[1] |
CREUTZIG U, KUTNY M A, BARR R, et al. Acute myelogenous leukemia in adolescents and young adults[J]. Pediatr Blood Cancer, 2018, 65(9): e27089. DOI:10.1002/pbc.27089 |
|
[2] |
KAHN J M, KEEGAN T H, TAO L, et al. Racial disparities in the survival of American children, adolescents, and young adults with acute lymphoblastic leukemia, acute myelogenous leukemia, and Hodgkin lymphoma[J]. Cancer, 2016, 122(17): 2723-2730. DOI:10.1002/cncr.30089 |
|
[3] |
DUGGAN M A, ANDERSON W F, ALTEKRUSE S, et al. The Surveillance, epidemiology, and end results (SEER) program and pathology:Toward strengthening the critical relationship[J]. Am J Surg Pathol, 2016, 40(12): e94-e102. |
|
[4] |
M RICKE A, ZIMMERMANN M, REITER A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000[J]. Leukemia, 2010, 24(2): 265-284. DOI:10.1038/leu.2009.257 |
|
[5] |
RASCHE M, ZIMMERMANN M, BORSCHEL L, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia:a retrospective analysis of the AML-BFM trials from 1987 to 2012[J]. Leukemia, 2018, 32(10): 2167-2177. DOI:10.1038/s41375-018-0071-7 |
|
[6] | |
|
[7] |
SANZ M A, MONTESINOS P. How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia[J]. Blood, 2014, 123(18): 2777-2782. DOI:10.1182/blood-2013-10-512640 |
|
[8] |
HUDSON M M, LINK M P, SIMONE J V. Milestones in the curability of pediatric cancers[J]. J Clin Oncol, 2014, 32(23): 2391-2397. DOI:10.1200/JCO.2014.55.6571 |
|
[9] |
DAVIS S, MELTZER P S. GEOquery:a bridge between the gene expression omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23(14): 1846-1847. DOI:10.1093/bioinformatics/btm254 |
|
[10] |
HUANG D W, SHERMAN B T, LEMPICKI R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44-57. DOI:10.1038/nprot.2008.211 |
|
[11] |
SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11:protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613. DOI:10.1093/nar/gky1131 |
|
[12] |
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. DOI:10.1101/gr.1239303 |
|
[13] |
JANKY R, VERFAILLIE A, IMRICHOV H, et al. iRegulon:from a gene list to a gene regulatory network using large motif and track collections[J]. PLoS Comput Biol, 2014, 10(7): e1003731. DOI:10.1371/journal.pcbi.1003731 |
|
[14] |
SIEGEL R, DESANTIS C, VIRGO K, et al. Cancer treatment and survivorship statistics, 2012[J]. CA Cancer J Clin, 2012, 62(4): 220-241. DOI:10.3322/caac.21149 |
|
[15] |
KAYSER S, LEVIS M J. Advances in targeted therapy for acute myeloid leukaemia[J]. Br J Haematol, 2018, 180(4): 484-500. DOI:10.1111/bjh.15032 |
|
[16] |
NTZIACHRISTOS P, MULLENDERS J, TRIMARCHI T, et al. Mechanisms of epigenetic regulation of leukemia onset and progression[J]. Adv Immunol, 2013, 117: 1-38. DOI:10.1016/B978-0-12-410524-9.00001-3 |
|
[17] |
TSAI W H, CHIEN H Y, SHIH C H, et al. Annexin A1 mediates the anti-inflammatory effects during the granulocytic differentiation process in all-trans retinoic acid-treated acute promyelocytic leukemic cells[J]. J Cell Physiol, 2012, 227(11): 3661-3669. DOI:10.1002/jcp.24073 |
|
[18] |
MCNEER N A, PHILIP J, GEIGER H, et al. Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia[J]. Leukemia, 2019, 33(8): 1934-1943. DOI:10.1038/s41375-019-0402-3 |
|
[19] |
WONG R W J, NGOC P C T, LEONG W Z, et al. Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia[J]. Blood, 2017, 130(21): 2326-2338. DOI:10.1182/blood-2017-06-792184 |
|
[20] |
XIAO P F, TAO Y F, HU S Y, et al. mRNA expression profiling of histone modifying enzymes in pediatric acute monoblastic leukemia[J]. Pharmazie, 2017, 72(3): 177-186. |
|
[21] |
CHENG G, LIU F, ASAI T, et al. Loss of p300 accelerates MDS-associated leukemogenesis[J]. Leukemia, 2017, 31(6): 1382-1390. DOI:10.1038/leu.2016.347 |
|
[22] |
WALSBY E J, LAZENBY M, PEPPER C J, et al. The HSP90 inhibitor NVP-AUY922-AG inhibits the PI3K and IKK signalling pathways and synergizes with cytarabine in acute myeloid leukaemia cells[J]. Br J Haematol, 2013, 161(1): 57-67. DOI:10.1111/bjh.12215 |
|
[23] |
ZHAO J, LIANG J W, XUE H L, et al. The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia[J]. Leukemia, 2019, 33(6): 1387-1399. DOI:10.1038/s41375-018-0338-z |
|
[24] |
ANDRADE F G, NORONHA E P, BRISSON G D, et al. Molecular characterization of pediatric acute myeloid leukemia:results of a multicentric study in Brazil[J]. Arch Med Res, 2016, 47(8): 656-667. DOI:10.1016/j.arcmed.2016.11.015 |
|
[25] |
TAKAHASHI H, HATTA Y, IRIYAMA N, et al. Induced differentiation of human myeloid leukemia cells into M2 macrophages by combined treatment with retinoic acid and 1α, 25-dihydroxyvitamin D3[J]. PLoS One, 2014, 9(11): e113722. DOI:10.1371/journal.pone.0113722 |
|
[26] |
YAN H, ZHANG D Y, LI X, et al. Long non-coding RNA GAS5 polymorphism predicts a poor prognosis of acute myeloid leukemia in Chinese patients via affecting hematopoietic reconstitution[J]. Leuk Lymphoma, 2017, 58(8): 1948-1957. DOI:10.1080/10428194.2016.1266626 |
|
[27] |
AMODIO N, STAMATO M A, JULI G, et al. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity[J]. Leukemia, 2018, 32(9): 1948-1957. DOI:10.1038/s41375-018-0067-3 |
|