吉林大学学报(医学版)  2017, Vol. 43 Issue (04): 787-793

扩展功能

文章信息

牛猛, 邓大勇, 李云鹏飞, 刘硕, 丁军
NIU Meng, DENG Dayong, LI Yunpengfei, LIU Shuo, DING Jun
磁共振弹性成像对肝纤维化分级诊断价值的Meta分析
Values of MRE in diagnosis of stages of hepatic fibrosis:A Meta-analysis
吉林大学学报(医学版), 2017, 43(04): 787-793
Journal of Jilin University (Medicine Edition), 2017, 43(04): 787-793
10.13481/j.1671-587x.20170424

文章历史

收稿日期: 2017-03-01
磁共振弹性成像对肝纤维化分级诊断价值的Meta分析
牛猛1 , 邓大勇2 , 李云鹏飞3 , 刘硕1 , 丁军1     
1. 吉林大学中日联谊医院放射线科, 吉林 长春 130033;
2. 吉林省肿瘤医院放射线科, 吉林 长春 130012;
3. 吉林大学中日联谊医院麻醉科, 吉林 长春 130033
[摘要]: 目的: 采用Meta分析方法探讨磁共振弹性成像(MRE)对肝纤维化分级的诊断效能及临床应用价值,为临床对肝纤维化的治疗提供依据。方法: 搜索2017年2月2日前国内外公开发表的MRE诊断肝纤维化分级的中文和英文文献。纳入数据库包括PubMed、EMBase、Web of Science、Cochrane Library、中国知网、中国生物医学文献数据库、维普数据库和万方数据库,并辅以手工检索,按照预先纳入及排除标准进行筛选,提取资料,采据QUADAS-2工具进行文献质量评价,采用Stata软件分别对F0 vs F1-F4组、F0-F1 vs F2-F4组、F0-F2 vs F3-F4组和F0-F3 vs F4组MRE对肝纤维化分期诊断的敏感度(SEN)、特异度(SPE)、诊断比值比(DOR)、阳性似然比(+LR)和阴性似然比(-LR)进行合并计算及异质性检验,绘制分层综合受试者工作特征曲线(HSROC),计算曲线下面积(AUROC)。结果: 共检索出1 332篇文献,最后纳入22篇,其中英文21篇,中文1篇。Meta分析,SEN合并、SPE合并、+LR合并、-LR合并、DOR合并和AUROC,F0 vs F1-F4组分别为88.8%(85.0%~91.7%)、95.9%(91.5%~98.0%)、21.435(10.215~44.979)、0.117(0.086~0.159)、183.187(72.533~462.650)和0.96(0.94~0.98),F0-F1 vs F2-F4组分别为93.3%(89.2%~35.9%)、94.1%(90.2%~96.5%)、15.839(9.344~26.848)、0.072(0.044~0.117)、221.224(100.980~484.648)和0.98(0.96~0.99),F0-F2 vs F3-F4组分别为92.9%(88.9%~95.5%)、94.6%(91.2%~96.8%)、17.348(10.496~28.671)、0.075(0.048~0.119)、230.434(111.482~476.317)和0.98(0.96~0.99),F0-F3 vs F4组分别为97.7%(93.0%~99.3%)、93.2%(90.3%~95.2%)、14.337(9.910~20.742)、0.025(0.008~0.075)、580.405(144.871~2 325.307)和0.98(0.96~0.99)。结论: MRE作为一种新型和无创的影像检查手段,对不同分期肝纤维化均具有较高诊断价值,可为临床肝纤维化的精准治疗提供可靠参考。
关键词: 磁共振弹性成像    肝纤维化    肝硬化    Meta分析    诊断效能    
Values of MRE in diagnosis of stages of hepatic fibrosis:A Meta-analysis
NIU Meng1, DENG Dayong2, LI Yunpengfei3, LIU Shuo1, DING Jun1     
1. Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130021, China;
2. Department of Radiology, Tumor Hospital of Jilin Pronvince, Changchun 130012, China;
3. Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
[Abstract]: Objective: To investigate the efficacy and the clinical value of magnetic resonance elastography(MRE) in diagnosis of hepatic fibrosiswith Meta-analysis, and to provide basis for clinical treatment of hepatic fibrosis. Methods: The studies published before February 2, 2017 about MRE and staging of hepatic fibrosis in Chinese or English were retrived in the databases including PubMed, EMBase, Web of Science, Cochrane Library, CNKI, CBMDisc, VIP, Wanfang data, and supplemented by manual retrieval for relevant literatures. The inclusion and exclusion criterions were used to select and extract the literatures.The literatures qualitie were valuated based on QUADAS-2 tool.The sensitivity(SEN), specificity (SPE), diagnostic odds ratio (DOR), positive likelihood ratio (+LR), negative likelihood ratio (-LR) on the groups of F0 vs F1-F4, F0-F1 vs F2-F4, F0-F2 vs F3-F4, F0-F3 vs F4 and heterogeneity were combined and tested with Stata software respectively.HSROC and AUROC were also implemented. Results: A total of 1 332 studies were searched, and 22 were included. 21 of them were in English and 1 in Chinese. The results of Meta analysis showed that the SENp, SPEp, +LRp, -LRp, DOR and AUROC in F0 vs F1-F4 group were 88.8%(85.0-91.7), 95.9%(91.5-98.0), 21.435(10.215-44.979), 0.117(0.086-0.159), 183.187(72.533-462.650) and 0.96(0.94-0.98), respectively; the SENp, SPEp, +LRp, -LRp, DOR and AUROC in F0-F1 vs F2-F4 group were 93.3%(89.2%-35.9%), 94.1%(90.2%-96.5%), 15.839(9.344-26.848), 0.072(0.044-0.117), 221.224(100.980-484.648) and 0.98(0.96-0.99), respectively; the SENp, SPEp, +LRp, -LRp, DOR and AUROC in F0-F2 vs F3-F4 group were 92.9%(88.9%-95.5%), 94.6%(91.2%-96.8%), 17.348(10.496-28.671), 0.075(0.048-0.119), 230.434(111.482-476.317)0.98(0.96-0.99), respectively; the SENp, SPEp, +LRp, -LRp, DOR and AUROC in F0-F3 vs F4 group were 97.7%(93.0%-99.3%), 93.2%(90.3%-95.2%), 14.337(9.910-20.742), 0.025(0.008-0.075), 580.405(144.871-2325.307) and 0.98(0.96-0.99), respectively. Conclusion: MRE, as a new and noninvasive imaging method, has high diagnostic value in all stages of hepatic fibrosis, which can provide a reliable reference for clinical precise treatment of hepatic fibrosis.
Key words: magnetic resonance elastography     hepatic fibrosis     hepatocirrhosis     Meta-analysis     diagnostic efficiency    

肝纤维化是各种慢性肝病变的共同病理过程。肝星形细胞的活化、细胞外基质的产生和重建是肝脏对病变的反应,这些反应均可导致肝纤维化[1]。若病因持续存在, 纤维化逐渐加重,即可发展为不可逆的肝硬化,甚至可发生肝性脑病、肝癌等严重并发症。越来越多的证据[2-3]表明:在许多慢性肝病肝维化早期(F1和F2级),若针对肝纤维化病因进行有效的治疗,可以获得较为理想的治疗效果,肝纤维化可能发生逆转化;对进展期(F3级)肝纤维化进行有效治疗,可以延缓F3期肝纤维化发展为F4期的进程。自1958年以来,肝穿刺活检一直是肝纤维化分期的金标准[4],但由于其有一定的创伤性,患者难以接受。磁共振弹性成像(magnetic resonance elastography,MRE)作为一种无创性、新型的影像检查技术,可以通过探测弹性改变对肝纤维化进行分级,其诊断效能还处于探索阶段,国内外已有多项研究[4-25]通过临床实验对其诊断效能进行了客观评价,但评价结果不一。为了客观评价MRE对肝纤维化分级的诊断价值,并避免常规研究中样本量小的缺点,本文作者利用Meta分析的方法对采用MRE进行肝纤维化分级的文献进行质量评价及数据合并分析,旨在为肝纤维化的临床诊断提供参考。与之前发表的2篇Meta分析文献[26-27]比较,本研究具有如下优点:① 数量更多,收集文献截至日期为2017年2月2日;② 均以METAVIR纤维化病理分级为统一金标准,避免了不同病理分级间的差异;③ 严格遵循诊断性试验报告(STARD)标准。

1 资料与方法 1.1 纳入和排除标准

本研究中文献纳入和排除标准根据Cochrane协作网关于诊断实验研究的标准制订:① 样本量大于20,研究对象无性别、种族和年龄等限制;② 研究对象包括导致肝纤维化的多种疾病的患者;③ 前瞻性及回顾性研究;④ 中文和英文文献;⑤ 以病理诊断为金标准(METAVIR纤维化病理分级);⑥ 文献能直接或间接计算出四格表数据。排除标准:① 文摘、综述、个例报道、动物实验和以尸体为研究对象等文献;② 若遇到重复发表文献,选取样本量大、文献质量较高的文献;③ 文献原始数据不全,联系作者后仍无法获取原始数据的文献。

1.2 文献检索策略

检索词分目标疾病、待评价试验和诊断准确性指标,以主题词和关键词结合方式,并根据具体数据库进行调整。纳入数据库包括PubMed、EMBase、Web of Science、Cochrane Library、中国知网、中国生物医学文献数据库、维普数据库和万方数据库。中文检索词包括“磁共振弹性成像”、“肝硬化”和“肝纤维化”,英文检索词包括“MR elastography”、“MRE”、“magnetic resonance elastography”、“liver fibrosis”、“hepatic fibrosis”和“cirrhosis”。检索策略通过多次预检索后确定,并追踪纳入文献的参考文献。获取MRE诊断肝纤维化分级的相关文献。

1.3 文献筛选和资料提取

① 由2名研究者独立阅读所获取的文献,对符合纳入标准的文献进行数据提取。采用Endnote软件将初检文献集中管理,排除重复文献。根据预先制定的纳入和排除标准由2名研究者独立进行筛选,并最终确定纳入文献;② 对纳入文献进行信息提取并汇合成表,包括作者、国家、发表时间、研究类型、样本量、平均年龄、平均体质量指数(BMI)、场强、频率和疾病谱;③ 采用QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) 文献评价表对纳入文献进行质量评价,每个项目按照“是”、“否”、“不清楚”3个标准进行判断;④ 提取文献中二分类资料,并按照F0 vs F1-F4组、F0-F1 vs F2-F4组、F0-F2 vs F3-F4组和F0-F3 vs F4组进行分别汇总。进行以上操作时,均进行交叉核对,意见不一致时经讨论后决定。

1.4 统计学分析

提取纳入文献数据,采用I2检验进行异质性分析,定义I2≥50为存在明显异质性。根据异质性分析结果选取效应模型进行合并。采用Stata软件分别对纳入文献中MRE诊断肝纤维化分期的敏感度(SEN)、特异度(SPE)、诊断比值比(DOR)、阳性似然比(+LR)、阴性似然比(-LR)进行合并计算,绘制分层综合受试者工作特征曲线(HSROC),计算曲线下面积(area under ROC, AUROC)。若存在明显异质性,则使用混合双变量模型,分析异质性来源。

2 结果 2.1 文献检索结果

初步检索出1 332篇文献,通过EndNote软件排除691篇文献,通过阅读摘要并进一步阅读全文,最终纳入文献22篇[4-25]。见图 1

图 1 纳入Meta分析文献流程图 Figure 1 Flow chart of literatures included in Meta-analysis
2.2 纳入文献基本特征

纳入文献中英文文献21篇,中文文献1篇,文献基本特征见表 1。F0 vs F1-F4组:纳入文献15篇,共1 799例受试者;F0-F1 vs F2-F4组:纳入文献20篇,共2 111例受试者;F0-F2 vs F3-F4组:纳入文献20篇,共2 108例受试者;F0-F3 vs F4组:纳入文献17篇,共1 897例受试者。

表 1 纳入Meta分析文献基本情况 Table 1 General informations of literatures includedin Meta-analysis
Study Country Year Design Meanage Samplesize Mean BMI (kg·m-2) T Hz Disease spectrum
Yin, et al.[4] USA 2007 Retro 55.3 48 29.7 1.5 60.0 CHC,AIH,NASH,et al.
Huwart, et al.[5] BEL 2007 Prosp 54.0 88 25.9 1.5 65.0 CHB,CHC,AIH, et al.
Huwart, et al.[6] BEL 2008 Prosp 25.9 96 25.9 1.5 65.0 CVH,NASH,DP,et al.
Asbach, et al.[7] GER 2010 Prosp 52.4 88 - 1.5 62.5 CHB,CHC,AIH,et al.
Lee, et al.[8] USA 2011 Prosp 60.0 32 28.1 1.5 60.0 CHC
Wang, et al.[9] USA 2011 Prosp 55.0 76 - 1.5 60.0 CHB,CHC,AIH,et al.
Kim, et al.[10] KOR 2011 - 58.3 60 22.3 1.5 60.0 CHB,CHC,ALD
Kampues, et al.[11] GER 2012 Prosp 52.0 35 - 1.5 62.5 CHC
Rustogi, et al.[12] USA 2012 Retro 53.6/53.4 72 - 1.5 60.0 CHC,AIH,NASH,et al.
Ichikawa, et al.[13] JPN 2012 Retro 65.8 114 - 1.5 60.0 CHC
Choi, et al.[14] KOR 2013 Retro 57.2 173 22.7 1.5 60.0 CHB,CHC,AIH,et al.
Lee, et al.[15] KOR 2014 Retro 44.5 334 22.6 1.5 60.0 CHB
Yoon, et al.[16] KOR 2014 Prosp 51.0 75 23.7 1.5 - CVH,FL,LT,et al.
Venkatesh, et al.[17] USA 2014 Prosp 50.0 63 24.8 1.5 60.0 CHB
Batheja, et al.[18] USA 2014 - 53.1 32 28.2 1.5 60.0 CHB,FL,AIH,et al.
Shi, et al.[19] CN 2014 Prosp 43.0/42.0 113 21.7 3.0 60.0 CHB
Ichikawa, et al.[20] JPN 2015 Retro 63.1 113 - 1.5/3.0 60.0 CHB,CHC,AIH,et al.
Ichikawa, et al.[21] JPN 2015 Retro 66.4 182 - 3.0 - CHB,CHC,AIH,et al.
Wu, et al.[22] CN 2015 Retro 55.0 185 23.9 1.5 60.0 CHB,CHC
Shi, et al.[23] CN 2016 Prosp 42.9 158 23.0 3.0 60.0 CHB,CHC
Liu, et al.[24] CN 2016 - 44.6 37 - 3.0 60.0 CHC,AIH,NASH
Toguchi, et al.[25] JPN 2017 Retro 59.9 51 - 1.5 60.0 CHC,AIH,NASH,et al.
CHB:Chronic hepatitis B;CHC:Chronic hepatitis C;CVH:Chronic viral hepatitis;AIH:Autoimmune hepatitis;FL:Fatty liver;LT:Liver transplantation;NASH:Nonalcoholic steatohepatitis;ALD:Alcoholic liver disease.“-”:No data.
2.3 纳入文献的质量评价

采用QUADAS-2文献评价表[26]对纳入文献进行质量评价, 其中7篇文献为病例对照研究;8篇文献未明确说明纳入受试者是否为连续或随机纳入,9篇文献未说明病理或MRE判读时是否为盲法,4篇文献未说明病理与诊断间隔时间,均被评为不确定偏倚。对文献质量等级进行分类,质量A级:完全符合评估标准;B级:符合多数评估标准。本组文献中A级文献4篇,B级文献18篇。

2.4 Meta分析

① F0 vs F1-F4组:进行敏感度和特异度的异质性分析,I2分别为68.81%和65.46%,采用混合双变量模型进行合并,SEN合并=88.8%(85.0%~91.7%),SPE合并=95.9%(91.5%~98.0%),+LR合并=21.435(10.215~44.979),-LR合并=0.117(0.086~0.159),DOR合并=183.187(72.533~462.650);绘制森林图和HSROC曲线(图 2),并计算AUROC,AUROC=0.96(0.94~0.98)。② F0-F1 vs F2-F4组:进行敏感度和特异度的异质性分析,I2分别为83.04%和73.38%,采用混合双变量模型进行合并,SEN合并= 93.3%(89.2%~35.9%),SPE合并= 94.1%(90.2%~96.5%),+LR合并= 15.839(9.344~26.848),-LR合并=0.072(0.044~0.117),DOR合并=221.224(100.980~484.648);绘制森林图和HSROC曲线(图 3),并计算AUROC, AUROC=0.98(0.96~0.99)。③ F0-F2 vs F3-F4组:进行敏感度和特异度的异质性分析,I2分别为68.58%和71.55%,采用混合双变量模型进行合并,SEN合并=92.9%(88.9%~ 95.5%),SPE合并= 94.6% (91.2%~96.8%),+LR合并=17.348(10.496~28.671),-LR合并=0.075(0.048~0.119),DOR合并=230.434(111.480~476.317);绘制森林图和HSROC曲线(图 4),并计算AUROC,AUROC=0.98 (0.96~0.99)。④ F0-F3 vs F4组:进行敏感度和特异度的异质性分析,I2分别为64.4%和68.1%,采用混合双变量模型进行合并,SEN合并=97.7%(93.0%~99.3%),SPE合并=93.2%(90.3%~95.2%), +LR合并=14.337(9.910~20.742),-LR合并=0.025(0.008~0.077),DOR合并=580.405(144.871~2325.307);绘制森林图和HSROC曲线(图 5),并计算AUROC,AUROC=0.98(0.96~0.99)。

A:Sensitivity; B:Specificity; C:DOR; D:HSROC curve. 图 2 F0 vs F1-F4组敏感度、特异度、诊断比值比森林图和HSROC曲线 Figure 2 Forest plots of sensitivity, specificity, DIR and HSROC curve in F0 vs F1-F4 group
A:Sensitivity; B:Specificity; C:DOR; D:HSROC curve. 图 3 F0-F1 vs F2-F4组敏感度、特异度、诊断比值比森林图和HSROC曲线 Figure 3 Forest plots of sensitivity, specificity, DOR and HSROC curve in F0-F1 vs F2-F4 group
A:Sensitivity; B:Specificity; C:DOR; D:HSROC curve. 图 4 F0-F2 vs F3-F4组敏感度、特异度、诊断比值比森林图和HSROC曲线 Figure 4 Forest plots of sensitivity, specificity, DOR and HSROC curve in F0-F2 vs F3-F4 group
A:Sensitivity; B:Specificity; C:DOR; D:HSROC curve. 图 5 F0-F3 vs F4组敏感度、特异度、诊断比值比森林图和HSROC曲线 Figure 5 Forest plots of sensitivity, specificity, DOR and HSROC curve in F0-F3 vs F4 group
2.5 异质性来源

本研究各组数据均存在较大异质性,因此需要探讨其异质性来源。诊断实验的异质性来源分为阈值效应和非阈值效应。

阈值效应:对各组数据分别进行阈值分析。F0 vs F1-F4组: r=-0.068,P=0.810;F0-F1 vs F2-F4组:r=-0.160,P=0.502;F0-F2 vs F3-F4组:r=-0.096, P= 0.689;F0-F3 vs F4组:r=-0.426,P=0.088。各组均无阈值效应引起的异质性,需要进行非阈值效应分析。

非阈值效应:分别绘制Deek’ s漏斗图对各组进行发表偏倚检测,F0 vs F1-F4组、F0-F1 vs F2-F4组、F0-F2 vs F3-F4组和F0-F3 vs F4组P值分别为0.956、0.028、0.927和0.891,其中F0-F1 vs F2-F4组存在发表偏倚(P < 0.05),其余各组均无明显发表偏倚(P>0.05)。见图 6

A:F0 vs F1-F4 group; B:F0-F1 vs F2-F4 group; C:F0-F2 vs F3-F4 group; D:F0-F3 vs F4 group. 图 6 各组文献发表偏倚检测Deek’s漏斗图 Figure 6 Deek's funel plots of publication bias of literatures in various groups

其他异质性来源:本组纳入文献具有较高异质性,可能与研究地区(亚洲、欧美),研究类型(前瞻、回顾),设备场强(1.5T、3.0T、生产厂家及具体型号)及具体参数设定,医生诊断及具体操作,病理间隔时间不统一,部分文献未说明是否为连续、随机纳入受试者,MRE及病理判定是否为盲法,提取病理时肝脏各部分纤维化程度等有关联。本研究中无法提取四格表数据、经联系作者仍无法获取文献数据的文献予以排除,可能造成一定选择偏倚。另外本研究纳入文献多为英文文献,存在一定的语言偏倚。这些因素均可导致研究的异质性增加。

3 讨论

MRE作为一种新型影像检查手段,是以梯度回波序列(GRE)为基础序列,在x、y和z轴上施加运动敏感梯度(MSG),通过检测组织或器官在外力作用下产生的质点位移,形成相位图,进而得出组织或器官内部的弹性系数的分布图,即弹性图,使“影像触诊”成为可能[28]。本研究通过对MRE诊断肝纤维化分期分别进行汇总分析,结果显示:MRE作为一种新型和无创的影像检查手段,对各期肝纤维化均具有较高诊断价值,误诊率和漏诊率均较低,可以为临床肝纤维化的精准治疗提供可靠参考。

目前,临床上主要应用2D-MRE(2D-GRE)技术进行肝纤维化诊断,但由于其具有相对较高的失败率,并且对脂肪肝和肝脏铁沉积较重患者的诊断价值明显下降,具有一定应用限制[29-30]。最近的研究[23]显示:与2D-MRE序列比较,3D-MRE(3D-SE-EPI)具有较高的诊断成功率和信噪比,临床适用范围更广,同时因具有理论上更高的诊断价值而成为未来MRE临床应用的发展方向。

由于本研究纳入文献质量存在一定差异,结合统计学分析并未找到异质性来源,因此仍需要大样本、多中心且具有良好代表性的随机对照试验进一步证实。

参考文献
[1] Pellicoro A, Ramachandran P, Iredale JP, et al. Liver fibrosis and repair:immune regulation of wound healing in a solid organ[J]. Nature Revi Immunol, 2014, 14(3): 181–194. DOI:10.1038/nri3623
[2] Friedman SL, Bansal MB. Reversal of hepatic fibrosis-fact or fantasy?[J]. Hepatology, 2006, 43(2 Suppl 1): S82–S88.
[3] Gonzalez HC, Jafri SM, Gordon SC. Role of liver biopsy in the era of direct-acting antivirals[J]. Curr Gastroenterol Rep, 2013, 15(2): 307. DOI:10.1007/s11894-012-0307-z
[4] Yin M, Talwalkar JA, Glaser KJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography[J]. Clin Gastroenterol Hepatol, 2007, 5(10): 1207–1213. DOI:10.1016/j.cgh.2007.06.012
[5] Huwart L, Sempoux C, Salameh N, et al. Liver ifbrosis:Noninvasive assessment with MR elastography versus aspartate aminotransferase toplatelet ratio index[J]. Radiology, 2007, 245(2): 458–466. DOI:10.1148/radiol.2452061673
[6] Huwart L, Sempoux C, Vicaut E, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis[J]. Gastroenterology, 2008, 135(1): 32–40. DOI:10.1053/j.gastro.2008.03.076
[7] Asbach P, Klatt D, Schlosser B, et al. Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography[J]. Radiology, 2010, 257(1): 80–86. DOI:10.1148/radiol.10092489
[8] Lee VS, Miller FH, Omary RA, et al. Magnetic resonance elastography and biomarkers to assess fibrosis from recurrent hepatitis c in liver transplant recipients[J]. Transplantation, 2011, 92(5): 581–586. DOI:10.1097/TP.0b013e31822805fa
[9] Wang Y, Ganger DR, Levitsky J, et al. Assessment of chronic hepatitis and fib-rosis:comparison of MR elastography and diffusion-weighted imaging[J]. AJR Am J Roentgenol, 2011, 196(3): 553–561. DOI:10.2214/AJR.10.4580
[10] Kim BH, Lee JM, Lee YJ, et al. MR elastography for noninvasive assessment of hepatic fibrosis:expeirence from a tertiay center in Asia[J]. Magn Reson Imaging, 2011, 34(5): 1110–1116. DOI:10.1002/jmri.22723
[11] Kampues C, Klatt D, Bova R, et al. Visco-elasticity-based magnetic resonance elastography for the assessment of liver fibrosis in hepatitis C patients after liver transplation[J]. Rofo, 2012, 184(11): 1013–1019. DOI:10.1055/s-00000066
[12] Rustogi R, Horowitz J, Harmath C, et al. Accuracy of MR elastography and anatomic MR imaging features in the diagnosisof severe hepatic fibrosis and cirhosis[J]. Magn Reson Imaging, 2012, 35(6): 1356–1364. DOI:10.1002/jmri.23585
[13] Ichikawa S, Motosugi U, Ichikawa T, et al. Magnetic resonance elastography for staging liver fibrosis in chronic hepatitis C[J]. Magn Reson Med Sci, 2012, 11(4): 291–297. DOI:10.2463/mrms.11.291
[14] Choi YR, Lee JM, Yoon JH, et al. Compraison of magnetic resonance elastography and gadoxetate disodium-enhanced magnetic resonance imaging for the evlauation of heptaic ifbrosis[J]. Invest Radiol, 2013, 48(8): 607–613. DOI:10.1097/RLI.0b013e318289ff8f
[15] Lee JE, Lee JM, Lee KB, et al. Noninvasive assessment of hepatic fibrosis in patients with chronic hepatitis B viral infection using magnetic resonance elastography[J]. Korean J Radiol, 2014, 15(2): 210–217. DOI:10.3348/kjr.2014.15.2.210
[16] Yoon JH, Lee JM, Woo HS, et al. Staging of hepatic fibrosis:comparison of magnetic resonance elastography and shear wave elastography in the same individuals[J]. Korean J Radiol, 2013, 14(2): 202–212. DOI:10.3348/kjr.2013.14.2.202
[17] Venkatesh SK, Wang G, Lim SG, et al. Magnetic resonance elastography for the detection and staging of liver fibrosis in chronic hepatitis B[J]. Eur Radiol, 2014, 24(1): 70–78. DOI:10.1007/s00330-013-2978-8
[18] Batheja M, Vargas H, Silva AM, et al. Magnetic resonance elastography (MRE) in assessing hepatic fibrosis:performance in a cohort of patients with histological data[J]. Abdom Imaging, 2015, 40(4): 760–765. DOI:10.1007/s00261-014-0321-8
[19] Shi Y, Guo Q, Xia F, et al. MR elastography for the assessment of hepatic fibrosis in patients with chronic hepatitis B infection:Does histologic necroinflammation influence the measurement of hepatic stiffness?[J]. Radiology, 2014, 273(1): 88–98. DOI:10.1148/radiol.14132592
[20] Ichikawa S, Motosugi U, Morisaka H, et al. Comparison of the diagnostic accuracies of magnetic resonance elastography and transient elastography for hepatic fibrosis[J]. Magan Reson Imaging, 2015, 33(1): 26–30. DOI:10.1016/j.mri.2014.10.003
[21] Ichikawa S, Motosugi U, Moriska H, et al. MRI-based staging of hepatic fibrosis:Comparison of intravoxel incoherent motion diffusion-weighted imaging with magnetic Resonance elastography[J]. Magn Reson Imaging, 2015, 36(6): 315–320.
[22] Wu WP, Chou CT, Chen RC, et al. Non-Invasive evaluation of hepatic fibrosis:The diagnostic performance of magnetic resonance elastography in patients with viral hepatitis B or C[J]. PLoS One, 2015, 10(10): 425–439.
[23] Shi Y, Xia F, Li QJ, et al. Magnetic resonance elastography for the evaluation of Liver fibrosis in chronic hepatitis B and C by using Both gradient-recalled echo and spin-echo echo planar imaging:A prospective study[J]. Am J Gastroenterol, 2016, 111(6): 823–833. DOI:10.1038/ajg.2016.56
[24] 刘莹, 石喻, 于兵, 等. 磁共振弹性成像与DWI诊断肝纤维化分期[J]. 中国医学影技, 2016, 32(9): 1386–1390.
[25] Toguchi M, Tsurusaki M, Yada N, et al. Magnetic resonance elastography in the assessment of hepatic fibrosis:a study comparing transient elastography and histological data in the samepatients[J]. Abdominal Radiol, 2017, 32: 2–9.
[26] 王威, 温锋, 赵相轩, 等. 磁共振弹性成像评价肝纤维化分期的Meta分析[J]. 中国临床医学影像杂志, 2015, 26(5): 329–334.
[27] Wang QB, Zhu H, Liu HL, et al. Performance of magnetic resonance elastography and diffusion-weighted imaging for the staging of hepatic fibrosis:A Meta-analysis[J]. Hepatology, 2012, 56(1): 239–247. DOI:10.1002/hep.25610
[28] 刘茜玮, 谢晟, 王武, 等. 磁共振弹性成像[J]. 中国医疗器械信息, 2011, 10(10): 11–18. DOI:10.3969/j.issn.1006-6586.2011.10.003
[29] 朱传龙, 王坤, 高人焘. 肝纤维无创性诊断技术的临床应用[J]. 临床肝胆病杂志, 2015, 31(3): 332–336.
[30] 武琼, 徐光华. 肝纤维化非创伤性诊断的新近认识[J]. 临床肝胆病杂志, 2015, 31(2): 295–299.