吉林大学学报(医学版)  2020, Vol. 46 Issue (03): 643-648     DOI: 10.13481/j.1671-587x.20200335

扩展功能

文章信息

张铂彦, 张悦, 刘贺, 吴乃超, 王金成
COL2A1基因突变与Ⅱ型胶原蛋白病表型关系的研究进展
Research progress in relationship between COL2A1 gene mutations and phenotypes of type Ⅱ collagenopathies
吉林大学学报(医学版), 2020, 46(03): 643-648
Journal of Jilin University (Medicine Edition), 2020, 46(03): 643-648
10.13481/j.1671-587x.20200335

文章历史

收稿日期: 2019-08-17
COL2A1基因突变与Ⅱ型胶原蛋白病表型关系的研究进展
张铂彦1 , 张悦2 , 刘贺1 , 吴乃超1 , 王金成1     
1. 吉林大学第二医院骨科中心, 吉林 长春 130041;
2. 吉林大学第一医院放疗科, 吉林 长春 130021
[摘要]: 胶原蛋白是人体中占比最大的蛋白类型,其中Ⅱ型胶原蛋白是构成关节软骨和透明软骨的重要蛋白。COL2A1基因可编码Ⅱ型胶原蛋白前体,因此COL2A1基因突变会导致Ⅱ型胶原蛋白的结构发生改变,进而导致Ⅱ型胶原蛋白病。现收集已报道的COL2A1基因突变病例,探讨常见的COL2A1基因突变类型和COL2A1突变导致的临床表型,总结COL2A1基因突变位置信息及突变类型信息,分析患者发病年龄和性别与临床表型的相关性。根据COL2A1基因突变所导致的临床表型亚型的发病特点,将21种亚型分为5类并阐述各类表型患者的临床特征,为Ⅱ型胶原蛋白病的诊断提供新思路。
关键词: COL2A1基因    基因突变    Ⅱ型胶原蛋白病    遗传疾病    
Research progress in relationship between COL2A1 gene mutations and phenotypes of type Ⅱ collagenopathies

COL2A1基因编码Ⅱ型胶原前体蛋白α1链,3条完全相同的α1链相互折叠后能够形成前体蛋白同型三聚体,同型三聚体再经交联作用构成成熟的Ⅱ型胶原蛋白[1]。在α1链中存在一段特殊的三重螺旋区,该区域特征序列为重复的Gly-X-Y序列(Gly为甘氨酸,X和Y表示其他氨基酸),BARAT-HOUARI等[2]研究显示:三重螺旋结构对胶原蛋白分子的稳定性起重要作用。

COL2A1基因突变会改变基因序列-蛋白结构-蛋白功能关系轴,进而导致一系列疾病[3],统称为Ⅱ型胶原蛋白病(OMIM编号:120140),该疾病主要为常染色体显性遗传病。本研究基于《莱顿突变位点开放式数据库》(LOVD)以及最新研究报道,汇总获得COL2A1基因突变所致的21种疾病亚型,以及全部基因突变位点、突变类型和临床表型,并汇总患者年龄、性别和国籍信息。基于以上信息,本研究对COL2A1基因型和表型的关系进行探讨和分析。

近年来有关COL2A1基因突变的研究在国内外均可见较多报道,但综述类报道较少,且综述类报道均未对COL2A1基因突变类型进行汇总分析亦未对Ⅱ型胶原蛋白病进行总结分类。本研究旨在帮助临床医生深入了解COL2A1基因突变导致的Ⅱ型胶原蛋白病的复杂临床表型,推进基因筛查在临床中的应用,从而进一步扩大COL2A1基因突变的表型谱。

1 COL2A1基因突变的位置和类型 1.1 突变位置

COL2A1基因长度为33 246 bp,包含54个外显子,蛋白质编码区(coding sequence, CDS)区域总长度为4 464 bp,三重螺旋区位于CDS的601~3 642 bp,其N末端前肽区对应1~608 bp,C末端前肽区对应3 643~4 464 bp。COL2A1基因和Ⅱ型胶原蛋白结构示意图见图 1

图 1 COL2A1基因和Ⅱ型胶原蛋白示意图 Fig. 1 Diagram of illustration of COL2A1 gene and type Ⅱ collagen

本研究汇总的657例COL2A1基因突变病例中,有535例COL2A1基因突变发生在CDS区,有117例发生在内含子区,还有5例大片段基因缺失的情况。在CDS区发生突变的病例中,有437例突变位点发生在三重螺旋区,49例发生在N末端前肽区,49例发生在C末端前肽区。

1.2 COL2A1基因突变类型和突变效果

COL2A1基因突变中最多为点突变(substitution),约占73.4%(n=657),其次是小片段删除(小于20 bp的片段删除)占19.0%,复制(duplication)占4.7%,缺失插入(delins)占1.4%,大片段删除占1.1%,插入(insertion)占0.5%。见图 2

1:Substitution; 2:Small deletion; 3:Duplicaton; 4:Delins; 5:Large deletion; 6:Insertion. 图 2 本研究中COL2A1突变类型 Fig. 2 Mutation types percentage of COL2A1 in our study

从突变效果的角度分析,错义突变占比最高(39.6%),其次是移码突变(23.7%)、无义突变(16.7%)和发生在内含子的突变(14.5%)等。见图 3

1:Missense; 2:Framehift; 3:Nonsense; 4:RNA processing; 5:Other mutations. 图 3 本研究中COL2A1突变效果 Fig. 3 Mutation effects of COL2A1 in our study
2 COL2A1基因突变的临床相关资料

COL2A1基因突变会导致一系列以软骨发育异常和视听障碍为特征的表型,致病机制为COL2A1基因所编码的Ⅱ型胶原蛋白是透明软骨(如肋软骨、气管软骨)和关节软骨(如膝关节、髋关节),Ⅱ型胶原蛋白结构异常会影响软骨的正常生理功能[4]

2.1 COL2A1基因突变患者的年龄、性别和国籍分布

本研究汇总385例患者的年龄信息,平均确诊年龄为15.32岁,确诊患者年龄最低的表型为Ⅱ型软骨发育不全(0.53岁),其为“致死型”表型;确诊患者年龄最高的表型是股骨头缺血性坏死(30.29岁),其为“轻型”表型,故可推测确诊患者年龄与疾病严重程度存在相关性。

在294例患者的性别信息中,男性150例,女性144例,各表型的性别分布见图 4。在657例患者国籍信息中,病例报道较多的国家分别是英国(167例)、比利时(122例)、日本(82例)、美国(79例)、中国(60例)和法国(50例)。

1:STL 1;2:SEDC; 3:ACG 2;4:Kniest; 5:ANFH+LCPD; 6:SEMD-S; 7:EO-OA; 8:PLSD-T; 9:EO-HM. 图 4 各疾病表型的男女患者例数 Fig. 4 Number of male and female patients with different disease phenotypes
2.2 COL2A1基因突变的临床表型

COL2A1基因突变导致的疾病通过常染色体显性遗传的方式在家族中遗传,该基因突变会导致骨骼、口腔颌面、听力系统和视力系统的异常表型,按照疾病严重程度和表型特征,对COL2A1基因突变导致的临床表型进行分类。见表 1

表 1 COL2A1基因突变的临床表型 Tab. 1 Clinical phenotypes of COL2A1 gene mutations
Severity Phenotype Abbr OMIM Number
Lethal Achondrogenesis, type Ⅱ or hypochondrogenesis ACG 2 200610
Platyspondylic skeletal dysplasia-Torrance type PSLD-T 151210
Severe Dysspondyloen chondromatosis DSC None
Kniest dysplasia Kniest 156550
Multiple epiphyseal dysplasia MED 132450
Spondyloepiphyseal dysplasia(SED) congenita SEDC 183900
Spondyloepimetaphyseal dysplasia-Strudwick type SEMD-S 184250
Spondylometaphyseal dysplasia-Algerian type SMD-A 184253
Spondylometaphyseal dysplasia-Sutcliffe type SMD-S 184255
Spondyloperipheral dysplasia SPD 271700
Mild Avascular necrosis of femoral head ANFH 608805
Czech dysplasia Czech 609162
Early-onset high myopia EO-HM None
Early-onset osteoarthritis EO-OA None
Legg-calve-perthes disease LCPD 150600
Oto-spondylo-megaepiphyseal dysplasia OS-MED 215150
Spondyloepiphyseal dysplasia (SED) tarda SED tarda None
Spondyloepiphyseal dysplasia (SED)-Stanescu type SED-S None
Spondyloarthropathy None None
Stickler syndrome, type Ⅰ STL 1 108300
Wagner vitreoretinopathy Wagner 143200
2.2.1 致死型表型

该类表型共有2种,疾病特征为胎儿围产期夭折或出生后不久死亡。本研究结果显示:Ⅱ型软骨发育不全总计54例,患者通常会死于胎儿期或新生儿早期,该疾病的临床特征为不完全骨化、较短躯干、窄小胸部、膨隆腹部和短肢。研究[5]显示:Ⅱ型软骨发育不全病患者软骨细胞数量过多、软骨细胞体积过大且生长板紊乱。在54例突变中,比例最高为错义突变(50例),错义突变中48例为Gly突变。

扁平椎骨骼发育不良-Torrance分型总计12例,NISHIMMRA等[6]于1979年首次描述该疾病表型,该病为致死型表型,临床特征包括扁平椎、短肋骨、髂骨下端发育不全伴随较宽的坐骨和耻骨,或伴随短指及干骺端发育不良。该病12例突变中有10例突变发生在54号外显子,可推测COL2A1基因C端前肽区的突变与该疾病有较强的相关性[7-8]

2.2.2 以脊柱病变为特征的表型

该类表型特征为脊柱畸形,由于并发不同程度关节病变或视听系统的病变,因此细分为多个亚型。本研究结果显示:先天性脊柱骨骺发育不良总计88例,其临床特点是身材异常矮小、骨骺异常和扁平椎体,伴随症状有感觉神经性耳聋、高度近视、平脸、腭裂、小颌畸形、齿状突发育不全、髋内翻、膝外翻和马蹄足等。在88例突变中,比例最高为错义突变(81例),其中有60例位于Gly-X-Y重复序列的Gly位点,且p.Arg989Cys位点多次出现[9-10],可推断该位点是突变热点。

脊柱外周长骨末端发育不良-Strudwick分型总计18例,其临床表型特征:侏儒症、视力近视、视网膜脱落、腭裂、齿状突发育不良、胸壁前凸畸形(鸡胸)、脊柱侧弯、髋关节僵硬、髋内翻、膝外翻、马蹄内翻足和干骺端发育不良,在14例错义突变中,有13例为Gly突变。脊柱手指脚趾发育不良总计8例,ZHANG等[11]于1977年首次描述该疾病,其表型特征包括椎体异常融合、髋关节异常、较短掌骨和跖骨,手指及脚趾远端指(趾)骨较短,其中7例突变发生于C末端前肽区[12-13]。脊柱干骺端发育不良-Sutcliffe分型患者临床表型为轻度身材矮小、进展性髋内翻、轻度扁平椎、角骨折样损伤(特指长骨一端的角形部位骨折),突变位点分别为p.Gly345Asp和p.Gly945Ser突变[14]。脊柱骨骺发育不良-Stanescu分型患者的身高正常,伴发明显关节痛、进展性关节腔隙狭窄、扁平椎和髋内翻,有2例患者突变位点均位于p.Gly207Arg[15]。脊柱干骺端发育不良-Algerian分型患者临床特点是轻度身材矮小、严重膝外翻(特征性表型)、轻度扁平椎和干骺端异常,KOZLOWSKI等[16]在阿尔及利亚(Algerian)家系中发现该表型,2013年MATSUBAYASHI等[17]报道该疾病的突变位点位于p.Gly861Val。脊柱关节病临床特征仅有明显的关节病变和扁平椎,突变位点分别位于p.Arg519Cys和p.Arg1076Cys[18]

2.2.3 以关节病变为特点的表型

该类表型的特征为关节病变,由于伴发不同程度软骨发育不全或视听系统病变,因此细分为多个亚型。

研究[19]显示:Kniest发育不良总计报道了27例,该病临床特征:身材矮小、关节肿大、关节活动度下降、长骨呈哑铃型、胸呈铃形、椎体扁平,常伴腭裂、听力缺失、突眼和近视等症状。在27例突变中,有5例p.Ala302突变,可推测其为突变热点。多发性骨骺发育不良总计3例,临床特征:短肢侏儒症、关节疼痛和关节僵硬[20],该病主要由COMP等基因突变导致,COL2A1基因突变位点分别为p.Gly1179Arg和p.Gly1176Val[21],p.Gly678Arg突变可导致特征表型伴随双层髌骨[20]

本研究包含股骨头缺血性坏死和Perthes病总计14例,包括5例Perthes病(儿童型股骨头坏死),CHEN等[22]于2004年在台湾家系中定位致病基因位于12号染色体,2005年LIU等[23]确认COL2A1基因突变位于p.Gly1170Ser位点,其临床特点:进展性股骨沟区疼痛和髋关节退化,近年还发现了3例p.Gly1170Ser突变[24-26];此外还有p.Gly717Ser、p.Gly582Ser和p.Ala184Thr这3个错义突变位点[23, 27-28]。研究[29-30]显示:Perthes病患者中存在p.Gly672Cys、p.Gly630Ser、p.Gly546Ser和p.Gly213Asp突变。

本研究包含早发型骨关节炎总计12例,其临床特征是关节疼痛、关节僵硬、关节腔隙狭窄、软骨下硬化或有骨赘,最终可导致关节功能丧失。早发性骨关节炎不如其他表型明显且多为伴发表型,但在少数病例中,该表型较为突出,COL2A1基因突变导致Ⅱ型胶原蛋白结构异常,使关节软骨弹性改变并最终导致骨关节炎[31],早发性骨关节炎多伴发轻度软骨发育不良。在11例错义突变中有8例Arg突变为Cys,可推断Arg位点与早发性骨关节炎有关联。

2.2.4 以眼部疾病为特征的表型

该表型的特征为视觉系统退化和视网膜脱落,由于伴发不同程度的脊柱和关节发育不全,因此细分为多个亚型。

Stickler综合征Ⅰ型总计388例,是目前报道最多的表型。Stickler综合征包括6种亚型,Ⅰ~Ⅲ型为常染色体显性遗传,Ⅳ~Ⅵ型为常染色体隐形遗传[32]。Ⅰ型患者临床特征为玻璃体(膜)病变,可伴随视网膜脱落、面部畸形、腭裂和轻度脊柱骨骺发育异常[33-34]。本研究结果显示:在388例突变中比例最高是移码突变(141例),其次是无义突变(99例),Stickler综合征Ⅰ型中无义突变占COL2A1中无义突变的90%(99/110),可推测COL2A1无义突变与Stickler综合征Ⅰ型有关联。Wagner玻璃体视网膜病变的临床特征是早期白内障、中度近视和径向血管周围色素沉着(特征性视网膜表现)[35],突变位点分别为p.Cys57*和p.Gly267Asp[36-37]。早发型高度近视总计10例,高度近视的诊断标准是屈光度高于-0.6D,或轴向长度长于26 mm,高度近视是导致失明的重要病因。2015年SUN等[38]进行一项关于298例严重近视患者的研究发现:71例基因突变患者中有10例患者携带COL2A1基因突变。

2.2.5 特殊表型分类

该类表型表现为非脊柱和非关节的特殊表型,因此单独分为一类。研究[39-42]显示:捷克发育不良患者总计7例,其表型为身高正常、第3和4脚趾较短(特殊表型)、进行性假性类风湿关节炎、扁平椎和脊柱关节病,目前已有5例患者的突变确认位于p.Arg275Cys位点。研究[43-44]显示:4例脊柱发育不良伴软骨瘤病患者特征表现为异常椎体、干骺端或长骨骨干处出现软骨瘤样损伤(特殊表型),已经发现4例儿童患者患有该病,突变位点分别是p.Gly753Asp、p.Gly600Asp、p.Gly1098Glu和p.Gly606Asp。耳-脊柱-大骨骺发育不良的临床表型主要为短肢、骨骺发育不良、面中部发育不良(鼻梁凹陷)和感觉神经性耳聋(特殊表型),同时常会并发腭裂及小颌畸形[45],2005年MIYAMOTO等[46]报道了1例发生于内含子的突变(c.709-2A>G)。

3 展望

COL2A1基因突变导致一系列表型复杂的骨骼遗传疾病,目前已报道了600多例病例,本文作者发现数个突变热点,并推测一些潜在的基因型与表型的关系,旨在使临床医生更加深入了解COL2A1基因突变导致的遗传疾病表型,提高临床工作中对该遗传疾病的诊断率,并推动基因筛查在临床工作中的应用。在未来工作中还需要收集更多的病例报道和基础研究,致力于探讨COL2A1基因突变的具体致病机制以及明确的基因型与表型的关系。

参考文献
[1]
TERHAL P A, VAN DOMMELEN P, LE MERRER M, et al. Mutation-based growth charts for sedc and other COL2A1 related dysplasias[J]. Am J Med Genet C Semin Med Genet, 2012, 160C(3): 205-216. DOI:10.1002/ajmg.c.31332
[2]
BARAT-HOUARI M, SARRABAY G, GATINOIS V, et al. Mutation update forCOL2A1 gene variants associated with type Ⅱ collagenopathies[J]. Hum Mutat, 2016, 37(1): 7-15.
[3]
BRODSKY B, THIAGARAJAN G, MADHAN B, et al. Triple-helical peptides:An approach to collagen conformation, stability, and self-association[J]. Biopolymers, 2008, 89(5): 345-353. DOI:10.1002/bip.20958
[4]
ROUGHLEY P J. Articular cartilage and changes in arthritis:Noncollagenous proteins and proteoglycans in the extracellular matrix of cartilage[J]. Arthritis Res, 2001, 3(6): 342-347. DOI:10.1186/ar326
[5]
FAIVRE L, LE MERRER M, DOUVIER S, et al. Recurrence of achondrogenesis type Ⅱ within the same family:Evidence for germline mosaicism[J]. Am J Med Genet A, 2004, 126A(3): 308-312. DOI:10.1002/ajmg.a.20597
[6]
NISHIMURA G, NAKASHIMA E, MABUCHI A, et al. Identification of COL2A1 mutations in platyspondylic skeletal dysplasia, torrance type[J]. J Med Genet, 2004, 41(1): 75-79. DOI:10.1136/jmg.2003.013722
[7]
OKAMOTO T, NAGAYA K, ASAI H, et al. Platyspondylic lethal dysplasia torrance type with a heterozygous mutation in the triple helical domain of COL2A1 in two sibs from phenotypically normal parents[J]. Am J Med Genet A, 2012, 158A(8): 1953-1956. DOI:10.1002/ajmg.a.35509
[8]
DESIR J, CASSART M, DONNER C, et al. Spondyloperipheral dysplasia as the mosaic form of platyspondylic lethal skeletal dyplasia torrance type in mother and fetus with the same COL2A1 mutation[J]. Am J Med Genet A, 2012, 158A(8): 1948-1952. DOI:10.1002/ajmg.a.35301
[9]
ZHANG Z, HE J W, FU W Z, et al. Identification of three novel mutations in the COL2A1 gene in four unrelated chinese families with spondyloepiphyseal dysplasia congenita[J]. Biochem Biophys Res Co, 2011, 413(4): 504-508. DOI:10.1016/j.bbrc.2011.08.090
[10]
SILVEIRA K C, BONADIA L C, SUPERTI-FURGA A, et al. Six additional cases of SEDC due to the same and recurrent R989C mutation in the COL2A1 gene-the clinical and radiological follow-up[J]. Am J Med Genet A, 2015, 167A(4): 894-901.
[11]
ZHANG Z, ZHAO S C, HE J W, et al. Identification of one novel mutation in the c-propeptide of COL2A1 in a chinese family with spondyloperipheral dysplasia[J]. Gene, 2013, 522(1): 107-110. DOI:10.1016/j.gene.2013.03.083
[12]
ZANKL A, ZABEL B, HILBERT K, et al. Spondyloperipheral dysplasia is caused by truncating mutations in the c-propeptide of COL2A1[J]. Am J Med Genet A, 2004, 129A(2): 144-148. DOI:10.1002/ajmg.a.30222
[13]
BEDESCHI M F, BIANCHI V, GENTILIN B, et al. Prenatal manifestation and management of a mother and child affected by spondyloperipheral dysplasia with a c-propeptide mutation in COL2A1:Case report[J]. Orphanet J Rare Dis, 2011, 6: 7. DOI:10.1186/1750-1172-6-7
[14]
MACHOL K, JAIN M, ALMANNAI M, et al. Corner fracture type spondylometaphyseal dysplasia:Overlap with type Ⅱ collagenopathies[J]. Am J Med Genet A, 2017, 173(3): 733-739. DOI:10.1002/ajmg.a.38059
[15]
JURGENS J, SOBREIRA N, MODAFF P, et al. Novel col2a1 variant (c.619g > a, p.Gly207arg) manifesting as a phenotype similar to progressive pseudorheumatoid dysplasia and spondyloepiphyseal dysplasia, stanescu type[J]. Hum Mutat, 2015, 36(10): 1004-1008. DOI:10.1002/humu.22839
[16]
KOZLOWSKI K, BACHA L, MASSEN R, et al. A new type of spondylo-metaphyseal dysplasia——algerian type. Report of five cases[J]. Pediatr Radiol, 1988, 18(3): 221-226. DOI:10.1007/BF02390399
[17]
MATSUBAYASHI S, IKEMA M, NINOMIYA Y, et al. COL2A1 mutation in spondylometaphyseal dysplasia algerian type[J]. Mol Syndromol, 2013, 4(3): 148-151.
[18]
HOORNAERT K P, DEWINTER C, VEREECKE I, et al. The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene[J]. J Med Genet, 2006, 43(5): 406-413.
[19]
MEREDITH S P, RICHARDS A J, BEARCROFT P, et al. Significant ocular findings are a feature of heritable bone dysplasias resulting from defects in type Ⅱ collagen[J]. Br J Ophthalmol, 2007, 91(9): 1148-1151. DOI:10.1136/bjo.2006.112482
[20]
DASA V, EASTWOOD J R B, PODGORSKI M, et al. Exome sequencing reveals a novel COL2A1 mutation implicated in multiple epiphyseal dysplasia[J]. Am J Med Genet A, 2019, 179(4): 534-541. DOI:10.1002/ajmg.a.61049
[21]
JACKSON G C, MITTAZ-CRETTOL L, TAYLOR J A, et al. Pseudoachondroplasia and multiple epiphyseal dysplasia:A 7-year comprehensive analysis of the known disease genes identify novel and recurrent mutations and provides an accurate assessment of their relative contribution[J]. Hum Mutat, 2012, 33(1): 144-157.
[22]
CHEN W M, LIU Y F, LIN M W, et al. Autosomal dominant avascular necrosis of femoral head in two taiwanese pedigrees and linkage to chromosome 12q13[J]. Am J Hum Genet, 2004, 75(2): 310-317.
[23]
LIU Y F, CHEN W M, LIN Y F, et al. Type Ⅱ collagen gene variants and inherited osteonecrosis of the femoral head[J]. N Engl J Med, 2005, 352(22): 2294-2301. DOI:10.1056/NEJMoa042480
[24]
SU P Q, ZHANG L M, PENG Y, et al. A histological and ultrastructural study of femoral head cartilage in a new type Ⅱ collagenopathy[J]. Int Orthop, 2010, 34(8): 1333-1339. DOI:10.1007/s00264-010-0985-9
[25]
WANG L, PANH H, ZHU Z N. A genetic pedigree analysis to identify gene mutations involved in femoral head necrosis[J]. Mol Med Rep, 2014, 10(4): 1835-1838. DOI:10.3892/mmr.2014.2410
[26]
LIU F, XIONG Z Z, LIU Q, et al. COL2A1 mutation (c.3508G > A) leads to avascular necrosis of the femoral head in a chinese family:A case report[J]. Mol Med Rep, 2018, 18(1): 254-260.
[27]
KISHIYA M, NAKAMURA Y, OHISHI H, et al. Identification of a novel COL2A1 mutation (c.1744G > A) in a japanese family:A case report[J]. J Med Case Rep, 2014, 8: 276. DOI:10.1186/1752-1947-8-276
[28]
SAKAMOTO Y, YAMAMOTO T, MIYAKE N, et al. Screening of the COL2A1 mutation in idiopathic osteonecrosis of the femoral head[J]. J Orthop Res, 2017, 35(4): 768-774.
[29]
LI N, YU J, CAO X, et al. A novel p. Gly630ser mutation of COL2A1 in a chinese family with presentations of legg-calve-perthes disease or avascular necrosis of the femoral head[J]. PLoS One, 2014, 9(6): e100505. DOI:10.1371/journal.pone.0100505
[30]
KANNU P, IRVING M, AFTIMOS S, et al. Two novel COL2A1 mutations associated with a Legg-Calve-Perthes disease-like presentation[J]. Clin Orthop Relat Res, 2011, 469(6): 1785-1790. DOI:10.1007/s11999-011-1850-x
[31]
RUKAVINA I, MORTIER G, VAN LAER L, et al. Mutation in the type Ⅱ collagen gene (col2ai) as a cause of primary osteoarthritis associated with mild spondyloepiphyseal involvement[J]. Semin Arthritis Rheum, 2014, 44(1): 101-104. DOI:10.1016/j.semarthrit.2014.03.003
[32]
SNEAD M P, YATES J R. Clinical and molecular genetics of stickler syndrome[J]. J Med Genet, 1999, 36(5): 353-359.
[33]
WUBBEN T J, BRANHAM K H, BESIRLI C G, et al. Retinal detachment and infantile-onset glaucoma in stickler syndrome associated with known and novel COL2A1 mutations[J]. Ophthalmic Genet, 2018, 39(5): 615-618. DOI:10.1080/13816810.2018.1509355
[34]
ROCHA CABRERA P, CORDOVES DORTA L, SERRANO GARCIA M A, et al. Genetic variant of stickler's syndrome[J]. Arch Soc Esp Oftalmol, 2018, 93(3): 139-142. DOI:10.1016/j.oftal.2017.07.003
[35]
TRAN-VIET K N, SOLER V, QUIETTE V, et al. Mutation in collagen Ⅱ alpha 1 isoforms delineates Stickler and Wagner syndrome phenotypes[J]. Mol Vis, 2013, 19: 759-766.
[36]
GUPTA S K, LEONARD B C, DAMJI K F, et al. A frame shift mutation in a tissue-specific alternatively spliced exon of collagen 2A1 in Wagner's vitreoretinal degeneration[J]. Am J Ophthalmol, 2002, 133(2): 203-210.
[37]
KORKKO J, RITVANIEMI P, HAATAJA L, et al. Mutation in type Ⅱ procollagen (COL2A1) that substitutes aspartate for glycine alpha 1-67 and that causes cataracts and retinal detachment:Evidence for molecular heterogeneity in the wagner syndrome and the stickler syndrome (arthro-ophthalmopathy)[J]. Am J Hum Genet, 1993, 53(1): 55-61.
[38]
SUN W M, HUANG L, XU Y, et al. Exome sequencing on 298 probands with early-onset high myopia:Approximately one-fourth show potential pathogenic mutations in retnet genes[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8365-8372. DOI:10.1167/iovs.15-17555
[39]
HOORNAERT K P, MARIK I, KOZLOWSKI K, et al. Czech dysplasia metatarsal type:Another type Ⅱ collagen disorder[J]. Eur J Hum Genet, 2007, 15(12): 1269-1275. DOI:10.1038/sj.ejhg.5201913
[40]
BURRAGE L C, LU J T, LIU D S, et al. Early childhood presentation of czech dysplasia[J]. Clin Dysmorphol, 2013, 22(2): 76-80. DOI:10.1097/MCD.0b013e32835fff39
[41]
MATSUI Y, MICHIGAMI T, TACHIKAWA K, et al. Czech dysplasia occurring in a japanese family[J]. Am J Med Genet A, 2009, 149A(10): 2285-2289. DOI:10.1002/ajmg.a.33010
[42]
TZSCHACH A, TINSCHERT S, KAMINSKY E, et al. Czech dysplasia:Report of a large family and further delineation of the phenotype[J]. Am J Med Genet A, 2008, 146A(14): 1859-1864. DOI:10.1002/ajmg.a.32389
[43]
MERRICK B, CALDER A, WAKELING E. Dysspondyloenchondromatosis (DSC) associated with COL2A1 mutation:Clinical and radiological overlap with spondyloepimetaphyseal dysplasia-strudwick type (SEMD-S)[J]. Am J Med Genet A, 2015, 167A(12): 3103-3107.
[44]
GUNES N, YESIL G, BENG K, et al. Longitudinal follow-up of two patients with dysspondyloenchondromatosis due to novel heterozygous mutations in COL2A1[J]. Mol Syndromol, 2018, 9(3): 134-140. DOI:10.1159/000488438
[45]
TOKGOZ-YILMAZ S, SAHLI S, FITOZ S, et al. Audiological findings in otospondylomegaepiphyseal dysplasia (OSMED) associated with a novel mutation in COL2A1[J]. Int J Pediatr Otorhinolaryngol, 2011, 75(3): 433-437. DOI:10.1016/j.ijporl.2010.12.004
[46]
MIYAMOTO Y, NAKASHIMA E, HIRAOKA H, et al. A type Ⅱ collagen mutation also results in oto-spondylo-megaepiphyseal dysplasia[J]. Hum Genet, 2005, 118(2): 175-178.