吉林大学学报(医学版)  2017, Vol. 43 Issue (04): 725-728

扩展功能

文章信息

赵利军, 李开济, 吴静, 门秀丽
ZHAO Lijun, LI Kaiji, WU Jing, MEN Xiuli
缺血后处理对大鼠肢体缺血再灌注后肾细胞凋亡的抑制作用
Inhibitory effect of ischemic postconditioning on apoptosis of renal cells after limb ischemia reperfusion in rats
吉林大学学报(医学版), 2017, 43(04): 725-728
Journal of Jilin University (Medicine Edition), 2017, 43(04): 725-728
10.13481/j.1671-587x.20170412

文章历史

收稿日期: 2016-09-22
缺血后处理对大鼠肢体缺血再灌注后肾细胞凋亡的抑制作用
赵利军 , 李开济 , 吴静 , 门秀丽     
华北理工大学基础医学院病理生理学系, 河北 唐山 063000
[摘要]: 目的: 观察缺血后处理对大鼠肢体缺血再灌注(LIR)后肾组织细胞凋亡的影响,探讨其可能机制。方法: 30只SD大鼠随机分为对照组、缺血再灌注组(IR组)和缺血后处理加再灌注组(I-postC组),每组10只。建立大鼠肢体缺血再灌注(LIR)模型,即橡皮带环绕大鼠双后肢根部阻断血流4h再恢复血流灌注4h。对照组大鼠仅松弛环绕橡皮带不阻断血流,I-postC组大鼠则在再灌注前附加反复3次缺血5 min-再灌注5 min操作,即缺血后处理。全自动生化分析仪测各组大鼠血浆肌酐(Cr)、尿素氮(BUN)和C反应蛋白(CRP)水平;免疫组织化学法检测大鼠肾组织凋亡相关蛋白Bcl-2和Bax的表达,采用自动图像分析系统统计其定量结果并计算Bcl-2/Bax比值;TUNEL染色后在激光共聚焦显微镜下观察肾组织细胞凋亡情况,电镜下观察肾组织超微结构。结果: 与对照组比较,IR组和I-postC组大鼠血浆Cr、BUN和CRP水平均明显增高(P < 0.01);与IR组比较,I-postC组大鼠血浆Cr、BUN和CRP水平均明显降低(P < 0.01)。与对照组比较,IR组和I-postC组大鼠肾组织中Bax和Bcl-2表达水平明显升高(P < 0.05或P < 0.01),Bcl-2/Bax比值降低(P < 0.05);与IR组比较,I-postC组大鼠肾组织中Bax表达水平降低(P < 0.05),Bcl-2表达水平升高(P < 0.01),Bcl-2/Bax比值升高(P < 0.05)。激光共聚焦显微镜下观察,与对照组比较,IR组大鼠肾组织中凋亡细胞明显增多;与IR组比较,I-postC组大鼠肾组织中凋亡细胞明显减少。透射电镜下观察,对照组大鼠肾组织细胞结构清晰完整;IR组大鼠肾组织中肾近曲小管上皮细胞核固缩,溶酶体和致密颗粒沉积增多,线粒体数目减少,部分线粒体嵴断裂或模糊,肾小球足突细胞突起不规则、融合,有空泡现象,粗面内质网扩张;与IR组比较,I-postC组大鼠肾组织中肾小管上皮细胞及肾小球损伤有一定程度改善。结论: LIR可诱发大鼠肾组织细胞凋亡,缺血后处理可抑制肢体缺血再灌注后的肾细胞凋亡,对改善大鼠肾功能有一定作用。
关键词: 再灌注    肾脏    细胞凋亡    缺血后处理    
Inhibitory effect of ischemic postconditioning on apoptosis of renal cells after limb ischemia reperfusion in rats
ZHAO Lijun, LI Kaiji, WU Jing, MEN Xiuli     
Department of Pathophysiology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
[Abstract]: Objective: To observe the inhibitory effect of ischemic postconditioning (I-postC) on the apoptosis of renal cells after limb ischemia reperfusion(LIR) in the rats, and to investigate the possible mechanisms. Methods: Thirty SD rats were randomly divided control group, ischemia-reperfusion group(IR group) and I-postC group(n=10).4 h ischemia and 4 h reperfusion with the rubber band in two hind limbs of the rats were performed to establish the models. In control group, the rubber band around the limb was loose and the blood flow was not blocked. As for I-postC group, before perfusion, 5 min ischemia and 5 min reperfusion were performed in the rats and repeated 3 times named I-post C. The levels of blood creatinine (Cr), blood urea nitrogen(BUN) and C-reactive protein (CRP) in plasma of the rats in various groups were measured by automatic biochemistry analyzer. The expressions of Bcl-2 protein and Bax protein in renal were detected by immunohistochemical method, and its quantitative results were observed with automatic image analysis system and the ratio of Bcl-2/Bax was calculated.The apoptotic cells in kidney tissue were determined by terminal-deoxynucleotidy1 transferase-mediated d-UTP nick end labeling (TUNEL) under laser scanning confocal microscope(LSCM).The ultrastructures of kidney tissue were observed under electron microscope. Results: Compared with control group, the levels of Cr, BUN and CRP in plasma of the rats in IR group and I-postC group were increased(P < 0.05 or P < 0.01);compared with IR group, the levels of Cr, BUN and CRP in plasma of the rats in I-postC group were decreased(P < 0.01).Compared with control group, the expression levels Bax and Bcl-2 in kidney tissue of the rats in IR group and I-postC group were significantly increased (P < 0.05 or P < 0.01), and the ratios of Bcl-2/Bax were reduced(P < 0.05);compared with IR group, the expression level of Bax in kidney tissue of the rats in I-postC group was decreased (P < 0.05), the expression level of Bcl-2 was increased(P < 0.01), and the ratio of Bcl-2/Bax was increased(P < 0.05).Under laser confocal microscope, the number of apoptotic cells in kidney tissue of the rats in IR group was increased compared with control group; the number of apoptotic cells in I-postC group was decreased compared with IR group.Under transmission electron microscope, the changes in IR group were found as follows:renal proximal convoluted tubule epithelial cell nucleus vacuoles, increased lysosome and dense particle deposition, some mitochondria crest fracture or fuzzy; irregular and fusion, glomerular podocyte protuberance, mitochondrial cristae fracture and reducetion with vacuoles, rough endoplasmic reticulum expansion; the damage levels of renal tubular epithelial cells and glomerulus in I-postC group were improved compared with IR group. Conclusion: Limb ischemia reperfusion can induce the apoptosis of renal cells, I-postC can inhibit the apoptosis of renal cells, and it would be helpful to improve the kidney function.
Key words: reperfusion     kidney     apoptosis     ischemic postconditioning    

肢体缺血再灌注(limb ischemia reperfusion,LIR)损伤是临床外科常见的现象,随着缺血肢体血运的重建,多种有害因子播散性地循环全身,常影响机体的功能[1]。肾脏是维持机体内环境稳定的重要器官,实验[2-3]证明:严重的LIR可致急性肾功能衰竭,其中肾组织细胞的大量凋亡是重要机制之一。缺血后处理(ischemic postconditioning,I-postC)是在正式再灌注前进行反复短暂的缺血-再灌注的一种预处理方法[4],对大鼠LIR后肾损伤的影响尚不完全明确。本研究从细胞凋亡的角度观察LIR后肾脏功能和结构的变化,探讨I-postC对远位器官的保护作用。

1 材料与方法 1.1 实验动物和分组

30只健康清洁级雄性Wistar大鼠,体质量200~250g,购自河北联合大学实验动物中心,动物合格证号:SCXK京2009-0004。大鼠随机分为3组(每组10只):对照组、缺血再灌注组(IR组)和缺血后处理加再灌注组(I-postC组)。术前24h禁食,饮水自由。

1.2 模型制备和指标检测

以本室常规应用的止血带法复制大鼠LIR模型[1],使用标准化弹性的橡皮带环绕结扎大鼠双后肢根部阻断血流4h,然后松解橡皮带恢复血流灌注4h。对照组大鼠松弛结扎双后肢不阻断血流,I-postC组大鼠在血流再灌注前,先行缺血5 min-再灌注5 min,重复3次,再恢复血流灌注4h。各组大鼠于再灌注4h时经腹主动脉取血, 血液经3500 r·min-1离心15 min,所得血浆标本分装在干净的Eppendorf管中,-70℃保存备用。采用全自动生化分析仪分光光度法测定各组大鼠血浆肌酐(Cr)、尿素氮(BUN)和C反应蛋白(CRP)水平。剖腹取出一侧肾脏,横断面切取组织块(长约4mm),迅速投入10%甲醛溶液中固定,次日更换固定液,石蜡包埋后切片,TUNEL染色光镜下检测细胞凋亡情况;免疫组织化学法检测凋亡相关蛋白Bcl-2及Bax的表达情况;采用BI2000医学图像分析系统对各组大鼠肾组织切片进行分析,光镜下以相同外部条件摄取图像(10×20),每张切片随机选择6个视野,计算平均吸光度(A)值,作为蛋白定量表达结果。手术中快速切取约米粒大小肾皮质组织块,立即投入冷4%戊二醛-磷酸缓冲液,切成1mm×1mm×1mm的小块预固定,后转入2.5%戊二醛中固定,经丙酮脱水、环氧树脂618包埋、超薄切片、染色后在透射电镜下观察肾组织的超微结构。

1.3 统计学分析

采用SPSS13.0统计软件进行统计学分析。各组大鼠血浆Cr、BUN和CRP水平,肾组织中Bcl-2和Bax蛋白表达水平以x± s表示,组间样本均数比较采用单因素方差分析(One-Way ANOVA)。以P<0.05为差异有统计学意义。

2 结果 2.1 各组大鼠血浆中Cr、BUN和CRP水平

与对照组比较,IR组和I-postC组大鼠血浆中Cr、BUN和CRP水平均明显升高(P < 0.01);与IR组比较,I-postC组大鼠血浆中Cr、BUN和CRP水平均降低(P < 0.01)。见表 1

表 1 各组大鼠血浆中Cr、BUN和CRP水平 Table 1 Levels of plasma Cr, BUN and CRP of rats in various groups
[n=10,x± sλB/(U·L-1)]
GroupCrBUNCRP
Control21.55±3.905.06±1.623.53±0.21
IR58.93±6.76*17.09±2.06*6.05±0.80*
I-postC27.86±2.31*△12.04±1.41*△4.98±0.68*△
*P<0.01 vs control group;P<0.01 vs IR group.
2.2 各组大鼠肾组织细胞凋亡情况

免疫组织化学染色,TUNEL阳性信号呈棕黄色。对照组大鼠肾组织中TUNEL阳性细胞即凋亡细胞较少;IR组大鼠肾组织可见较多TUNEL阳性细胞;I-postC组大鼠肾组织TUNEL阳性细胞较IR组明显减少。见图 1(插页三)。

A:Control group; B: IR group; C: I-postC group. 图 1 免疫组织化学法检测各组大鼠肾组织细胞凋亡(×200) Figure 1 Apoptosis of kidney tissue of rats in various groups detected by immunohi stochemistry(×200)

激光共聚焦显微镜下观察,对照组大鼠肾组织中凋亡细胞罕见;IR组大鼠肾组织中可见较多TUNEL阳性信号,呈黄绿色或黄色荧光,位于胞核,呈小圆形、环行或颗粒状;I-postC组大鼠肾组织中TUNEL阳性细胞较IR组明显减少。见图 2(插页三)。

A:Control group; B: IR group; C: I-postC group. 图 2 激光共聚焦显微镜下观察各组大鼠肾组织细胞凋亡(×200) Figure 2 Apoptosis of kidney tissue of rats in various groups observed under laser confocal microscope(×200)
2.3 各组大鼠肾组织中Bcl-2和Bax蛋白表达水平

Bcl-2和Bax蛋白阳性表达主要位于肾小管上皮细胞胞浆内,呈棕黄色颗粒。对照组大鼠肾组织可见少量肾细胞胞浆呈浅棕黄色,即Bcl-2和Bax蛋白弱阳性表达;再灌注后二者表达均增多,且IR组较I-postC组大鼠肾组织中阳性表达的细胞数目多,着色深。见图 3(插页四)。

A-C:Bcl-2 protein; D-F:Bax protein; A, D: Control group; B, E: IR group; C, F: I-postC group. 图 3 各组大鼠肾组织中Bcl-2和Bax蛋白表达(×200) Figure 3 Expressions of Bcl-2 and Bax protein in kidney tissue of rats in various groups(×200)

与对照组比较,IR组和I-postC组大鼠肾组织中Bax和Bcl-2表达水平明显升高(P < 0.05或P < 0.01),但Bcl-2表达强度弱于Bax,Bcl-2/Bax比值降低(P < 0.05);与IR组比较,I-postC组大鼠肾组织中Bax表达水平降低(P < 0.05),Bcl-2表达水平升高(P < 0.01),Bcl-2/Bax比值升高(P < 0.05)。见表 2

表 2 各组大鼠肾组织中Bcl-2和Bax蛋白表达水平及Bcl-2/Bax比值 Table 2 Expression levels of Bcl-2, Bax and ratios of Bcl-2/Bax in kidney tissue of rats in various groups
(n=10, x± s)
GroupBcl-2BaxBcl-2/Bax
Control0.15±0.010.13±0.021.15±0.18
IR0.28±0.03*0.35±0.02**0.80±0.08*
I-postC0.36±0.02**△△0.32±0.03**△1.13±0.09*△
*P < 0.05, **P < 0.01 vs control group; P < 0.05, △△P < 0.01 vs IR group.
2.4 各组大鼠肾组织超微结构

透射电镜下观察,对照组大鼠肾组织细胞结构清晰完整。再灌注后,IR组大鼠肾组织中近曲小管上皮细胞核固缩,线粒体数量减少,部分线粒体嵴断裂或模糊,甚至空泡化;肾小球足突细胞足突排列不规则,部分突起融合;线粒体肿胀,空泡变性较明显,线粒体嵴断裂并减少,粗面内质网扩张。与IR组比较,I-postC组大鼠肾组织中肾小管上皮细胞和肾小球细胞损伤有一定程度改善。见图 4

A-C:Glomerulus; D-F:Renal tubules; A, D: Control group; B, E: IR group; C, F: I-postC group. 图 4 电镜下观察各组大鼠肾组织超微结构(bar=1 μm) Figure 4 Ultrastructures of kidney tissue of rats in various groups under electron microscope(bar=1 μm)
3 讨论

LIR可经多途径触发全身组织细胞凋亡程序,死亡细胞数目的增多,可严重影响器官的功能[5]。在LIR致肾损伤的过程中,肾小管上皮细胞和肾小球毛细血管内皮细胞的过度凋亡是急性肾功能障碍的重要机制[6]。目前,缺血后处理加再灌注是防治缺血再灌注损伤的有效措施之一,具有可控性好、操作简单和无毒副作用等特点[4]

近年来研究[7]显示:LIR激发的氧化应激、钙超载、炎症因子活化和能量代谢障碍等均会导致局部和远位组织细胞凋亡增多,和细胞坏死一起,参与全身性的再灌注损伤过程。CRP是一种非特异性炎性标志物,可在损伤和炎症急性期敏感表达,参与细胞凋亡的发生发展过程[8]。Bcl-2和Bax属于Bcl-2基因家族成员,在细胞凋亡的过程中,二者相互作用并抑制对方活性[9-10]。本研究结果显示:在远端肾小管,再灌注后Bcl-2高表达,IR组大鼠Bcl-2/Bax比值降低,而I-postC组大鼠Bcl-2/Bax比值有所升高。Bcl-2抑制细胞凋亡的作用与抗氧化、抑制Ca2+内流等因素有关[11],其通过抑制细胞信号传递而发挥抑制细胞凋亡、延长细胞寿命的作用。缺血后处理加再灌注可通过激发机体自身防护系统而抑制细胞凋亡的发生,如降低线粒体膜通透性、阻止促凋亡蛋白从线粒体向外释放和抑制Caspases的激活[12]。在细胞凋亡程序中,Caspases蛋白酶以前酶形式存在, 在上游分子的作用下序贯性激活,最终由Caspase-3在细胞凋亡执行阶段发挥作用,通过激活DNA酶,引起以DNA片断和细胞形态学改变为特征的细胞凋亡。缺血后处理加再灌注还可抑制Bax和Bak的细胞毒作用,阻止细胞的过度凋亡过程[13]。Wever等[14]研究也显示:短暂的后肢缺血可通过非腺苷依赖的机制减轻肾脏的损伤。本研究中,各组大鼠肾组织中细胞凋亡情况的形态学证据和血浆中Cr及BUN水平从功能学角度也支持缺血后处理加再灌注对肾脏具有保护作用。

综上所述,在血流再灌注之前进行缺血后处理,可抑制LIR过程中肾组织细胞的凋亡,进而减轻后继急性肾损伤的程度,本研究为临床全面防治缺血再灌注损伤提供了参考依据。

参考文献
[1] Men X, Han S, Gao J, et al. Taurine protects against lung damage following limb ischemia reperfusion in the rat by attenuating endoplasmic reticulum stress-induced apoptosis[J]. Acta Orthop, 2010, 81(2): 263–267. DOI:10.3109/17453671003587085
[2] Zhao W, Gan X, Su G, et al. The interaction between oxidative stress and mast cell activation plays a role in acute lung injuries induced by intestinal ischemia-reperfusion[J]. J Surg Res, 2014, 187(2): 542–552. DOI:10.1016/j.jss.2013.10.033
[3] Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion[J]. Cardiovasc Res, 2004, 62(1): 74–85. DOI:10.1016/j.cardiores.2004.01.006
[4] Cao XL, Du J, Zhang Y, et al. Hyperlipidemia exacerbates cerebral injury through oxidative stress, inflammation and neuronal apoptosis in MCAO/reperfusion rats[J]. Exp Brain Res, 2015, 233(10): 2753–2765. DOI:10.1007/s00221-015-4269-x
[5] 赵利军, 李开济, 卢秋玲, 等. 缺血后处理对大鼠肢体缺血再灌注后肺损伤的保护作用及其机制[J]. 吉林大学学报:医学版, 2016, 42(2): 255–259.
[6] Zambas NA, Karkos CD, Kambaroudis AG, et al. Protective effect of antithrombin Ⅲ against lung and myocardial injury in lower-limb ischemia-reperfusion syndrome[J]. Ann Vasc Surg, 2012, 26(4): 566–570. DOI:10.1016/j.avsg.2012.01.004
[7] Shevtsov MA, Nikolaev BP, Yakovleva LY, et al. Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats[J]. Drug Des Devel Ther, 2014, 8: 639–650.
[8] Mori S, Sawada T, Okada T, et al. Erythropoietin and its derivative protect the intestine from severe ischemia/reperfusion injury in the rat[J]. Surgery, 2008, 143(4): 556–565. DOI:10.1016/j.surg.2007.12.013
[9] Zhang Y, Leng YF, Xue X, et al. Effects of penehyclidine hydrochloride in small intestinal damage caused by limb ischemia-reperfusion[J]. World J Gastroenterol, 2011, 17(2): 254–259. DOI:10.3748/wjg.v17.i2.254
[10] Zhang J, Wu Y, Weng Z, et al. Glycyrrhizin protects brain against ischemia-reperfusion injury in mice through HMGB1-TLR4-IL-17A signaling pathway[J]. Brain Res, 2014, 1582: 176–186. DOI:10.1016/j.brainres.2014.07.002
[11] ShinoharaG, MoritaK, NagahoriR, et al. Ischemic postconditioning promotes left ventricular functional recovery after cardioplegic arrest in an in vivo piglet model of global ischemia reperfusion injury on cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg, 2011, 142(4): 926–932. DOI:10.1016/j.jtcvs.2011.01.028
[12] 李开济, 贺宝玲, 卢秋玲, 等. 缺血后处理减轻大鼠肢体缺血再灌注后肺损伤的实验研究[J]. 天津医药, 2016, 44(4): 453–456.
[13] Pang L, Ma H, Cai Y, et al. Inhibition of COX-2/PGE2/EP4 signaling protects against post-hypoxic apoptosis In H9C2 cardiomyocytes[J]. FASEB, 2016, 30: 937–939.
[14] Wever KE, Warlé MC, Wagener FA, et al. Remote ischemic preconditioning by brief hind limb ischemia protects against renal ischemia-reperfusion injury:the role of adenosine[J]. Nephrol Dial Transplant, 2011, 26(10): 3108–3117. DOI:10.1093/ndt/gfr103