吉林大学学报(医学版)  2020, Vol. 46 Issue (04): 669-674     DOI: 10.13481/j.1671-587x.20200401

扩展功能

文章信息

周宁, 武睿, 马振凯, 陈微微, 李雪琳, 宫凯凯, 杨丽娟, 代娟娟, 武艳
ZHOU Ning, WU Rui, MA Zhenkai, CHEN Weiwei, LI Xuelin, GONG Kaikai, YANG Lijuan, DAI Juanjuan, WU Yan
下调ADAR1表达对人肺癌细胞增殖、迁移和上皮间质转化的影响
Effects of down-regulation of ADAR1 expression on proliferation, migration and epithelial-mesenchymal transition of human lung cancer cells
吉林大学学报(医学版), 2020, 46(04): 669-674
Journal of Jilin University (Medicine Edition), 2020, 46(04): 669-674
10.13481/j.1671-587x.20200401

文章历史

收稿日期: 2019-12-10
下调ADAR1表达对人肺癌细胞增殖、迁移和上皮间质转化的影响
周宁1 , 武睿2 , 马振凯3 , 陈微微2 , 李雪琳2 , 宫凯凯2 , 杨丽娟2 , 代娟娟2 , 武艳2     
1. 滨州医学院附属医院耳鼻咽喉头颈外科, 山东 滨州 256600;
2. 滨州医学院附属医院肿瘤研究实验室, 山东 滨州 256600;
3. 山东省滨州市人民医院神经外科, 山东 滨州 256600
[摘要]: 目的 探讨下调作用于RNA的腺苷酸脱氢酶1(ADAR1)对肺癌H1299和H520细胞增殖、迁移和上皮间质转化(EMT)的影响,并阐明其作用机制。方法 H1299和H520细胞系分为对照组(转染negative shRNA)和shADAR1组(转染shADAR1)。实时荧光定量PCR法和Western blotting法检测各组细胞中ADAR1 mRNA和蛋白表达水平,CCK-8法和克隆形成实验检测各组细胞增殖活性和克隆形成数,细胞划痕实验检测各组细胞划痕愈合率,Western blotting法检测各组细胞中E钙黏附蛋白(E-cadherin)和波形蛋白(vimentin)蛋白表达水平。结果 与对照组比较,shADAR1组的H1299和H520细胞中ADAR1 mRNA及蛋白表达水平均明显降低(P < 0.05或P < 0.01)。与对照组比较,shADAR1组H1299和H520细胞增殖活性、克隆形成数量和细胞划痕愈合率均明显降低(P < 0.05或P < 0.01),H1299和H520细胞中E-cadherin蛋白表达水平明显升高(P < 0.01),vimentin蛋白表达水平明显降低(P < 0.01)。结论 下调ADAR1表达能够抑制肺癌细胞的增殖、迁移及EMT。
关键词: 作用于RNA的腺苷酸脱氢酶1    肺肿瘤    细胞增殖    细胞迁移    上皮间质转化    
Effects of down-regulation of ADAR1 expression on proliferation, migration and epithelial-mesenchymal transition of human lung cancer cells
ZHOU Ning1 , WU Rui2 , MA Zhenkai3 , CHEN Weiwei2 , LI Xuelin2 , GONG Kaikai2 , YANG Lijuan2 , DAI Juanjuan2 , WU Yan2     
1. Deparment of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Binzhou Medical University, Binzhou 256603, China;
2. Cancer Research Institute, Affiliated Hospital, Binzhou Medical University, Binzhou 256603, China;
3. Department of Neurosurgery, Binzhou People's Hospital, Binzhou 256603, China
[ABSTRACT]: Objective To investigate the effects of down-regulation of adenosine deaminase acting on RNA enzyme 1 (ADAR1) on the proliferation, migration and epithelial-mesenchymal transition (EMT) of the lung cancer H1299 and H520 cells, and to elucidate their mechanisms. Methods The H1299 and H520 cells were divided into control group (transfected with negative shRNA) and shADAR1 group (transfected with shADAR1). Real-time fluorescence quantitative PCR and Western blotting methods were used to detect the expression levels of ADAR1 mRNA and protein, respectively. CCK8 method and colony information assay were used to detect the proliferation activities and the amounts of colony formation; scratch assay was used to detect the scratch healing rates of the cells in various groups; Western blotting method was performed to detect the expression levels of E-cadherin and vimentin proteins in the cells in various groups. Results Compared with control group, the expression levels of ADAR1 mRNA and protein in the H1299 and H520 cells in shADAR1 group were significantly decreased(P < 0.05).Compared with control group, the proliferation activity, the colony formation amount and the scratch healing rate of the H1299 and H520 cells in shADAR1 group were significantly decreased (P < 0.05).Compared with control group, the expression levels of E-cadherin protein in the H1299 and H520 cells in shADAR1 group were significantly increased(P < 0.01), and the expression levels of vimentin protein were decreased (P < 0.01). Conclusion Down-regulation of ADAR1 expression contributes to inhibiting the proliferation, migration, and EMT of lung cancer cells.
KEYWORDS: adenosine deaminase acting on RNA enzyme 1    lung neoplasms    cell proliferation    cell migration    epithelial-mesenchymal transition    

肺癌的发生发展与异常的基因表达调控有密切关联,RNA编辑是一种重要的基因转录后修饰方式,在调控基因表达中发挥重要作用。作用于RNA的腺苷酸脱氢酶1(adenosine deaminase acting on RNA enzyme 1,ADAR1)能够催化RNA上腺嘌呤转化为次黄嘌呤(A-I),并将次黄嘌呤识别为鸟嘌呤,与胞嘧啶进行配对,最后导致蛋白质中氨基酸的改变,是一种重要的RNA编辑酶[1]。ADAR1的主要功能是编辑内源的双链核糖核酸(double-stranded RNA,dsRNA)使之与病毒来源的dsRNA区分开来[2]。研究[3-4]表明:缺失ADAR1的造血干细胞导致干扰素刺激基因(interferon-stimulated genes,ISGs)表达上调,ADAR1在免疫应答中起重要作用。ADAR1还具有非依赖编辑的功能,例如能够防止转录本的降解。双链RNA结合蛋白staufen1和staufen2与mRNA的结合能招募上游移码突变体(up-frameshift mutant 1,UPF1),并能激活staufen进而促进RNA降解(SMD)[5-6]。ADAR1表达水平变化还与黑色素瘤[7]、食道癌[8]、慢性白血病[9]和宫颈癌[10]等的发生发展有密切关联。有文献[11]报道:ADAR1通过增强局部黏着斑激酶(focal adhesion kinase,FAK)mRNA的稳定性促进肺腺癌细胞的迁移和浸润。但敲低ADAR1对肺癌细胞增殖和上皮间质转化(epithelial-mesenchymal transition,EMT)的调控机制尚无报道。本研究利用RNA干扰技术敲低细胞中ADAR1表达水平,建立了稳定表达shADAR1的H1299和H520细胞系,并通过细胞增殖、克隆形成、细胞划痕实验及Western blotting法评价ADAR1对细胞增殖、迁移和EMT的调节作用,以期为研究ADAR1在肺癌发展中的作用机制奠定基础,同时为以ADAR1为靶点的抗癌药物设计提供理论依据。

1 材料与方法 1.1 细胞、主要试剂和仪器

人肺癌H1299和H520细胞购自美国模式培养物研究所(ATCC)。胰蛋白酶、胎牛血清(FBS)和RPMI 1640培养基均购自美国Gibco公司,shADAR1和对照质粒(negative shRNA)购自上海吉凯基因化学技术有限公司,Lipofectamine 2000购于美国Invitrogen公司,TRIzol试剂和PCR所需引物购于上海生物工程有限公司,逆转录试剂购于Thermo公司,ADAR1单克隆抗体、Tubulin抗体和辣根过氧化物酶标记的羊抗兔IgG抗体购于美国Proteintech公司,波形蛋白(vimentin)抗体和E钙黏蛋白(E-cadherin)抗体购自美国Abcam公司,CCK-8试剂购于上海碧云天公司。CO2细胞培养箱(美国Thermo公司),激光共聚焦显微镜(美国Leica公司),酶标仪(美国Bio-Tek公司)。

1.2 细胞转染和稳定细胞系的构建

细胞用含10%胎牛血清和1%(V/V)青霉素-链霉素的RPMI-1640培养基于37℃、5% CO2及饱和湿度环境的培养箱中培养。H1299和H520细胞均分为对照组和shADAR1组,分别将1.5 μg negative shRNA质粒或shADAR1质粒与Lipofectamine 2000 4 μL混合后,加入培养基100 μL,室温孵育25 min,分别加入到生长密度为60%~80%的H1299和H520细胞中,继续培养24~48 h后,以野生型细胞为平行对照进行嘌呤霉素筛选,药物浓度为2 mg·L-1,2周后平行对照细胞全部死亡,并且荧光显微镜下转染后细胞全部发出绿色荧光,即稳定细胞系构建成功,后续改为嘌呤霉素半量维持培养。

1.3 实时荧光定量PCR(qRT-PCR)法检测细胞中ADAR1 mRNA表达水平

收集各组细胞,TRIzol法提取细胞总RNA,将提取的RNA应用逆转录试剂盒逆转录成cDNA,应用TransStart Green qPCR SuperMix进行PCR验证。qRT-PCR的反应条件:95 ℃、30 s预变性;95 ℃、5 s,60 ℃、30 s,共40个循环。引物序列:ADAR1,上游引物为5′-CCCTTCAGCCACATCCTTC-3′,下游引物为5′-GCCATCTGCTTTGCCACTT-3′;GAPDH,上游引物为5′-GGTGGTCTCCTCTGACTTCAACA-3′,下游引物为5′- GTTGCTGTAGCCAAATTCGTTGT-3′。进行3次重复实验,以GAPDH作为内参,采用2-ΔΔCt法计算ADAR1 mRNA相对表达水平。

1.4 CCK-8法检测细胞增殖活性

将各组细胞以5×103 /孔接种于96孔板,每组设置3个平行孔,每过12 h加入CCK-8继续培养3 h,采用酶标仪测定各孔在450 nm波长处的吸光度(A)值,共测定至72 h,实验重复3次,取平均A值,以A值代表细胞增殖活性,对0 h平均A值进行均一化处理后,采用GraphPad Prism 7.0软件绘制各组细胞随时间变化的增殖曲线。

1.5 克隆形成实验检测细胞的克隆形成能力

将各组细胞以1×103个/孔的密度接种于6孔板中,每组设2个复孔。培养14 d后,吸尽培养基并用PBS清洗细胞,加入4%多聚甲醛固定5 min,再用0.1%结晶紫染液染色15 min,用PBS清洗后拍照并计算克隆形成数,代表细胞的克隆形成能力。实验重复3次。

1.6 划痕实验检测细胞划痕愈合率

各组细胞培养过夜后,用200 μL枪头进行划痕,PBS洗涤后,加入新鲜无血清培养基后继续培养,分别在0和48 h进行拍照。实验重复3次,应用Image J软件对划痕距离进行统计学分析,并采用GraphPad Prism7.0软件绘制各组细胞的划痕愈合率图。细胞划痕愈合率=(0 h划痕间距-48 h划痕间距)/0 h划痕间距×100%。

1.7 Western blotting法检测细胞中ADAR1、E-cadherin和vimentin蛋白表达水平

收集各组H1299和H520细胞,NP-40裂解液裂解细胞,BCA法测定浓度后,通过10% SDS-PAGE进行电泳,转膜,封闭后分别孵育抗ADAR1(1:1 000)、抗Tubulin(1:1 000)、抗vimentin(1:1 000)和抗E-cadherin(1:1 000)抗体过夜,次日PBST洗涤3次,孵育HRP标记的羊抗兔或羊抗鼠IgG抗体(1:1 000),加入ECL显色底物,应用成像系统进行成像拍照,实验重复3次。利用ImageJ分析软件分析各条带灰度值,以目的蛋白条带灰度值/Tubulin蛋白条带灰度值比值作为目的蛋白表达水平。

1.8 统计学分析

采用SPSS12.0统计软件进行统计学分析。采用Shapiro-Wilk检验验证各组数据的正态分布情况。各组细胞中ADAR1 mRNA表达水平、细胞增殖活性、克隆形成数量、细胞划痕愈合率和细胞中蛋白表达水平均呈正态分布,以x±s表示,2组间样本均数比较采用t检验,2种细胞不同时间点样本均数比较采用双因素方差分析,各时间点间两两比较采用Turkey检验。以P<0.05为差异有统计学意义。

2 结果 2.1 敲低ADAR1稳定细胞系的构建和鉴定

将携带有绿色荧光蛋白(green fluorescent protein, GFP)基因的shADAR1载体和对照质粒分别瞬时转染H1299及H520细胞后,应用荧光显微镜检测GFP的表达情况,以此检测脂质体的转染效率。结果显示:H1299和H520细胞中转染对照质粒和shADAR1后,90%以上细胞中均可见绿色荧光。见图 1(插页一)。

A, B, E, F: Control group; C, D, G, H: shADAR1 group; A, C, E, G: Bright field imaging; B, D, F, H: Fluorescence microscope. 图 1 荧光显微镜观察各组H1299细胞(A~D)和H520细胞(E~H)转染效率(×40) Fig. 1 Transfection efficiencies of H1299 cells (A —D) and H520 cells (E—H) in various groups observed by fluorescence microscope(× 40)

与对照组(1.000±0.081和1.000±0.040)比较,shADAR1组H1299和H520细胞中ADAR1 mRNA表达水平(0.530±0.040和0.405±0.045)均明显降低(t=5.255,P<0.05;t=9.882,P<0.01)。Western blotting法检测结果显示:shADAR1组H1299和H520细胞中ADAR1蛋白表达水平(0.296±0.014和0.371± 0.052)明显低于对照组(1.000±0.126和1.000± 0.043)(P<0.05)。见图 2

A:H1299 cells; B:H520 cells; Lane 1: Control group; Lane 2: shADAR1 group. 图 2 Western blotting法检测各组细胞中ADAR1蛋白表达电泳图 Fig. 2 Electrophoregram of expressions of ADAR1 protein in cells in various groups detected by Western blotting method
2.2 各组细胞增殖活性

与对照组比较,shADAR1组H1299和H520细胞增殖活性明显降低(H1299:t=3.106,P<0.05;H520:t=3.255,P<0.01)。见图 3

A: H1299 cells; B: H520 cells. *P < 0.05, **P < 0.01 compared with control group. 图 3 各组H1299和H520细胞增殖活性 Fig. 3 Proliferation activities of H1299 and H520 cells in various groups
2.3 各组细胞克隆形成数

与对照组(172.500±10.607和213.500±6.364)比较,shADAR1组H1299和H520细胞克隆形成数(38.500±6.364和59.500±4.950)明显降低(t=14.58,P<0.01;t=16.75,P<0.01),即克隆形成能力降低。见图 4

A, B:Control group; C, D: shADAR1 group; A, C: H1299 cells; B, D: H520 cells. 图 4 各组H1299和H520细胞克隆形成情况 Fig. 4 Colony formation of H1299 and H520 cells in various groups
2.4 各组细胞划痕愈合率

与对照组(59.1%±8.7%和57.7%±1.7%)比较,shADAR1组H1299和H520细胞划痕愈合率(43.6%±8.9%和45.1%±5.0%)明显降低(t=3.043,P<0.01;t=4.149,P<0.01)。见图 5

A-D:0 h; E-H:48 h; A, B, E, F:H1299 cells; C, D, G, H:H520 cells; A, C, E, G:Control group; B, D, F, H:shADAR1 group. 图 5 划痕实验检测各组H1299和H520细胞划痕愈合率 Fig. 5 Scratch healing rates of H1299 and H520 cells in various groups detected by scratch assay
2.5 各组细胞中转移相关基因E-cadherin和vimentin蛋白表达水平

shADAR1组H1299和H520细胞中E-cadherin蛋白表达水平(1.700±0.018和2.481±0.152)明显高于对照组(1.000±0.070和1.000±0.084)(t=13.8,P<0.01;t=12.02,P<0.01)。

shADAR1组H1299和H520细胞中vimentin蛋白表达水平(0.160±0.009和0.336±0.049)明显低于对照组(1.000±0.056和1.000±0.056)(t=20.68,P<0.01;t=12.49,P<0.01)。见图 6

A:H1299 cells; B:H520 cells; Lane 1: Control group; Lane 2: shADAR1 group. 图 6 Western blotting法检测各组H1299和H520细胞中E-cadherin和vimentin蛋白表达电泳图 Fig. 6 Electrophoregram of expressions of E-cadherin and vimentin proteins in H1299 and H520 cells in various groups detected by Western blotting method
3 讨论

化疗在非小细胞肺癌治疗中占重要地位,但是多数的治疗效果并不理想,主要原因是癌细胞在治疗过程中产生了抗药性。因此,研究肺癌发生发展中的关键调控因子,发现新的治疗靶点对肺癌的治疗具有重要意义。

RNA编辑主要指在转录本上碱基的插入、缺失或者替换,是一种重要的转录后修饰[12],其中A-to-I(也称为A-to-G编辑)是哺乳动物中最常见的RNA编辑方式。ADAR1是一种重要RNA编辑酶,存在2种单体形式,分别为ADAR1p110和ADAR1p150[13]。ADAR1相互作用的蛋白主要分为两类,一类是早期发现能被ADAR1编辑的相互作用蛋白,如丙酮酸激酶(pyruvate kinase,PKR)[14];另一类是不依赖编辑功能,直接与ADAR1相互作用的蛋白,如核因子(nuclear factor,NF)45[15]和NF90[16],随后还发现移码突变蛋白1(Upf1)[17]和Dice酶[18],均可与ADAR1相互作用,在机体内发挥重要的生物学功能。

ADAR1除在免疫应答中的重要作用之外,在多种肿瘤中存在过表达的现象,并在肿瘤发生过程中发挥重要的调控作用,例如在肝癌中,ADAR1的表达水平上调后能稳定抗酶抑制因子1(antizyme inhibitor 1,AZIN1)的水平,导致下游原癌基因表达上调[19]。在结直肠癌中,Ras同源基因家族成员Q(ras homolog family member Q,RHOQ)的A-to-Ⅰ的编辑能够增加肿瘤细胞的侵袭潜能[20]。异常表达的ADAR1通过激活哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)/p70S6K信号通络调控胃癌的发生发展[21]。本研究通过RNA干扰技术并通过抗生素筛选获得稳定低表达ADAR1细胞系,并通过CCK-8实验、克隆形成及划痕实验证明:敲低ADAR1能够抑制H1299和H520细胞的增殖和迁移能力。本研究结果与文献[22]报道的异常表达的ADAR1促进肺癌的发生发展过程的结果一致。最近研究[23]显示:异常表达的ADAR1通过提高c-myc的稳定性介导了胰腺癌细胞对布罗莫结构域和外末端基元蛋白(bromodomain and extraterminal motif,BET)的抵抗性。上述结果说明:ADAR1作为一种促癌基因在肺癌的发生发展中发挥重要作用,也可能参与了肿瘤耐药性的产生。

EMT是肿瘤细胞迁移浸润的重要途径,E-cadherin表达下调、vimentin表达上调是EMT的特征之一[24]。E盒结合锌指蛋白1(zinc finger E-box-binding homeobox 1,ZEB1)[25]、锌指转录因子2(zinc finger transcription factor 2,snail2)[26]等在转录水平上抑制E-cadherin的表达,促进细胞的EMT转化。EMT能够促进癌细胞的转移、浸润和药物抵抗。本研究结果表明:敲低ADAR1可激活E-cadherin,并抑制vimentin的表达,抑制H1299和H520细胞的EMT过程,但ADAR1调控EMT的具体作用机制还需进一步深入研究。

综上所述,本研究首先通过RNA干扰技术抑制细胞中ADAR1表达,并进一步验证敲低ADAR1后可抑制肺癌H1299和H520细胞的增殖、迁移和EMT。本研究结果为肺癌的发病机制和治疗靶点的研究提供了理论依据。

参考文献
[1]
PULLIRSCH D, JANTSCH M F. Proteome diversification by adenosine to inosine RNA editing[J]. RNA Biol, 2010, 7(2): 205-212. DOI:10.4161/rna.7.2.11286
[2]
LIDDICOAT B J, PISKOL R, CHALK A M, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself[J]. Science, 2015, 349(6252): 1115-1120. DOI:10.1126/science.aac7049
[3]
HARTNER J C, WALKLEY C R, LU J, et al. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling[J]. Nat Immunol, 2009, 10(1): 109-115.
[4]
MANNION N M, GREENWOOD S M, YOUNG R, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA[J]. Cell Rep, 2014, 9(4): 1482-1494.
[5]
KIM Y K, FURIC L, DESGROSEILLERS L, et al. Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay[J]. Cell, 2005, 120(2): 195-208.
[6]
PARK E, GLEGHORN M L, MAQUAT L E. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity[J]. Proc Natl Acad Sci U S A, 2013, 110(2): 405-412. DOI:10.1073/pnas.1213508110
[7]
SHOSHAN E, MOBLEY A K, BRAEUER R R, et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis[J]. Nat Cell Biol, 2015, 17(3): 311-321. DOI:10.1038/ncb3110
[8]
QIN Y R, QIAO J J, CHAN T H, et al. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma[J]. Cancer Res, 2014, 74(3): 840-851.
[9]
JIANG Q, CREWS L A, BARRETT C L, et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia[J]. Proc Natl Acad Sci USA, 2013, 110(3): 1041-1046. DOI:10.1073/pnas.1213021110
[10]
CHEN Y, WANG H, LIN W Y, et al. ADAR1 overexpression is associated with cervical cancer progression and angiogenesis[J]. Diagn Pathol, 2017, 12(1): 12.
[11]
AMIN E M, LIU Y, DENG S, et al. The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK[J]. Sci Signal, 2017, 10(497): eaah3941. DOI:10.1126/scisignal.aah3941
[12]
BASS B L. RNA editing by adenosine deaminases that act on RNA[J]. Annu Rev Biochem, 2002, 71: 817-846. DOI:10.1146/annurev.biochem.71.110601.135501
[13]
HEEP M, MACH P, REAUTSCHNIG P, et al. Applying human ADAR1p110 and ADAR1p150 for site-directed RNA editing-G/C substitution stabilizes GuideRNAs against editing[J]. Genes (Basel), 2017, 8(1): E34. DOI:10.3390/genes8010034
[14]
LIU Y, LEI M, SAMUEL C E. Chimeric double-stranded RNA-specific adenosine deaminase ADAR1 proteins reveal functional selectivity of double-stranded RNA-binding domains from ADAR1 and protein kinase PKR[J]. Proc Natl Acad Sci U S A, 2000, 97(23): 12541-12546. DOI:10.1073/pnas.97.23.12541
[15]
QUINONES-VALDEZ G, TRAN S S, JUN H I, et al. Regulation of RNA editing by RNA-binding proteins in human cells[J]. Commun Biol, 2019, 2: 19. DOI:10.1038/s42003-018-0271-8
[16]
NIE Y, DING L, KAO P N, et al. ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing[J]. Mol Cell Biol, 2005, 25(16): 6956-6963. DOI:10.1128/MCB.25.16.6956-6963.2005
[17]
AGRANAT L, RAITSKIN O, SPERLING J, et al. The editing enzyme ADAR1 and the mRNA surveillance protein hUpf1 interact in the cell nucleus[J]. Proc Natl Acad Sci U S A, 2008, 105(13): 5028-5033. DOI:10.1073/pnas.0710576105
[18]
OTA H, SAKURAI M, GUPTA R, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing[J]. Cell, 2013, 153(3): 575-589.
[19]
CHEN L, LI Y, LIN C H, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma[J]. Nat Med, 2013, 19(2): 209-216. DOI:10.1038/nm.3043
[20]
HAN S W, KIM H P, SHIN J Y, et al. RNA editing in RHOQ promotes invasion potential in colorectal cancer[J]. J Exp Med, 2014, 211(4): 613-621. DOI:10.1084/jem.20132209
[21]
DOU N, YU S, YE X, et al. Aberrant overexpression of ADAR1 promotes gastric cancer progression by activating mTOR/p70S6K signaling[J]. Oncotarget, 2016, 7(52): 86161-86173. DOI:10.18632/oncotarget.13354
[22]
ANADÓN C, GUIL S, SIMÓ-RIUDALBAS L, et al. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis[J]. Oncogene, 2016, 35(33): 4422.
[23]
SUN Y, FAN J, WANG B, et al. The aberrant expression of ADAR1 promotes resistance to BET inhibitors in pancreatic cancer by stabilizing c-Myc[J]. Am J Cancer Res, 2020, 10(1): 148-163.
[24]
CHEN T, YOU Y N, JIANG H, et al. Epithelial-mesenchymal transition (EMT):a biological process in the development, stem cell differentiation, and tumorigenesis[J]. J Cell Physiol, 2017, 232(12): 3261-3272. DOI:10.1002/jcp.25797
[25]
MA P, NI K, KE J, et al. miR-448 inhibits the epithelial-mesenchymal transition in breast cancer cells by directly targeting the E-cadherin repressor ZEB1/2[J]. Exp Biol Med (Maywood), 2018, 243(5): 473-480. DOI:10.1177/1535370218754848
[26]
PARK J J, PARK M H, OH E H, et al. The p21-activated kinase 4-Slug transcription factor axis promotes epithelial-mesenchymal transition and worsens prognosis in prostate cancer[J]. Oncogene, 2018, 37(38): 5147-5159. DOI:10.1038/s41388-018-0327-8