吉林大学学报(医学版)  2020, Vol. 46 Issue (02): 346-351     DOI: 10.13481/j.1671-587x.20200223

扩展功能

文章信息

段懿涵, 盛瑜, 徐健, 卢学春, 杜培革, 安丽萍
DUAN Yihan, SHENG Yu, XU Jian, LU Xuechun, DU Peige, AN Liping
姬松茸多糖对D-半乳糖诱导的衰老模型小鼠的抗衰老作用及其Keap1/Nrf2/ARE信号转导途径机制
Anti-aging effects of Agaricus blazei polysaccharide in D-galactose-induced aging model mice and Keap1/Nrf2/ARE signal transduction pathway mechanism
吉林大学学报(医学版), 2020, 46(02): 346-351
Journal of Jilin University (Medicine Edition), 2020, 46(02): 346-351
10.13481/j.1671-587x.20200223

文章历史

收稿日期: 2019-12-05
姬松茸多糖对D-半乳糖诱导的衰老模型小鼠的抗衰老作用及其Keap1/Nrf2/ARE信号转导途径机制
段懿涵 , 盛瑜 , 徐健 , 卢学春 , 杜培革 , 安丽萍     
北华大学药学院药物分析教研室, 吉林 吉林 132013
[摘要]: 目的 研究姬松茸酸性多糖A级分(ABP-A)对D-半乳糖(D-Gal)所致衰老模型小鼠的抗衰老作用,并探讨姬松茸多糖(ABP)的抗衰老机制。方法 水提醇沉法提取姬松茸粗多糖,并进行DEAE-纤维素离子交换柱层析分级及成分分析,得到ABP-A。48只ICR雄性小鼠随机分为对照组、模型组、阳性药物(吡拉西坦)组和ABP-A组,每组12只。给药70 d后进行小鼠Morris水迷宫、避暗和跳台行为学实验;检测各组小鼠血清中超氧化物歧化酶(SOD)活性、丙二醛(MDA)水平、总抗氧化能力(T-AOC)、过氧化氢酶(CAT)活性和活性氧(ROS)水平,Western blotting法检测各组小鼠脑组织中Nrf2、Keap1和HO-1蛋白表达水平。结果 ABP的总糖含量为75.1%,DEAE-纤维素离子交换柱层析分级得到ABP-A。行为学实验,与模型组比较,ABP-A组小鼠避暗潜伏期明显延长(P < 0.05),错误次数明显减少(P < 0.05),跳台潜伏期明显延长(P < 0.05),错误次数明显减少(P < 0.05),定位航行潜伏期明显缩短(P < 0.05),进入平台次数明显增加(P < 0.05)。生化指标检测,与模型组比较,ABP-A组小鼠血清中SOD和CAT活性升高(P < 0.05),T-AOC升高(P < 0.05),MDA和ROS水平降低(P < 0.05)。Western blotting法,与模型组比较,ABP-A组小鼠脑组织中HO-1蛋白表达水平升高(P < 0.05),Nrf2和Keap1蛋白表达水平降低(P < 0.05或P < 0.01)。结论 ABP可改善衰老模型小鼠学习记忆能力,其机制可能与调节以Nrf2为核心的Keap1/Nrf2/ARE氧化应激通路相关因子Nrf2、Keap1和HO-1发挥抗衰老作用有关。
关键词: 姬松茸多糖    抗衰老    学习记忆能力    Keap1/Nrf2/ARE信号通路    
Anti-aging effects of Agaricus blazei polysaccharide in D-galactose-induced aging model mice and Keap1/Nrf2/ARE signal transduction pathway mechanism
DUAN Yihan , SHENG Yu , XU Jian , LU Xuechun , DU Peige , AN Liping     
Department of Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin 132013, China
[ABSTRACT]: Objective To study the anti-aging effect of Agaricus blazei polyssaccharide-A (ABP-A) in the aging model mice induced by D-galactose (D-Gal), and to explore the anti-aging mechanism of Agaricus blazei polysaccharide(ABP). Methods The crude polysaccharide from Agaricus blazei Murill(ABM) was extracted by water extraction and alcohol precipitation, and the fractions were analyzed by DEAE-cellulose ion exchange column chromatography; ABP-Awas obtained.A total of 48 male ICR mice were randomly divided into control group, model group, positive drug group(Piracetam)and ABP-A group(n=12). Morris water maze, dark avoidance and platform jumping behavior experiments were performed at 70 d after administration. The superoxide dismutase (SOD) activitives, the malondialdehyde (MDA) levels, the total antioxidant capacities (T-AOC), the catalase (CAT) activitives, and the reactive oxygen species (ROS) levels in serum of the mice in various groups were detected. Western blotting method was used to detect the expression levels of Nrf2, Keap1 and HO-1 proteins in the brain tissue of the mice in various groups. Results The total sugar content of ABP was 75.1%. The ABP-A was graded and gained by DEAE-cellulose ion exchange column chromatography.The behavioral experiment results showed that compared with model group, the dark avoidance latency of the mice in ABP-A group was significantly lengthened (P < 0.05), the number of errors was decreased significantly (P < 0.05); the latency of step down was significantly prolonged (P < 0.05), and the number of errors was decreased significantly (P < 0.05); the positioning latency of the mice in ABP-A group was significantly shortened(P < 0.05), and the number of entering to the platform was increased significantly (P < 0.05). Compared with model group, the activities of serum SOD and CAT of the mice in ABP-A group were increased(P < 0.05), the T-AOC was increased(P < 0.05), the levels of MDA and ROS were decreased(P < 0.05).The Western blotting results showed that compared with model group, the expression level of HO-1 protein in the brain tissue of the mice in ABP-A group was increased (P < 0.05), and the expression levels of Nrf2 and Keap1 proteins were decreased (P < 0.05 or P < 0.01). Conclusion ABP can improve the learning and memory ability of the aging model mice, and its mechanism may be related to regulating Keap1/Nrf2/ARE oxidative stress pathway related factors Nrf2, Keap1, and HO-1 with Nrf2 as the core to perform the anti-aging effect.
KEYWORDS: Agaricus blazei polysaccharide    anti-aging    learning and memory ability    Keap1/Nrf2/ARE signal pathway    

衰老作为一种不可避免的生理过程,可导致身体部分功能逐渐丧失,其中认知能力下降已成为老年人最大的健康威胁之一[1]。近年来有许多关于衰老相关机制的研究,如衰老的端粒学说、自由基学说和代谢失衡学说等[2-4]。其中,自由基学说表明当人体内自由基生成过多或对其清除能力降低时,将发生各种严重病变[5],因此清除过量活性氧自由基具有重要的生理意义,安全有效的天然抗衰老药物成为人们关注焦点。

姬松茸(Agaricus blazei Murill, ABM)又名巴西蘑菇,是食药兼用的名贵真菌[6]。姬松茸子实体主要成分包括蛋白质、多糖、脂肪、纤维和维生素等,其中多糖含量可达45%。多糖不仅是维持生命活动的功能性大分子,同时有广泛的药理学作用,如降血脂、降血糖、抗血栓、保肝和通过增加白细胞含量减少放射性破坏的生物活性[7]。研究[8]表明:姬松茸多糖(Agaricus blazei polysaccharide, ABP)具有抗肿瘤、调节免疫、改善脂质水平和保护损伤神经等作用。目前,关于ABP抗衰老功效少有报道。本课题组前期研究[9]证实:ABP具有明显的抗氧化活性,体外清除自由基作用显著,由此本文作者推测ABP可能具有抗衰老的作用。

本研究分离纯化获得姬松茸酸性多糖A级分(Agaricus blazei polysaccharide-A,ABP-A),利用D-半乳糖(D-galactose, D-Gal)诱导建立小鼠衰老模型,观察ABP-A的抗衰老作用,探讨其抗衰老作用的分子机制,旨在为研发天然的抗衰老药物提供新资源和研究基础,为进一步开发和利用ABM提供实验依据。

1 材料与方法 1.1 实验动物、主要试剂和仪器

选取48只雄性ICR小鼠,体质量200~220 g,由长春亿斯实验动物技术有限公司提供,动物许可证号:SCXK(吉)2016-0003,本实验通过本校实验动物伦理委员会审查(伦理号IACUC-2018-004),实验过程遵循3R原则给予人道关怀。ABM(沈阳聚鑫北虫草菌业有限公司,由北华大学药学院药用植物学教研室韩冬老师鉴定合格),D-Gal(美国Genview公司),超氧化物歧化酶(superoxide dismutase,SOD)、丙二醛(malondialdehyde,MDA)、总抗氧化能力(total antioxidant capacity,T-AOC)、过氧化氢酶(catalase,CAT)和活性氧(reactive oxygen species,ROS)测试盒(南京建成生物研究所),一抗β-actin、Nrf2、Keap1、HO-1和二抗HRP-Goat Anti-Rabbit IgG(H+L)(美国ABclona公司)。Infinite M200型酶标仪(瑞士TECAN公司),SW-CJ-2D型双人净化工作台(上海苏净实业有限公司),TM-100 Morris水迷宫BA-200、小鼠避暗仪DT-200和小鼠跳台测试箱(成都泰盟技术有限责任公司),BA 400显微镜(麦克奥迪实业集团公司),离心机(德国Eppendorf公司),超微量核酸蛋白测定仪(德国Scandrop公司)。

1.2 ABP-A的制备

取干燥至恒重的ABM,按水料比20:1(V/W),100℃提取3次,每次3 h,提取液浓缩离心,80%乙醇醇沉上清液,静置过夜,离心收集沉淀,依次用95%乙醇、无水乙醇洗涤,常规干燥得水提姬松茸粗多糖,透析,冷冻干燥,得ABP;利用DEAE-纤维素柱(7.5×30 cm,Cl-型)进行分级,0.5 mol·L-1NaCl洗脱,除盐,冷冻干燥,得到ABP-A。

1.3 实验动物分组和给药

48只ICR小鼠随机分为4组,模型组小鼠颈背部皮下注射400 mg·kg-1·d-1D-Gal;对照组小鼠注射同剂量生理盐水;阳性药组小鼠先皮下注射400 mg·kg-1·d-1D-Gal,然后灌胃800 mg·kg-1吡拉西坦(按照人每日口服剂量为40~80 mg·kg-1);ABP-A组小鼠先皮下注射400 mg·kg-1·d-1D-Gal,然后灌胃400 mg·kg-1 ABP-A(按照人每日口服最大剂量计算)。连续给药10周。

1.4 行为学实验

给药第9周进行避暗实验,将小鼠面部背对洞口放入明室中,进行训练和重实验,记录5 min内小鼠进入暗室的次数和首次进入暗室的时间,即错误次数和潜伏期,间隔24 h后开始实验。

跳台实验:小鼠遭电击后逃到安全台上,再次下台遭受电击时视为错误反应,记录3 min内的潜伏期和错误次数[10],24 h后再次测验。

Morris水迷宫定位航行实验:设定实验时间为120 s,小鼠从入水到找到安全平台所需的时间即为逃避潜伏期。若120 s内找到平台,则使其在平台上停留10 s;若120 s内未找到平台,则将其引导至平台,并停留10 s,潜伏期记录为120 s。第7天开始空间搜索,撤掉平台,将小鼠从第Ⅱ象限入水,持续时间120 s。记录小鼠进入平台、目标区域及目标象限的次数。

1.5 各组小鼠血清生化指标检测

小鼠行为学实验结束后,将小鼠眼球取血,离心,取血清备用。处死的小鼠,迅速于冰台上取出全脑。严格按照各试剂盒说明书进行操作,对小鼠血清进行检测。采用酶联反应法分析ROS水平,黄嘌呤氧化酶法测定SOD活性,比色法检测T-AOC活性,采用比色法检测CAT活性及硫代巴比妥酸法测定MDA水平。

1.6 Western blotting法检测各组小鼠脑组织中Nrf2、Keap1和HO-1蛋白表达水平

提取小鼠脑组织海马区蛋白,以12% SDS-PAGE凝胶电泳分离,转膜2 h至甲醇处理后的聚丙二氟乙烯膜(PVDF)上,转膜,置于摇床,用含5%脱脂奶粉的TBS-T封闭液封闭1 h,然后加入一抗β-actin(1:50 000)、Nrf2(1:500)、Keap1(1:500)和HO-1(1:500)室温孵育2 h,采用TBS-T洗5次,每次15 min,加入二抗(1:2 000)室温孵育1 h,TBS-T洗5次,每次15 min,最后加入ECL显色液显色。将显影得到的条带进行灰度分析,以β-actin为内参,以Keap1、Nrf2和HO-1各条带与内参条带灰度值的比值表示蛋白表达水平。

1.7 统计学分析

采用SPSS 20.0统计软件进行统计学分析。各组小鼠避暗和跳台实验潜伏期、错误次数,水迷宫实验空间探索指标,各组小鼠血清中SOD和CAT活性及T-AOC、ROS和MDA水平,脑组织中Nrf2、Keap1和HO-1蛋白表达水平均符合正态分布,以x±s表示,多组间样本均数比较采用单因素方差分析,组间样本均数两两比较采用SNK-q检验。以P < 0.05为差异有统计学意义。

2 结果 2.1 ABP-A的制备

透析袋透析除去灰分,得ABP,利用DEAE-纤维素柱进行离子交换层析,0.5 mol·L-1 NaCl溶液洗脱得到ABP-A。ABP得率为4.7%、总糖含量为75.1%、糖醛酸含量为1.9%、蛋白含量为5.6%;ABP-A得率为47.5%、总糖含量为74.1%、糖醛酸含量为8.2%。见表 1

表 1 ABP和ABP-A的成分分析 Tab. 1 Composition analysis of ABP and ABP-A 
(η/%)
Polysaccharide Yield Total sugar Uronic acid protein Ash
ABP 4.7 75.1 1.9 5.6 5.1
ABP-A 47.5 74.1 8.2 4.8 5.1
2.2 各组小鼠行为学实验观察指标

避暗实验结果显示:与对照组比较,模型组小鼠避暗潜伏期明显缩短(P < 0.05或P < 0.01),错误次数明显增多(P < 0.05);与模型组比较,阳性药物组和ABP-A组小鼠避暗潜伏期延长(P < 0.05或P < 0.01),错误次数减少(P < 0.05)。跳台实验结果显示:与对照组比较,模型组小鼠跳台潜伏期明显缩短(P < 0.05),错误次数明显增多(P < 0.05);与模型组比较,阳性药物组和ABP-A组小鼠跳台潜伏期延长(P < 0.05或P < 0.01),错误次数减少(P < 0.05)。见表 2

表 2 避暗和跳台实验中各组小鼠潜伏期和错误次数 Tab. 2 Latencies and number of errors of mice in various groups in dark avoidance and platform jumping experiments 
(n=12, x±s)
Group Dark avoidance latency(t/s) Number of dark avoidance errors Step down latency(t/s) Number of platform errors
Training Retention Training Retention Training Retention Training Retention
Control 24.54±2.50 90.60±2.84 5.56±0.51 3.94±0.84 29.39±2.50 99.58±2.84 2.86±0.22 1.00±0.20
Model 18.49±1.61* 34.29±3.91** 8.94±0.25* 7.82±0.71* 13.09±3.61* 76.49±4.91* 3.33±0.31* 1.93±0.26*
Positive drug 20.91±3.59 85.89±3.94△△ 6.82±0.32 4.65±0.44 35.63±3.59 86.10±3.94 2.13±0.19 1.40±0.27
ABP-A 14.88±2.53 95.84±3.96△△ 6.06±0.34 4.50±0.66 32.03±2.53 88.03±5.96△△ 2.06±0.34 1.31±0.21
* P<0.05, * * P<0.01 compared with control group; P<0.05, △△ P<0.01 compared with model group.

Morris水迷宫实验结果显示:定位航行实验中,随着训练时间的延长,各组小鼠定位航行潜伏期呈下降趋势(P < 0.05)。对照组小鼠定位航行潜伏期下降幅度最大,模型组下降幅度最小。第2~6天,与对照组比较,模型组小鼠定位航行潜伏期明显延长(P < 0.01);与模型组比较,阳性药物组和ABP-A组小鼠定位航行潜伏期从第2天开始明显缩短(P < 0.05)。见图 1。空间搜索实验中,与模型组比较,阳性药物组和ABP-A组小鼠进入平台的时间(潜伏期)明显缩短(P < 0.05)。进入平台的次数明显增加(P < 0.05)。见图 2(插页五)和图 3

图 1 Morris水迷宫实验中各组小鼠定位航行潜伏期 Fig. 1 Latencies of positioning and navigation of mice in various groups in Morris water maze test
A: Control group; B: Model group; C: Positive drug group; D: ABP-A group. 图 2 各组小鼠定位航行实验典型热图分析 Fig. 2 Typical heat map analysis of positioning and navigation experiment of mice in various groups
*P < 0.05 compared with control group; P < 0.05 compared with model group. 图 3 Morris水迷宫实验中各组小鼠空间探索指标 Fig. 3 Space exploration indicators of mice in various groups in Morris water maze test
2.3 各组小鼠血清生化指标

与对照组比较,模型组小鼠血清中SOD和CAT活性及T-AOC明显降低(P < 0.05),ROS水平升高(P < 0.05),MDA水平明显升高(P < 0.01);与模型组比较,阳性药物组和ABP-A组小鼠血清中SOD活性和T-AOC升高(P < 0.05),CAT活性明显升高(P < 0.05或P < 0.01),ROS水平降低(P < 0.05),MDA水平明显降低(P < 0.01)。见表 2

表 2 各组小鼠血清生化指标 Tab. 2 Biochemical indexes in serum of mice in various groups 
(n=12, x±s)
Group SOD
[λB/(U·mL-1)]
CAT
[λB/(U·mg-1)]
T-AOC
[cB/(mmol·L-1)]
ROS
[λB/(U·mL-1)]
MDA
[cB/(nmol·L-1)]
Control 60.97±3.61 2.47±0.49 0.67±0.08 60.77±5.65 1.69±0.52
Model 46.55±5.52* 2.06±0.37* 0.56±0.04* 84.67±7.59* 4.82±0.24**
Positive drug 62.08±2.76 2.57±0.11 0.70±0.06△△ 75.29±9.45 1.33±0.34△△
ABP-A 60.93±3.64 3.73±0.48△△ 0.65±0.04 70.93±9.90 1.57±0.29△△
* P<0.05, * * P<0.01 compared with control group; P<0.05, △△ P<0.01 compared with model group.
2.4 各组小鼠脑组织中Nrf2、Keap1和HO-1蛋白表达水平

与对照组比较,模型组小鼠脑组织中Nrf2和HO-1蛋白表达水平均明显降低(P<0.05或P<0.01),Keap1蛋白表达水平升高(P<0.05);与模型组比较,阳性药物组和ABP-A组小鼠脑组织中Keap1蛋白表达水平明显降低(P<0.05或P<0.01),Nrf2和HO-1蛋白表达水平明显升高(P<0.05或P<0.01)。见图 4图 5

Lane1: Control group; Lane2:Model group; Lane3:Positive drug group; Lane4:ABP-A group. 图 4 Western blotting法检测各组小鼠脑组织中Nrf2、Keap1和HO-1蛋白表达电泳图 Fig. 4 Electrophoregram of expressions ofNrf2, Keap1 and HO-1 proteins in brain tissue of mice in various groups detected by Western blotting method
*P < 0.05, * *P < 0.01 compared with control group; P < 0.05, △△P < 0.01 compared with model group. 图 5 各组小鼠脑组织中Nrf2、Keap1和HO-1蛋白表达水平 Fig. 5 Expression levels of Nrf2, Keap1 and HO-1 proteins in brain tissue of mice in various groups
3 讨论

衰老是生命发展的最后一个阶段,是随着时间的推移,机体的各种功能不断下降的过程, 衰老的发生与氧化应激的积累密切相关[11]。D-Gal作为生理性营养成分,过量时会诱发机体氧化损伤、炎症以及细胞凋亡等, 与自然衰老症状相似[12-13]。本研究中连续给予过量D-Gal后,模型组小鼠活动减少,毛发脱落,行为学实验表现出潜伏期较短,错误次数增多现象,说明小鼠衰老模型建立成功。SOD和CAT等组成的酶系统具有内源性抗氧化损伤作用,通过代谢转化可去除过量ROS减轻氧化应激[14]。T-AOC通常被认为是体内所有抗氧化剂的累积作用,具有评估抗氧化能力的作用[15]。MDA是氧自由基和脂质氧化的降解产物,其水平的升高导致自由基的产生增多和(或)抗氧化物质功能下降[16]。本研究结果显示:给予ABP-A干预后,小鼠血清中SOD和CAT活性升高,T-AOC升高,MDA和ROS水平降低,小鼠一般状态得到有效改善,学习记忆能力提高,说明ABP-A能减缓由D-Gal诱导的机体氧化损伤程度,进而对衰老引起的学习记忆衰退具有良好的修复作用。

Keap1/Nrf2/ARE信号通路的激活可诱导产生一系列内源性酶,如SOD、CAT、谷胱甘肽过氧化物酶和过氧还原酶等,这些自由基清除酶能够参与机体的抗氧化防御机制[17]。此外,Keap1/Nrf2/ARE作为氧化应激中重要的信号通路之一,是防御外源物质和细胞氧化损伤,减少氧化应激和介导抗氧化的主要途径[18-19],其中,Keap1蛋白含有半胱氨酸残基,这些残基在维持细胞氧化还原平衡方面起着至关重要的作用;转录因子Nrf2是抵御细胞环境压力的核心,在氧化应激中具有中心地位。在正常情况下,Keap1与Nrf2结合锚定在细胞质内,使Nrf2处于非活性状态。而在氧化应激下,Nrf2与其负调控因子Keapl脱离,并从细胞质转移至细胞核中[20]。Nrf2在细胞核内调节与DNA上的抗氧化反应元件ARE结合,上调可以催化体内多种抗氧化途径的下游基因HO-1的转录和表达[21], 清除体内过量ROS抵抗氧化应激, 从而起到细胞保护作用。本研究结果显示:ABP-A干预后,模型小鼠脑组织中Keap1表达水平下调,且Nrf2和HO-1表达水平上调,表明ABP-A抗衰老作用与激活Keap1/Nrf2/ARE信号通路有关联。

综上所述,ABP-A可以改善D-Gal诱导的衰老过程中的小鼠脑损伤,提高机体内的抗氧化酶活性,并降低脂质过氧化,具有明显的抗衰老作用,其抗衰活性可能与激活Keap1/Nrf2/ARE信号转导途径有关。本研究为ABM作为保健品和药品原料的研究提供了理论依据,对促进ABM的产业化深度开发具有重要意义。

参考文献
[1]
LI H D, ZHAO H J, GAO Z, et al. Pleurotus djamor the antioxidant and anti-aging effects of acetylated mycelia polysaccharides from[J]. Molecules, 2019, 24(15): 2698. DOI:10.3390/molecules24152698
[2]
UR R S, ALI S S, TAHIR A, et al. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats[J]. Mol Neurobiol, 2017, 54: 255-271. DOI:10.1007/s12035-015-9604-5
[3]
SFEIR A J, CHAI W, SHAY J W. Telomereend processing the terminal nucleotides of human chromosomes[J]. Mol Cell, 2005, 18(1): 131-138. DOI:10.1016/j.molcel.2005.02.035
[4]
FRAUKE B, SHAHRZAD K M, JURGEN K, et al. A metabolic Obesity Profile is associated with decreased gray matter volume in cognitively healthy older adults[J]. Front Aging Neurosci, 2019, 11: 202. DOI:10.3389/fnagi.2019.00202
[5]
DRUZIAN S P, PINHEIRO L N, SUSIN N M, et al. Production of metabolites with antioxidant activity by Botryosphaeria dothidea in submerged fermentation[J]. Bioprocess Biosystems Engineer, 2020, 43(1): 13-20. DOI:10.1007/s00449-019-02200-y
[6]
VEERAPPAN V G, MUTHU R, et al. Agaricus blazei extract abrogates rotenone-induced dopamine depletion and motor deficits by its anti-oxidative and anti-inflammatory properties in Parkinsonic mice[J]. Nutr Neurosci, 2018, 21: 657-666. DOI:10.1080/1028415X.2017.1337290
[7]
王夏梅.姬松茸子实体多糖分离纯化、结构表征和免疫活性分析[D].无锡: 江南大学, 2016.
[8]
JIANG L Y, YU Z P, LIN Y, et al. Agaricus blazeiLow-molecular-weight polysaccharides from Murrill modulate the Th1 response in cancer immunity[J]. Oncol Lett, 2018, 15: 3429-3436.
[9]
安丽萍, 段懿涵, 盛瑜, 等. 姬松茸多糖酶降解对D-半乳糖诱导3T3细胞氧化损伤的保护作用[J]. 北华大学学报(自然科学版), 2019, 20(5): 653-658.
[10]
ZHAO S S, YANG W, JIN H, et al. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice[J]. Neurotoxicology, 2015, 51: 166-171. DOI:10.1016/j.neuro.2015.10.010
[11]
ZHANG H H, ZHENG W, FENG X L, et al. Nrf2/ARE signaling Acts as master pathway for the cellular antioxidant activity of fisetin[J]. Molecules, 2019, 24(4): 708. DOI:10.3390/molecules24040708
[12]
SADIGH E S, MAJDI A, MCCANN S K, et al. D-galactose-induced brain ageing model:A systematic review and meta-analysis on cognitive outcomes and oxidative stress indices[J]. PLoS One, 2017, 12(8): e0184122. DOI:10.1371/journal.pone.0184122
[13]
ISLAM M T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurol Res, 2017, 39(1): 73-82. DOI:10.1080/01616412.2016.1251711
[14]
SUN X, SUN G B, WANG M, et al. Protective effects of cynaroside against H2O2induced apoptosis in H9c2 cardiomyoblasts[J]. J Cell Biochem, 2011, 112(8): 2019-2029. DOI:10.1002/jcb.23121
[15]
HE H B, XU J, XU Y Q, et al. Cardioprotective effects of saponins from Panax japonicus on acute myocardial ischemia against oxidative stresstriggered damage and cardiac cell death in rats[J]. J Ethnopharmacol, 2012, 140(1): 73-82. DOI:10.1016/j.jep.2011.12.024
[16]
SINGH C K, CHHABRA G, NDIAYE M, et al. The role of sirtuins in antioxidant and redox signaling[J]. Antioxid Redox Signal, 2018, 28(8): 643-661. DOI:10.1089/ars.2017.7290
[17]
WANG Z, JI C Y, WU L Y, et al. Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage:role of Keap1/Nrf2/ARE pathway[J]. PLoS One, 2014, 9: e97685. DOI:10.1371/journal.pone.0097685
[18]
KUBBEN N, ZHANG W, WANG L, et al. Repression of the antioxidant NRF2 pathway in premature aging[J]. Cell, 2016, 165(6): 1361-1374. DOI:10.1016/j.cell.2016.05.017
[19]
MAHMOUD A M, GERMOUSH M O, ALOTAIBI M F, et al. Possible involvement of Nrf2 and PPARγ up-regulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity[J]. Biomed Pharmacother, 2016, 86: 297-306.
[20]
ZHANG L, WANG H D, FAN Y W, et al. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways[J]. Sci Rep, 2017, 7: 46763. DOI:10.1038/srep46763
[21]
YA B L, LIU Q, LI H F, et al. Uric acid protects against focal cerebral ischemia/reperfusion-induced oxidative stress via activating Nrf2 and regulating neurotrophic factor expression[J]. Oxid Med Cell Longev, 2018, 2018: 6069150.