扩展功能
文章信息
- 孔桂美, 王继军, 陶文华, 卜平, 钱锋
- KONG Guimei, WANG Jijun, TAO Wenhua, BU Ping, QIAN Feng
- 吉林大学学报(医学版), 2016, 42(04): 753-756
- Journal of Jilin University (Medicine Edition), 2016, 42(04): 753-756
- 10.13481/j.1671-587x.20160423
-
文章历史
- 收稿日期: 2016-01-25
胃癌是全球范围内高发的消化道肿瘤之一[1],其发病率位于国内各类肿瘤之首,由于胃癌发病隐匿,且前期临床症状不明显,患者确诊时多为中晚期。胃癌发病的分子生物学因素复杂,可能涉及多个癌基因、抑癌基因和凋亡基因的改变。 蛋白精氨酸甲基化转移酶家族(protein arginine methyltransferase,PRMTs)是一类能够将S-腺苷甲硫氨酸(S-adenosylmethionine,AdoMet)上的甲基转移到底物蛋白胍基上的酶[2]。PRMT5属于Ⅱ型PRMT酶,能催化形成单甲基和双甲基[3]。近几年研究[4, 5, 6]显示:PRMT5参与许多的细胞生物学进程。在人类多种肿瘤如慢性淋巴视网膜细胞瘤[7]、肺癌[8]、前列腺癌[9]、乳腺癌[10, 11]等均存在PRMT5的异常表达,并与预后有关联。目前,PRMT5在胃癌组织中的表达情况鲜有报道。本研究采用免疫组织化学法检测癌旁正常组织和胃癌组织中PRMT5的表达,探讨PRMT5与胃癌发生发展及病理特征的关系。
1 资料与方法 1.1 标 本收集2009年1月—2010年10月扬州大学附属第一人民医院病理科根治性手术切除并经病理检查证实的胃癌标本43份作为胃癌组,经10%甲醛固定石蜡包埋。43例胃癌患者中,男性28例,女性15例;年龄40~72岁,中位年龄58岁。胃癌患者临床分期采用第7版胃癌TNM分期标准,其中Ⅰ期10例,Ⅱ期10例,Ⅲ期12例,Ⅳ期11例。分化程度:高分化腺癌8例,中分化腺癌10例,低分化腺癌14例,未分化癌11例。手术切除的癌旁组织(距癌组织>5cm,经病理证实非癌组织)15份作为对照组。所有胃癌患者术前均未行化放疗及生物免疫治疗。
1.2 主要试剂兔抗人PRMT5单克隆抗体购自瑞士Enzo Life Sciences公司,羊抗兔二抗购自美国Invitrogen公司,DAB显色试剂盒均购自福州迈新生物技术开发有限公司。
1.3 免疫组织化学法检测PRMT5表达和结果判断将包埋的组织蜡块4μm连续切片,二甲苯脱蜡,乙醇梯度水化,3%H2O2消除内原性过氧化物酶,高压修复抗原,室温下BSA封闭,加入一抗4℃过夜,二抗37℃、1h,冲洗后DAB显色,镜下见染色后停止显色,苏木素对比染色,中性树胶封片固定。以PBS为一抗作为阴性对照。PRMT5表达结果判定:参照Liang等[12]的方法,根据染色的强度和阳性细胞所占的比例进行综合评分。染色强度:无染色为0分,弱染色(黄色)为1分,中等强度染色(棕黄色)为2分,强染色(棕色)为3分;染色范围:染色范围≤5%为0分,5%<染色范围≤20%为1分,20%<染色范围≤50%为2分,染色范围>50%为3分。2项计分相加所得总分为最后评分,最高分为6分,以≥4分判定为PRMT5高表达,<4分判定为PRMT5低表达。每张切片选取5个高倍视野(×200),结果由2名经验丰富的病理科医师在全盲条件下共同判读。
1.4 统计学分析采用SPSS19.0统计软件进行统计学分析。PRMT5在胃癌和癌旁正常组织中的表达率及与 患者不同临床病理参数之间的关系比较采用χ2检验。以P<0.05为差异有统计学意义。
2 结 果 2.1 胃癌组织中PRMT5的表达PRMT5在不同分化阶段的胃癌组织标本中均有不同程度的表达,在对照组癌旁正常胃组织标本中呈弱阳性低表达。PRMT5的阳性表达定位于细胞质和细胞核中,但以核染色为主,呈棕黄色颗粒及弥漫性着色。癌旁正常胃组织阳性表达标本中,棕黄色颗粒主要位于细胞浆中,表现为弱到中等表达强度,细胞核染色较少;高分化胃癌标本中,棕黄色颗粒主要位于细胞浆中,表现为中等和强表达,细胞核染色较多;中、低分化和未分化胃癌标本中棕黄色颗粒主要位于细胞浆和细胞核中,细胞核中表现为强表达(图1,见插页四)。按照PRMT5判定标准:对照组癌旁正常胃组织中PRMT5高表达率为13.3%(2/15),胃癌组织中其高表达率为81.4%(35/43),与对照组比较,胃癌组织中PRMT5的高表达率明显升高(P<0.05)。见表1。
[n(η/%)] | |||
Group | n | Positive expression of PRMT5 | |
Low | High | ||
Control | 15 | 13(86.7) | 2(13.3) |
Gastric cancer | 43 | 12(27.9) | 31(72.1) * |
* P<0.05 compared with control group. |
患者资料分别按性别、年龄、肿瘤的大小、分化程度、肿瘤浸润深度、淋巴结转移情况及TNM分期等病理特征分组。肿瘤直径≥5cm的胃癌组织中PRMT5高表达率为87.5%,浸润深度为T3-4的胃癌组织中PRMT5高表达率为86.4%,低分化/未分化的胃癌组织中PRMT5高表达率为84.0%,在发生淋巴结转移的胃癌组织中PRMT5高表达率为81.8%,在TNM分期Ⅲ/Ⅳ期的胃癌组织中PRMT5高表达率为91.3%。PRMT5高表达率与肿瘤体积、分化程度、浸润深度、淋巴结转移和TNM分期有关联(P<0.05或P<0.01),而与患者的性别和年龄无关联(P>0.05)。见表2。
[n(η/%)] | ||||
Clinicopathologic characteristic | n | Positive expression of PRMT5 | P | |
Low | High | |||
Gender | ||||
Male Female | 28 15 | 6(21.4) 6(40.0) | 22(78.6) 9(60.0) | >0.05 |
Age(year) | ||||
<58 ≥58 | 14 29 | 5(35.7) 7(24.1) | 9(64.3) 22(75.9) | >0.05 |
Cancer size | ||||
<5 cm ≥5 cm | 19 24 | 9(47.4) 3(12.5) | 10(52.6) 21(87.5) | <0.05 |
Depth of infiltration | ||||
T1-2 T3-4 | 21 22 | 9(42.9) 3(13.6) | 12(57.1) 19(86.4) | <0.05 |
Differentiation | ||||
High/middle Low/non | 18 25 | 8(44.4) 4(16.0) | 10(55.6) 21(84.0) | <0.05 |
Lymph node metastasis | ||||
Yes No | 33 10 | 6(18.2) 6(60.0) | 27(81.8) 4(40.0) | <0.01 |
TNM stage | ||||
Ⅰ/Ⅱ Ⅲ/Ⅳ | 20 23 | 10(50.0) 2(8.7) | 10(50.0) 21(91.3) | <0.01 |
20世纪60年代,Paik等[13]发现生物体内存在蛋白质精氨酸的甲基修饰,20世纪90年代发现第一个编码精氨酸甲基转移酶的基因。目前已知人类PRMTs有11个成员(PRMT1~11)。PRMT5是Ⅱ型中最早鉴定出的成员,其以不同水平表达于多个器官,包括心脏、肌肉[14]和睾丸组织[15]。PRMT5在转化细胞和非转化细胞内表达定位不同。在大多数的原代细胞和永生化细胞中,PRMT5主要位于细胞质,小部分位于细胞核。在转化细胞中其表达趋势则相反。本研究结果显示:正常胃组织中PRMT5呈低表达,主要分布于细胞质,细胞核表达较少;而胃癌组织中PRMT5呈高表达,主要定位于细胞质和细胞核,并以细胞核表达为主,与文献[8]报道一致。
PRMT5可对多种蛋白进行翻译后修饰,引起表观遗传学的改变,这对细胞生长和增殖具有重要意义,PRMT5也通过与多种特异的转录因子和染色质修饰酶相互作用调控多种重要的细胞信号通路[9, 16, 17, 18, 19, 20, 21, 22, 23, 24]。Wei等[22]发现:表达外源性PRMT5的稳定克隆在裸鼠体内可形成肿瘤,表明PRMT5具有潜在的致癌蛋白作用。在人类的多种疾病中存在PRMT5的异常表达,特别是在一些肿瘤组织中,包括白血病、淋巴瘤、胃癌、乳腺癌、结直肠癌和肺癌组织等,同时PRMT5与乳腺癌和结直肠癌患者的预后密切相关。包香香[25]报道:PRMT5在卵巢癌组织中异常表达率为83.1%,PRMT5的表达与卵巢癌的病理类型、临床分期(Ⅲ/Ⅳ)、分化程度(G3)、淋巴结转移情况有密切关联。本研究结果显示:与癌旁正常胃黏膜组织比较,胃癌组织中PRMT5高表达率明显升高(72.1%),且核表达增多;癌旁正常组织高表达率为13.3%,且以细胞质表达为主;在胃癌组织中,肿瘤体积越大、分化程度越低、肿瘤浸润越深、淋巴结有转移及TNM分期越高,PRMT5的高表达率越高,表明PRMT5的高表达与胃癌的发生发展有一定的关联。PRMT5的具体作用机制尚需进一步探讨。
[1] | 李莉娜, 史锐敏, 王翠莲. 胃癌组织中TRAP1的表达及意义[J]. 临床与实验病理学杂志,2015, 31(3): 323-325. |
[2] | 王成艳, 金 杯, 潘景轩. 稳定表达PRMT5蛋白的食管癌细胞株的建立及其对细胞增殖的影响[J]. 解剖学研究, 2013, 35(3):195-199. |
[3] | Jenuwein T, Allis CD. Translating the histone code [J]. Science,2001, 293(5532):1074-1080. |
[4] | Ren J , Wang Y, Liang Y, et al. Methylation of ribosomal protein S10 by protein arginine methyltransferase 5 regulates ribosome biogenesis [J]. J Biol Chem,2010, 285(17):12695-12705. |
[5] | Zhou Z, Sun X, Zou Z, et al. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130[J]. Cell Res, 2010, 20(9):1023-1033. |
[6] | Mallappa C, Hu YJ, Shamulailatpam P, et al. The expression of myogenic microRNAs indirectly requires protein arginine methyltransferase (Prmt)5 but directly requires Prmt4[J]. Nucl Acids Res, 2011, 39(4):1243-1255. |
[7] | Chung J, Karkhanis V, Tae S, et al. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing [J]. J Biol Chem, 2013, 288(49): 35534-35547. |
[8] | Gu Z, Gao S, Zhang F, et al. Protein arginine methyltransferase 5 is essential for growth of lung cancer cells [J]. Biochem J, 2012, 446(2): 235-241. |
[9] | Gu Z, Li Y, Lee P, et al. Protein arginine methyltransferase 5 functions in opposite ways in the cytoplasm and nucleus of prostate cancer cells [J]. PLoS One, 2012, 7(8):e44033. |
[10] | Yang F, Wang J, Ren HY, et al. Proliferative role of TRAF4 in breast cancer by upregulating PRMT5 nuclear expression [J]. Tumour Biol, 2015, 36(8): 5901-5911. |
[11] | Powers MA , Fay MM, Factor RE, et al. Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4[J]. Cancer Res, 2011, 71(16):5579-5587. |
[12] | Liang JJ, Wang Z, Chiriboga L, et al. The expression and function of androgen receptor coactivator p44 and protein arginine methyltransferase 5 in the developing testis and testicular tumors [J]. J Urol, 2007, 177(5):1918-1922. |
[13] | Paik WK, Kim S. Enzymatic methylation of protein fractions from calf thymus nuclei [J]. Biochem Biophys Res Commun, 1967, 29(1):14-20. |
[14] | Zhang T, Günther S, Looso M, et al. Prmt5 is a regulator of muscle stem cell expansion in adult mice[J]. Nat Commun, 2015, 6: 7140. |
[15] | Wang Y, Li Q, Liu C, et al. Protein arginine methyltransferase 5 (Prmt5) is required for germ cell survival during mouse embryonic development[J]. Biol Reprod, 2015, 92(4): 104. |
[16] | Likhite N, Jackson CA, Liang MS, et al. The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling[J]. Sci Signal, 2015, 8(402): ra115. |
[17] | Pal S, Vishwanath SN, Erdjument-Bromage H, et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes[J]. Mol Cell Biol, 2004, 24 (21):9630-9645. |
[18] | Deng Z, Matsuda K, Tanikawa C, et al. Late Cornified Envelope Group Ⅰ, a novel target of p53, regulates PRMT5 activity[J]. Neoplasia, 2014, 16(8): 656-664. |
[19] | Cho EC, Zheng S, Munro S, et al. Arginine methylation controls growth regulation by E2F-1[J]. EMBO J, 2012, 31 (7): 1785-1797. |
[20] | Tanaka H, Hoshikawa Y, Oh-hara T, et al. PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-kappaB activation[J]. Mol Cancer Res, 2009, 7(4):557-569. |
[21] | Hsu JM, Chen CT, Chou CK, et al. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation[J]. Nat Cell Biol, 2011, 13(2):174-181. |
[22] | Wei TY, Juan CC, Hisa JY, et al. Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade[J]. Cancer Sci, 2012,103(9): 1640-1650. |
[23] | Lim JH, Choi YJ, Cho CH, et al. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway[J]. Biochem Biophys Res Commun, 2012, 418 (2): 254-259. |
[24] | Hou Z, Peng H, Ayyanathan K, et al. The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression[J]. Mol Cell Biol, 2008, 28(10):3198-3207. |
[25] | 包香香. PRMT5对上皮性卵巢癌生物学行为影响的实验研究[D]. 济南:山东大学,2013. |