扩展功能
文章信息
- 王劭恒, 刘鹏飞, 高腾, 关雷
- WANG Shaoheng, LIU Pengfei, GAO Teng, GUAN Lei
- 不同麻醉方式对腹腔热灌注化疗术患者术后早期疼痛的镇痛效果
- Analgesic effects of different anesthesia methods on early pain of patients after hyperthermie intraperitoneal chemotherapy
- 吉林大学学报(医学版), 2020, 46(05): 1043-1049
- Journal of Jilin University (Medicine Edition), 2020, 46(05): 1043-1049
- 10.13481/j.1671-587x.20200523
-
文章历史
- 收稿日期: 2020-03-11
近年来,腹膜表面恶性肿瘤的最终治疗依赖于全身化疗和细胞减灭手术联合热腹腔化疗术(cytoreductive surgery/hyperthermie intraperitoneal chemotherapy,CRS/HIPEC)[1]。CRS/HIPEC术式明显改善了结直肠癌腹膜转移、卵巢癌腹膜转移、腹膜假黏液瘤和腹膜间皮瘤等腹膜癌患者的预后[2]。但CRS/HIPEC术式过程漫长且复杂,相关并发症发生率较高,使得该术式麻醉及围术期管理面临很大挑战。单纯全身麻醉多被作为CRS/HIPEC术式的首选麻醉方式,可以维持呼吸系统和循环系统稳定,保证充分氧供,维持组织微循环灌注[3-4]。全身麻醉联合硬膜外麻醉方式是一种改进的方法,但由于CRS/HIPEC手术复杂性,故该方法存在一定风险[5]。随着超声引导下区域阻滞技术兴起,各种区域阻滞技术在麻醉过程中及术后多模式镇痛方面发挥着越来越重要的作用;其中超声引导下腹直肌后鞘阻滞(rectus sheath block,RSB)和超声引导下腹横肌平面阻滞(transverse abdominis plane block,TAPB)可为腹部正中切口术式提供术中和术后良好镇痛效果[6-7]。目前,国内外尚无有关全身麻醉联合RSB或全身麻醉联合TAPB应用于CRS/HIPEC对术后疼痛管理效果的相关报道。本研究通过回顾性分析方法收集本院择期行CRS/HIPEC患者,分析单纯全身麻醉、全身麻醉联合RSB和全身麻醉联合TAPB对患者术后早期疼痛的影响,从而为CRS/HIPEC患者术后早期多模式镇痛提供一种可行方案,促进CRS/HIPEC患者早期恢复,进一步优化围术期诊疗方案。
1 资料与方法 1.1 一般资料采用回顾性队列研究,纳入2017年4月—2019年4月本院行CRS/HIPEC术患者。纳入标准:①美国麻醉医师协会(ASA)分级,ASAⅠ~Ⅲ级;②患者年龄18~64岁;③接受单纯全身麻醉、全身麻醉联合RSB和全身麻醉联合TAPB。排除标准:①非开放式CRS/HIPEC;②术中失血量大于1 000 mL;③术后需要持续机械通气;④术后临床资料不全患者。据此标准共纳入患者318例,通过查阅麻醉记录单记录的麻醉信息,根据麻醉方法的不同进行分组:单纯全身麻醉患者202例(单纯全身麻醉组),全身麻醉联合RSB患者62例(RSB组),全身麻醉联合TAPB患者54例(TAPB组)。经倾向性评分按1︰1︰1匹配3组患者一般资料,最终每组入组患者35例。
1.2 麻醉方法患者术前均常规禁食、禁饮。入手术室后,开放静脉通路,常规监测心率(HR)、平均动脉压(MAP)和血氧饱和度(SpO2)。3组患者全身麻醉方案一致,均以丙泊酚2 mg·kg-1、舒芬太尼0.5 μg·kg-1、罗库溴铵0.6 mg·kg-1进行全麻诱导,气管插管后维持机械通气。于麻醉诱导后分别行桡动脉穿刺及颈内静脉穿刺监测有创动脉压及中心静脉压。维持麻醉采用静吸复合麻醉:七氟醚2%吸入、瑞芬太尼0.2 μg·kg-1·min-1持续泵入;间断追加罗库溴铵0.15 mg·kg-1维持肌松作用。RSB组和TAPB组患者则于全身麻醉诱导前行超声下双侧RSB或双侧TAPB。患者均取平卧位,使用10 MHz线阵探头。双侧RSB穿刺部位为平脐水平,靠近双侧腹直肌外缘,超声探头由腹部正中腹白线向外侧滑动观察腹前鞘、腹直肌和后鞘等结构,至靠近双侧腹直肌外缘处,采取超声引导下平面内进针方法,双侧分别给予0.375%盐酸罗哌卡因20 mL。双侧TAPB穿刺部位为双侧肋缘和髂嵴之间的腹壁上,观察腹壁三层肌肉结构,即腹外斜肌、腹内斜肌和腹横肌,采用平面内进针方法,超声引导下穿刺针到达腹横肌与腹内斜肌间层面,注入0.375%罗哌卡因20 mL。3组患者术毕均应用患者自控静脉镇痛(PCIA),地佐辛1 mg·kg-1+右美托咪定0.1 μg·kg-1·h -1稀释至100 mL,背景剂量为2 mL·h-1,单次按压输注剂量为1 mL·h-1,锁定时间15 min。
1.3 观察指标通过数字化病案系统及远程镇痛管理系统查询患者资料信息以及麻醉镇痛相关记录。记录内容包括患者人口学资料、体质量指数(BMI)、术前既往病史、ASA分级和纽约心功能分级(NYHA),入室即刻(T1)、开腹后(T2)、腹腔热灌注前(T3)、腹腔热灌注后(T4)、术毕(T5)时心率(HR)和平均动脉压(MAP),手术全程时间和术毕拔管时间,麻醉恢复期高血压、苏醒期躁动和术后恶心呕吐的发生率,术中瑞芬太尼应用总量和术中肌松药物总量,术后2 h(T6)、6 h(T7)和12 h(T8)患者视觉模拟评分(VAS)、PCIA输入剂量和按压次数。
1.4 统计学分析采用EpiData V3.1软件录入数据,双录入核查。采用SAS 9.2统计软件进行统计学分析。正态分布的计量资料以x±s表示,非正态分布的计量资料以中位数(四分位数间距)表示,计数资料以频数(百分率)表示。正态分布计量资料比较采用单因素方差分析或t检验,非正态分布计量资料比较采用秩和检验,计数资料组间比较采用χ2检验或Fisher精确检验。采用Bonferroni法进行多重比较检验水准的校正。检验水准为α=0.05。
2 结果 2.1 各组患者基线资料3组患者性别、年龄分布、BMI、基础疾病、ASA分级和NYHA分级比较差异均无统计学意义(P > 0.05)。见表 1。
(n=35) | |||||||||||||||||||||||||||||
Clinicopathological feature | Simple general anesthesia | RSB | TAPB | F/x2 | P | ||||||||||||||||||||||||
Age(year) | 58.16±7.35 | 56.32±7.46 | 57.21±8.05 | 1.08 | 0.28 | ||||||||||||||||||||||||
Sex [n(%)] | |||||||||||||||||||||||||||||
Male | 18(51.40) | 15(42.85) | 21(60.00) | 0.74 | 0.39 | ||||||||||||||||||||||||
Female | 17(48.60) | 20(57.125) | 14(40.00) | ||||||||||||||||||||||||||
BMI(kg·m-2) | 23.36±4.11 | 22.10±5.33 | 24.10±5.33 | 1.49 | 0.14 | ||||||||||||||||||||||||
Basic diseases [n(%)] | |||||||||||||||||||||||||||||
Diabetes | 11(31.42) | 10(29.41) | 11(35.48) | 0.21 | 0.65 | ||||||||||||||||||||||||
Hypertension | 12(34.29) | 15(44.11) | 13(41.94) | 0.05 | 0.83 | ||||||||||||||||||||||||
Coronary heart disease | 8(22.86) | 10(29.41) | 7 (22.58) | 0.49 | 0.49 | ||||||||||||||||||||||||
ASA [n(%)] | |||||||||||||||||||||||||||||
Ⅰ | 11(31.43) | 9(25.71) | 8(22.85) | 0.37 | 0.83 | ||||||||||||||||||||||||
Ⅱ | 22(62.86) | 24(68.57) | 24(68.57) | ||||||||||||||||||||||||||
Ⅲ | 2(5.71) | 2(5.71) | 3(8.57) | ||||||||||||||||||||||||||
NYHA [n(%)] | |||||||||||||||||||||||||||||
Ⅰ | 9(25.71) | 8(23.53) | 6(19.35) | 0.87 | 0.35 | ||||||||||||||||||||||||
Ⅱ | 26(74.29) | 26(76.47) | 25(80.65) |
与单纯全身麻醉组比较,T1~T5时间段RSB组和TAPB组患者MAP和HR比较差异无统计学意义(P > 0.05)。见表 2。
(n=35, x±s) | |||||||||||||||||||||||||||||
Group | MAP(P/mmHg) | HR(beat.min-1) | |||||||||||||||||||||||||||
T1 | T2 | T3 | T4 | T5 | T1 | T2 | T3 | T4 | T5 | ||||||||||||||||||||
Simple general anesthesia | 91.09±14.95 | 82.96±14.89 | 79.19±14.76 | 86.07±14.93 | 90.51±14.71 | 68.09±14.62 | 64.91±14.32 | 71.86±14.85 | 69.13±14.11 | 73.24±14.50 | |||||||||||||||||||
RSB | 90.17±13.62 | 83.91±14.32 | 85.66±13.95 | 87.13±14.11 | 87.85±14.50 | 71.78±14.11 | 66.12±14.47 | 67.35±14.06 | 67.92±14.67 | 69.12±14.33 | |||||||||||||||||||
TAPB | 92.34±12.12 | 84.82±13.48 | 84.82±13.48 | 83.74±13.87 | 88.46±14.89 | 69.57±15.68 | 64.73±14.84 | 66.15±14.29 | 70.36±14.58 | 71.27±15.53 | |||||||||||||||||||
F | 0.217 | 0.137 | 1.230 | 0.319 | 0.204 | 0.398 | 0.066 | 0.952 | 0.168 | 0.440 | |||||||||||||||||||
P | 0.805 | 0.872 | 0.296 | 0.728 | 0.816 | 0.673 | 0.936 | 0.390 | 0.846 | 0.646 |
与单纯全身麻醉组比较,RSB组和TAPB组患者手术总时间比较差异无统计学意义(P > 0.05),术毕拔管时间均明显缩短(Bonferroni法校正多重比较,P < 0.05/2=0.025)。RSB和TAPB组患者术中瑞芬太尼和肌松药用量明显低于单纯全身麻醉组(Bonferroni法校正多重比较,P < 0.05/2=0.025)。RSB组和TAPB组患者麻醉恢复期高血压、苏醒期躁动发生率和术后恶心呕吐发生率均明显低于单纯全身麻醉组(Bonferroni法校正多重比较,P < 0.05/2=0.025)。见表 3。
(n=35) | |||||||||||||||||||||||||||||
Group | Operation time (t/h) | Extubation time (t/min) | Remifentanil(m/mg) | Rocuronium(m/mg) | Emergence agitation [n(η/%)] | Hypertension [n(η/%)] | Nausea and vomiting [n(η/%)] | ||||||||||||||||||||||
Simple general anesthesia | 10.39±4.06 | 24.26±4.60 | 5.82±3.17 | 180.82±62.97 | 11(31.42) | 14(40.00) | 12(34.28) | ||||||||||||||||||||||
RSB | 11.52±4.18 | 10.10±5.24 | 2.60±1.09 | 124.35±55.21 | 2(5.88) | 5(14.71) | 4(11.42) | ||||||||||||||||||||||
TAPB | 10.79±4.79 | 14.23±6.57 | 3.05±1.64 | 142.78±59.37 | 3(9.68) | 5(16.13) | 4(11.42) | ||||||||||||||||||||||
RSB vs simple general anesthesia | F/x2 | 1.615 | 11.728 | 5.860 | 5.099 | 7.652 | 5.851 | 5.185 | |||||||||||||||||||||
P | 0.111 | < 0.01* | < 0.01* | < 0.01* | 0.006* | 0.016* | 0.023* | ||||||||||||||||||||||
TAPB vs simple general anesthesia | F/x2 | 1.082 | 6.705 | 5.501 | 2.858 | 5.714 | 5.851 | 5.185 | |||||||||||||||||||||
P | 0.935 | < 0.01* | < 0.01* | 0.006* | 0.017* | 0.016* | 0.023* | ||||||||||||||||||||||
*: compared with simple general anesthesia group; α was corrected by Bonferroni-method, P < 0.05/2=0.025. |
与单纯全身麻醉组比较,T6和T7时RSB组和TAPB组患者VAS评分、PCIA输入剂量和按压次数均明显降低(Bonferroni法校正多重比较,P < 0.05/2=0.025),在T8时RSB组和TAPB组患者VAS评分、PCA输入剂量和按压次数比较差异无统计学意义(Bonferroni法校正多重比较,P > 0.05/2=0.025)。见表 4。
[n=35, M(P25, P75)] | |||||||||||||||||||||||||||||
Group | T6 | T7 | T8 | ||||||||||||||||||||||||||
VAS | PCA (V/mL) | Press times | VAS | PCA(V/mL) | Press times | VAS | PCA(V/mL) | Press times | |||||||||||||||||||||
Simple general anesthesia | 3[2,4] | 5[4,6] | 1[1,2] | 3[3,4] | 16[14,18] | 2[2,3] | 4[3,5] | 28[26,31] | 3[3,4] | ||||||||||||||||||||
RSB | 1[0, 2] | 4[4,4] | 0[0, 0] | 2[1,3] | 12[12,14] | 0[0, 1] | 3[1,4] | 27[25,30] | 3[2,4] | ||||||||||||||||||||
TAPB | 1[1,2] | 4[4,4] | 0[0, 0] | 2[1,4] | 12[12,14] | 1[0, 2] | 3[2,4] | 28[24,30] | 3[2,4] | ||||||||||||||||||||
RSB vs Simple general anesthesia | Z | -5.761 | -2.708 | -7.202 | -4.443 | -5.109 | -6.59 | -1.368 | -1.919 | -1.032 | |||||||||||||||||||
P | < 0.01* | 0.007* | < 0.01* | < 0.01* | < 0.01* | < 0.01* | 0.171 | 0.055 | 0.302 | ||||||||||||||||||||
TAPB vs Simple general anesthesia | Z | -5.358 | -3.156 | -7.349 | -3.102 | -5.495 | -5.121 | -2.094 | -1.908 | -0.431 | |||||||||||||||||||
P | < 0.01* | 0.02* | < 0.01* | 0.002* | < 0.01* | < 0.01* | 0.036 | 0.056 | 0.667 | ||||||||||||||||||||
*: compared with simple general anesthesia group, α was corrected by Bonferroni-method, P < 0.05/2=0.025. |
腹膜癌曾一直被认为是姑息性不治之症,但近20年来CRS/HIPEC已成为治疗部分腹膜癌患者的首要选择,但是关于麻醉期和围手术期管理的经验有限,尚未达成共识[8]。由于该手术切口大,术中处理复杂,CRS/HIPEC被认为是在所有腹部手术中创伤最大的手术,术后患者承受巨大的痛苦[9]。本研究结果提示超声引导下双侧RSB或RAPB适合于CRS/HIPEC,且在术中维持患者血流动力学稳定、减少术中阿片类药物及肌松药物使用和术后早期疼痛治疗方面均具有良好的优势。
由于CRS/HIPEC手术时间长且手术创伤巨大,寻求一个更完善、患者获益更多的麻醉方案是一个核心问题。术中血流动力学稳定极其重要,术中血流动力学波动时,HR和血压与住院时间、围术期心脑血管不良事件发生以及住院期间死亡率独立相关[10]。然而作为一种强烈的外科刺激,CRS/HIPEC的巨大创伤可能通过激活交感神经系统引起明显的血流动力学变化。同时阿片类药物的不良反应是术中麻醉管理和术后疼痛管理的主要问题;大量使用阿片类药物可导致麻醉苏醒延迟、恶心和呕吐等不良反应,并延长住院时间。本研究中,各组患者术中血流动力学均平稳,证实全身麻醉复合区域神经阻滞技术可以满足CRS/HIPEC的要求。KAJDI等[11]和PICCIONI等[12]回顾性分析研究结果显示:全身麻醉复合胸段硬膜外麻醉技术是一项可以信任的麻醉方式,即可获得良好的麻醉效果维持血流动力学稳定;同时比较胸段硬膜外阻滞患者阿片类药物使用情况发现,与单纯全身麻醉比较,芬太尼全程给药的剂量有明显差异,采用胸段硬膜外麻醉复合全身麻醉患者需要更少量的芬太尼。KAJIA等[11]研究的病例中有1例患者术后出现局部硬膜外血肿的恶性不良反应;PICCIONI等[12]研究的病例无类似不良反应,但强调麻醉医师在处理硬膜外导管时应根据美国区域麻醉指南,在取出硬膜外导管之前,评估患者的血小板计数、凝血酶原时间和激活部分凝血活蛋白时间。上述研究提示:CRS/HIPEC的复杂性导致其对于凝血功能影响显著,穿刺胸段硬膜外阻滞具有很高风险性[13]。
本研究结果显示:超声引导下RSB和TAPB复合全身麻醉患者术中血流动力学参数平稳,与单纯全身麻醉组比较差异无统计学意义,但在手术全程阿片类药物和肌松药物总剂量明显降低;同时躯干浅表的区域阻滞方式避免了受凝血功能障碍的影响,相对于硬膜外镇痛方式几乎无风险且获得同样的麻醉效果。本研究结果与既往研究结论相似,多项随机前瞻对照研究[14-15]结果提示:与单纯全身麻醉组比较,全身麻醉联合TAPB术中血流动力学平稳,减少患者术中和术后阿片类药物用量,缩短麻醉恢复时间和住院时间。同样的前瞻性研究[16-17]证实:对于开腹胃切除患者,全身麻醉联合RSB在术中可维持更稳定的血流动力学且提供良好的术后镇痛。本研究结果显示:RSB组和TAPB组患者阿片类药物及肌松药物使用剂量减少,患者术后早期不良反应也相应减少。RSB组和TAPB组术毕拔管时间明显低于单纯全身麻醉组,表明全身麻醉药物的减少有利于患者早期恢复;RSB组和TAPB组患者术后躁动、恶心和呕吐发生率均低于单纯全身麻醉组,证实联合区域阻滞的全身麻醉方式,既可避免术后疼痛引起的躁动,又可避免因大剂量阿片类药物的使用而产生不良反应。
术后镇痛强调多模式镇痛,包括非阿片类镇痛药和周围神经阻滞镇痛,可提供有效和足够的术后镇痛,并且减少因摄入大量阿片类药物而产生的不良反应。区域神经阻滞完成的局部镇痛是最有效的镇痛方法之一[18]。一项关于阿片类药物消耗剂量的研究[19]指出:接受RSB的患者术后24和48 h吗啡消耗剂量明显低于单纯PICA镇痛组;而单纯吗啡组镇痛评分则明显高于吗啡复合RSB组。有关TAPB的研究[20-21]提示:与单纯全身麻醉组比较,全身麻醉联合TAPB可以降低患者术中瑞芬太尼用量;对于术后早期镇痛,TAPB既能提供有效的镇痛,又能明显减少阿片类药物的使用剂量。本研究结果显示:术后2和6 h时间点,全身麻醉复合RSB组或TAPB组患者VAS评分明显低于单纯全身麻醉组,术后阿片类药物消耗及PICA按压次数明显低于单纯全身麻醉组,证实区域阻滞是多模式镇痛理念中重要的组成部分。RSB和TAPB还具有以下几个方面优势:①超声引导实现肌肉平面内麻醉药物沿筋膜扩散,阻滞穿行筋膜内的多根神经,而不需要识别单个神经;②与椎管内麻醉等深部的镇痛技术比较,RSB和TAPB镇痛效果相似且无更高的风险与限制;③超声引导下躯干体表的阻滞方式相对更容易掌握。上述2种区域阻滞方法结合其他镇痛方式,在腹部手术中会有更好的疗效,在急性和慢性疼痛诊疗管理方面为麻醉医师提供有效的麻醉方法[22]。
本研究还有不完善的方面:延长区域阻滞镇痛时间是需要解决的问题,留置外周神经导管可能是合理的解决方法。HAUSKEN等[23]研究显示:在胰腺移植手术留置皮下导管术后持续区域阻滞镇痛可以明显减少阿片类药物消耗剂量,这对于CRS/HIPEC术后镇痛是更好的选择。同时受限于回顾性队列研究,患者并非随机接受不同的麻醉方式,可能造成潜在的混杂偏倚。针对上述问题,需设计并开展多中心随机对照临床试验研究,获得优化的CRS/HIPEC围术期镇痛方案,加速患者早期康复,缓解患者痛苦。
综上所述,在未来将更广泛地开展CRS/HIPEC,但该术式手术创伤大、术中存在体温和凝血功能等相关病理生理变化,上述问题对麻醉管理依然具有很大的挑战。全身麻醉复合RSB或TAPB可维持患者术中血流动力学稳定,减少手术全程麻醉药物的使用剂量,抑制麻醉苏醒期不良反应,为患者提供术后早期的镇痛作用,是一种更加优化的麻醉方案。
[1] |
PASSOT G, VAUDOYER D, VILLENEUVE L, et al. What made hyperthermic intraperitoneal chemotherapy an effective curative treatment for peritoneal surface malignancy:A 25-year experience with 1, 125 procedures[J]. J Surg Oncol, 2016, 113(7): 796-803. DOI:10.1002/jso.24248 |
[2] |
LI Y, ZHOU Y F, LIANG H, et al. Chinese expert consensus on cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal malignancies[J]. World J Gastroenterol, 2016, 22(30): 6906-6916. DOI:10.3748/wjg.v22.i30.6906 |
[3] |
SHIRALKAR S P, KERR P, SCOTT J, et al. Anaesthetic management of patients undergoing cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei:a retrospective audit[J]. Anaesth Intensive Care, 2017, 45(4): 490-498. DOI:10.1177/0310057X1704500413 |
[4] |
FICHMANN D, ROTH L, RAPTIS D A, et al. Standard operating procedures for anesthesia management in cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improve patient outcomes:a patient cohort analysis[J]. Ann Surg Oncol, 2019, 26(11): 3652-3662. DOI:10.1245/s10434-019-07644-w |
[5] |
RASP C, FL THER L, SCHNEIDER R, et al. Best practice for perioperative management of patients with cytoreductive surgery and HIPEC[J]. Eur J Surg Oncol, 2017, 43(6): 1013-1027. DOI:10.1016/j.ejso.2016.09.008 |
[6] |
WILLSCHKE H, B SENBERG A, MARHOFER P, et al. Ultrasonography-guided rectus sheath block in paediatric anaesthesia:a new approach to an old technique[J]. Br J Anaesth, 2006, 97(2): 244-249. DOI:10.1093/bja/ael143 |
[7] |
WAHBA S S, KAMAL S M. Analgesic efficacy and outcome of transversus-abdominis plane block versus low thoracic-epidural analgesia after laparotomy in ischemic heart disease patients[J]. J Anesth, 2014, 28(4): 517-523. DOI:10.1007/s00540-013-1774-6 |
[8] |
SCHMIDT C, CREUTZENBERG M, PISO P, et al. Peri-operative anaesthetic management of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy[J]. Anaesthesia, 2008, 63(4): 389-395. DOI:10.1111/j.1365-2044.2007.05380.x |
[9] |
WANG X, LI T Z. Postoperative pain pathophysiology and treatment strategies after CRS + HIPEC for peritoneal cancer[J]. World J Surg Oncol, 2020, 18(1): 62. DOI:10.1186/s12957-020-01842-7 |
[10] |
ABBOTT T E F, PEARSE R M, ARCHBOLD R A, et al. A prospective international multicentre cohort study of intraoperative heart rate and systolic blood pressure and myocardial injury after noncardiac surgery:results of the VISION study[J]. Anesth Analg, 2018, 126(6): 1936-1945. DOI:10.1213/ANE.0000000000002560 |
[11] |
KAJDI M E, BECK-SCHIMMER B, HELD U, et al. Anaesthesia in patients undergoing cytoreductive surgery with hyperthermic intraperitoneal chemotherapy:retrospective analysis of a single centre three-year experience[J]. World J Surg Oncol, 2014, 12: 136. DOI:10.1186/1477-7819-12-136 |
[12] |
PICCIONI F, CASIRAGHI C, FUMAGALLI L, et al. Epidural analgesia for cytoreductive surgery with peritonectomy and heated intraperitoneal chemotherapy[J]. Int J Surg, 2015, 16(Pt A): 99-106. |
[13] |
DESGRANGES F P, STEGHENS A, MITHIEUX F, et al. Potential risks of thoracic epidural analgesia in hyperthermic intraperitoneal chemotherapy[J]. J Surg Oncol, 2010, 101(5): 442. DOI:10.1002/jso.21485 |
[14] |
ERDOGAN M A, OZGUL U, U AR M, et al. Effect of transversus abdominis plane block in combination with general anesthesia on perioperative opioid consumption, hemodynamics, and recovery in living liver donors:The prospective, double-blinded, randomized study[J]. Clin Transplant, 2017, 31: e12931. DOI:10.1111/ctr.12931 |
[15] |
LIU R Z, QIN H Y, WANG M, et al. Transversus abdominis plane block with general anesthesia blunts the perioperative stress response in patients undergoing radical gastrectomy[J]. BMC Anesthesiol, 2019, 19(1): 205. DOI:10.1186/s12871-019-0861-0 |
[16] |
LI Y H, JIANG X, WANG J F, et al. Intravenous dexmedetomidine combined with ultrasound-guided rectus sheath block for open gastrectomy:a prospective randomized trial[J]. J Gastrointest Surg, 2020, 24(6): 1290-1297. DOI:10.1007/s11605-019-04249-2 |
[17] |
HONG S, KIM H, PARK J. Analgesic effectiveness of rectus sheath block during open gastrectomy:a prospective double-blinded randomized controlled clinical trial[J]. Medicine (Baltimore), 2019, 98(15): e15159. DOI:10.1097/MD.0000000000015159 |
[18] |
HELANDER EM, WEBB MP, BIAS M, et al. Use of regional anesthesia techniques:analysis of institutional enhanced recovery after surgery protocols for colorectal surgery[J]. J Laparoendosc Adv Surg Tech A, 2017, 27(9): 898-902. DOI:10.1089/lap.2017.0339 |
[19] |
BAKSHI S G, MAPARI A, SHYLASREE T S. Rectus sheath block for postoperative analgesia in gynecological oncology surgery (RESONS):a randomized-controlled trial[J]. Can J Anaesth, 2016, 63(12): 1335-1344. DOI:10.1007/s12630-016-0732-9 |
[20] |
MA J H, WANG XY, SUN Q X, et al. Transversus abdominis plane block reduces remifentanil and propofol consumption, evaluated by closed‑loop titration guided by bispectral index[J]. Exp Ther Med, 2018, 16(5): 3897-3902. |
[21] |
PELTRINI R, CANTONI V, GREEN R, et al. Efficacy of transversus abdominis plane (TAP) block in colorectal surgery:a systematic review and meta-analysis[J]. Tech Coloproctol, 2020, 24(8): 787-802. DOI:10.1007/s10151-020-02206-9 |
[22] |
URITS I, OSTLING PS, NOVITCH MB, et al. Truncal regional nerve blocks in clinical anesthesia practice[J]. Best Pract Res Clin Anaesthesiol, 2019, 33(4): 559-571. DOI:10.1016/j.bpa.2019.07.013 |
[23] |
HAUSKEN J, RYDENFELT K, HORNELAND R, et al. First experience with rectus sheath block for postoperative analgesia after pancreas transplant:a retrospective observational study[J]. Transplant Proc, 2019, 51(2): 479-484. DOI:10.1016/j.transproceed.2019.01.065 |