IL-6水平降低(P < 0.01)。见表 2。
(n=12, x ±s) | ||||
Group | Insulin [λB/(μIU·L-1)] | CRP [ρB/(mg·L-1)] | TNF-α[ρB/(mg·L-1)] | IL-6 [ρB/(mg·L-1)] |
Normal control | 15.2±1.1 | 0.23±0.02 | 64±5 | 3.8±0.3 |
Model | 78.1±5.3* | 15.20±1.20* | 263±21* | 23.4±1.9* |
Low dose of RHL | 76.6±7.1* | 10.50±0.80*△ | 187±17*△ | 16.8±1.5*△ |
High dose of RHL | 75.2±5.8* | 8.10±0.70*△# | 124±11*△# | 9.7±0.8*△# |
*P < 0.01 vs normal control group; △P < 0.01 vs model group; #P < 0.01 vs low dose of RHL group. |
HE染色结果显示:正常对照组小鼠胰岛体积很小,数量很少(平均0.4个胰岛/200倍视野),而模型组小鼠胰岛体积很大,数量很多(平均1.4个胰岛/200倍视野)。模型组小鼠胰岛面积为(0.23±0.02)mm2, 数量为(1.4±0.3)个胰岛/200倍视野;低剂量RHL治疗组小鼠胰岛面积为(0.20±0.02)mm2,数量为(1.5±0.3)个胰岛/200倍视野; 高剂量RHL治疗组小鼠胰岛面积为(0.19±0.02)mm2,数量为(1.4±0.2)个胰岛/200倍视野。低和高剂量RHL治疗组小鼠胰岛体积和数量与模型组比较差异无统计学意义(P>0.05)。正常对照组小鼠胰岛结构完整,轮廓清晰可见;模型组小鼠胰岛结构紊乱,出现炎症浸润;低和高剂量RHL治疗组小鼠胰岛形态有一定恢复,偶见炎症浸润,但与模型组差异不大。见图 1(插页一)。
2.4 各组小鼠胰腺组织中胰岛素蛋白的表达胰岛素免疫组织化学染色结果显示:正常对照组小鼠胰岛染色较深,模型组与低和高剂量RHL治疗组染色均较淡。模型组小鼠胰岛内可见大量褐色颗粒状物质,低剂量RHL治疗组小鼠棕色颗粒状物质明显减少,而正常对照组小鼠和高剂量RHL治疗组小鼠胰岛组织中未见棕色颗粒状物质。见图 2(插页一)。
2.5 各组小鼠肝脏组织中PI3K、AKT和GSK-3β的磷酸化水平模型组小鼠肝脏组织中PI3K、AKT和GSK-3β磷酸化水平较正常对照组降低(P < 0.05),低和高剂量RHL治疗组小鼠肝脏组织中PI3K、AKT和GSK-3β磷酸化水平较模型组明显升高(P < 0.05)。低和高剂量RHL组肝脏组织中PI3K、AKT和GSK-3β磷酸化水平比较差异无统计学意义(P>0.05)。见图 3和表 3。
(n=12, x ±s) | |||
Group | p-PI3K/PI3K | p-AKT/AKT | p-GSK/GSK |
Normal control | 100.0±8.7 | 100.0±11.3 | 100.0±12.6 |
Model | 31.3±2.8* | 22.6±2.7* | 45.1±3.9* |
Low dose of RHL | 88.4±9.3△ | 97.5±12.1△ | 89.6±10.8△ |
High dose of RHL | 105.3±13.9△ | 108.6±14.7△ | 102.9±15.2△ |
*P < 0.05 vs normal control group; △P < 0.05 vs model group. |
2型DM是常见的全身性内分泌/代谢性疾病,其主要病因是胰岛素分泌相对或绝对不足以及外周组织胰岛素抵抗[7]。KK/HlJ小鼠是DM易感小鼠且伴随严重胰岛素抵抗[8-9],因此本研究以KK/HlJ小鼠作为研究对象,为了能够快速成模,本研究同时给予KK/HlJ小鼠腹腔注射低剂量STZ。与C57BL/J正常对照小鼠比较,KK/HlJ DM小鼠FBG和胰岛素水平明显升高,胰岛素水平升高更为明显,是C57BL/J正常对照小鼠的5倍,表明KK/HlJ DM小鼠存在很严重的胰岛素抵抗。为了进一步探索胰岛素抵抗的发生机制,本研究首先观察RHL对KK/HlJ DM小鼠胰岛的保护作用,HE染色发现:与正常对照组比较,模型组小鼠胰岛体积很大,数量很多,且胰岛结构紊乱,出现炎症浸润;给予低和高剂量RHL治疗后仅炎症略有改善,其他方面无改变。免疫组织化学染色结果显示:正常对照小鼠胰岛中胰岛素的表达水平较高,而模型组小鼠胰岛素的表达水平明显降低,且胰岛中呈现大量棕褐色颗粒状物质;当给予低和高剂量RHL治疗后,胰岛素水平并无明显改善,但低剂量RHL能够使胰岛中棕褐色颗粒状物质明显减少,高剂量RHL能够使胰岛中棕褐色颗粒状物质消失,这是否提示RHL对胰岛有保护作用尚待进一步研究。
本研究结果显示:低和高剂量RHL在对胰岛素无影响的情况下,能够明显降低血糖水平,说明RHL可能改善了外周组织的胰岛素抵抗。研究[10]表明:外周胰岛素抵抗主要发生在肝脏、脂肪组织和骨骼肌,因为这些组织含有丰富的胰岛素受体,其可以结合胰岛素从而发挥胰岛素信号通路的一系列生物学效应。研究[11]表明:机体长期处于炎症状态下能够诱发胰岛素抵抗。本研究结果显示:KK/HlJ DM小鼠CRP水平较高,表明KK/HlJ DM小鼠处于一个炎症状态。同时本课题组对小鼠肝脏组织中TNF-α和IL-6检测结果显示:KK/HlJ DM小鼠肝脏也处于较高炎症状态,与本课题组前期实验[12]结果相符,即与正常对照组比较,KK/HlJ DM小鼠肝脏脂肪变性和肝脏炎症非常明显。应用RHL治疗后,小鼠CRP、TNF-α和IL-6水平明显降低,表明RHL能够改善机体炎症状态。肝脏炎症状态是否又诱发了机体胰岛素抵抗,从而引起KK/HlJ小鼠出现高血糖、高胰岛素、高胆固醇和高甘油三酯血症?为了验证猜测,本课题组采用Western blotting法检测了糖原合成基因相关的信号通路。糖原合成主要是通过胰岛素介导的PI3K/AKT/GSK-3β信号通路完成的。当胰岛素与胰岛素受体(IR)结合后,可引起胰岛素受体底物2(IRS-2)酪氨酸的磷酸化,并进一步激活下游的PI3K、AKT和GSK-3β,促进糖原的合成[13-15]。本研究结果显示:模型组小鼠肝脏组织中PI3K、AKT和GSK-3β磷酸化水平明显降低,应用RHL治疗后能阻断其磷酸化水平降低,证明RHL能够通过激活PI3K/AKT/GSK-3β信号通路缓解KK/HlJDM小鼠肝脏胰岛素抵抗状态。这充分解释了RHL能够降低FBG、TC和TG而对胰岛素水平无影响的原因。
综上所述,RHL对KK/HlJ DM小鼠胰岛组织的保护作用尚待进一步研究,其降低FBG、TC和TG的作用主要是通过其对肝脏胰岛素抵抗的改善作用实现的。RHL有望成为治疗肝脏胰岛素抵抗的新药。
[1] | Berndt A, Sundberg BA, Silva KA, et al. Phenotypic characterization of the KK/HlJ inbred mouse strain[J]. Vet Pathol, 2014, 51(4): 846–857. DOI:10.1177/0300985813501335 |
[2] | Chang GR, Wu YY, Chiu YS, et al. Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HlJ mice[J]. Basic Clin Pharmacol Toxicol, 2009, 105(3): 188–198. DOI:10.1111/pto.2009.105.issue-3 |
[3] | Lin YJ, Zhen YS. Rhein lysinate suppresses the growth of breast cancer cells and potentiates the inhibitory effect of Taxol in athymic mice[J]. Anticancer Drugs, 2009, 20(1): 65–72. DOI:10.1097/CAD.0b013e3283182913 |
[4] | Hu G, Liu J, Zhen YZ, et al. Rhein lysinate increases the median survival time of SAMP10 mice:protective role in the kidney[J]. Acta Pharmacol Sin, 2013, 34(4): 515–521. DOI:10.1038/aps.2012.177 |
[5] | Wei J, Zhen YZ, Cui J, et al. Rhein lysinate decreases inflammation and adipose infiltration in KK/HlJ diabetic mice with non-alcoholic fatty liver disease[J]. Arch Pharm Res, 2016, 39(7): 960–969. DOI:10.1007/s12272-016-0770-4 |
[6] | Zhen YZ, Lin YJ, Li KJ, et al. Effects of rhein lysinate on D-galactose-induced aging mice[J]. Exp Ther Med, 2016, 11(1): 303–308. DOI:10.3892/etm.2015.2858 |
[7] | 周士胜, 伦永志, 李胜范. 2型糖尿病病因可能在肝脏[J]. 大连大学学报, 2008, 29(3): 89–91. |
[8] | Iizuka Y, Kim H, Izawa T, et al. Protective effects of fish oil and pioglitazone on pancreatic tissue in obese KK mice with type 2 diabetes[J]. Prostaglandins Leukot Essent Fatty Acids, 2016, 115: 53–59. DOI:10.1016/j.plefa.2016.10.007 |
[9] | Muroyama K, Murosaki S, Yamamoto Y, et al. Anti-obesity effects of a mixture of thiamin, arginine, caffeine, and citric acid in non-insulin dependent diabetic KK mice[J]. J Nutr Sci Vitaminol, 2003, 49(1): 56–63. DOI:10.3177/jnsv.49.56 |
[10] | 高啸, 彭旖旎, 朱琳, 等. 硫化氢对2型糖尿病大鼠肝脏胰岛素抵抗的影响[J]. 华中科技大学学报:医学版, 2016, 45(5): 490–495. |
[11] | Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes[J]. J Nutr, 2017, 147(7): 1468S–1475S. DOI:10.3945/jn.116.240754 |
[12] | Wei J, Zhen YZ, Cui J, et al. Rhein lysinate decreases inflammation and adipose infiltration in KK/HlJ diabetic mice with non-alcoholic fatty liver disease[J]. Arch Pharm Res, 2016, 39(7): 960–969. DOI:10.1007/s12272-016-0770-4 |
[13] | Wang X, Zhao L. Calycosin ameliorates diabetes-induced cognitive impairments in rats by reducing oxidative stress via the PI3K/Akt/GSK-3β signaling pathway[J]. Biochem Biophys Res Commun, 2016, 473(2): 428–434. DOI:10.1016/j.bbrc.2016.03.024 |
[14] | Zhou L, Wang L, Yang B, et al. Protective effect of pretreatment with propofol against tumor necrosis factor-alpha-induced hepatic insulin resistance[J]. Exp Ther Med, 2015, 10(1): 289–294. DOI:10.3892/etm.2015.2496 |
[15] | Wang X, Wang M, Li H, et al. Upregulation of miR-497 induces hepatic insulin resistance in E3 rats with HFD-MetS by targeting insulin receptor[J]. Mol Cell Endocrinol, 2015, 416: 57–69. DOI:10.1016/j.mce.2015.08.021 |