扩展功能
文章信息
- 吕秀云, 杨婷, 徐磊, 王立红
- LYU Xiuyun, YANG Ting, XU Lei, WANG Lihong
- 重症哮喘患者血清MIP-1α和IL-13水平动态变化及其预后评估价值
- Dynamic changes of MIP-1α and IL-13 levels of patients with severe asthma and their valuesin prognosis evaluation
- 吉林大学学报(医学版), 2019, 45(06): 1401-1407
- Journal of Jilin University (Medicine Edition), 2019, 45(06): 1401-1407
- 10.13481/j.1671-587x.20190635
-
文章历史
- 收稿日期: 2019-01-04
目前国内重症哮喘发生率呈逐年增加趋势,重症哮喘是哮喘致残、致死的主要原因。尽管重症哮喘具体发病机制尚未完全明确,但气道炎症高反应性被认为是其发生发展的关键机制之一[1]。目前哮喘预防和治疗措施已有很大进步,但仍有重症哮喘患者急诊住院,且病死率也较高[2]。重症哮喘治疗原则为早期识别、及时干预和改善预后[3]。既往临床研究[4]通过检测患者血清白细胞介素6(interleukin-6,IL-6)水平和肺功能指标来评估重症哮喘患者病情及预后,但是临床价值较低,因此寻找能早期诊断、准确判断重症哮喘病情和预后的最佳指标十分必要。近年来,白细胞介素13(interleukin-13, IL-13)和巨噬细胞炎症蛋白1α(macrophage inflammatory protein-1α,MIP-1α)引起研究者的关注,其中IL-13被认为是一种独立参与哮喘的有致炎作用的Th2型细胞因子,而MIP-1α也被证实是与哮喘气道过敏性反应相关的物质[1, 5],关于IL-13和MIP-1α对重症哮喘患者是否具有较好的临床价值目前尚未见报道。本研究探讨重症哮喘患者血清IL-13和MIP-1α水平动态变化及其与患者病情及预后的相关性。
1 资料与方法 1.1 研究对象选择2015年9月—2017年3月本院确诊为哮喘的102例患者,其中女性54例,男性48例,平均年龄(22.6±9.3)岁,患者或监护人均签署研究知情同意书。本研究通过本院伦理委员会审核。入选标准:①重症哮喘诊断和分级依据为2017年中华医学会呼吸病学分会哮喘学组制定的《重症哮喘诊断与处理中国专家共识》的诊断标准[6];②1个月内未接受过糖皮质激素、β受体激动剂或免疫抑制剂治疗;③能坚持随访,临床资料完善。排除标准:①患有脑、心、肝、肾等严重脏器功能不全者;②罹患过敏性疾病、其他支气管和慢阻肺疾病者;③有严重糖尿病并发症或肺部肿瘤晚期者;④研究期内自行放弃治疗和临床资料不完整者。
1.2 分组所有研究对象按病情严重程度分为2组:重症哮喘组,42例重症哮喘患者;轻症哮喘组,60例轻中度哮喘患者。另选择同时期健康体检者50人作为对照组。3组研究对象的年龄、性别比、体质量指数(body mass index,BMI)、吸烟史、过敏性紫癜病史和糖尿病史等比较差异无统计学意义(P>0.05)。
1.3 3组研究对象血清标记物水平检测治疗前(纳入研究即刻)、治疗后第1、3、7天分别于清晨空腹抽取3组研究对象3 mL静脉血,在室温下3 000r·min-1离心10~15 min,静置后分离上层血清。3组患者血清样本中IL-6、IL-13、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)和MIP-1α水平通过酶联免疫吸附试验(ELISA)法分析,其中各种测定试剂盒均购自上海西唐生物科技有限公司,各标记物水平检测操作严格按试剂盒说明书进行。IL-6、IL-13、TNF-α和MIP-1α水平单位均为ng·L-1。
1.4 3组研究对象肺功能指标检测治疗前(纳入研究即刻)3组研究对象均进行肺功能测定,测定前12 h停止吸入β2受体激动剂,应用肺功能仪测定肺功能,观察并记录患者主要肺功能指标,包括用力肺活量(pulmonary indexes of forced vital capacity,FVC)、第1秒用力呼气容积(forced expiratory volume in the first second,FEV1)、FEV1/FVC以及最大呼气中段流量(maximum mid-expiratory flow,MMEF)和呼气峰流速(peak expiratory flow,PEF)。其中FEV1单位为L,FEV1/FVC单位为%,MMEF单位为L·s-1,PEF单位为L·s-1。
1.5 3组研究对象的预后分析重症哮喘组患者均随访1年,随访间隔1个月,采取门诊随访或电话访问等方式,记录重症哮喘未控制再发的例数。根据是否发生未控制哮喘发作将重症哮喘组分为控制亚组与再发亚组,其中控制亚组25例,再发亚组17例,比较2组患者血清IL-13和MIP-1α水平的差异。
1.6 统计学分析采用SPSS 21.0统计软件进行统计学分析。符合正态分布且齐性检验的计量资料数值以x±s表示,2组患者血清标记物(IL-6、IL-13、TNF-α和MIP-1α)水平和肺功能指标(FEV1、FEV1/FVC、MMEF和PEF)比较应用成组t检验。吸烟史、过敏性紫癜病史和糖尿病史等计数资料采取百分数表示,组间比较采用χ2检验。采用Pearson相关分析分别评估重症哮喘组患者血清IL-13、MIP-1α水平与FEV1、MMEF及PEF的相关性。应用多元Logistic回归分析上述指标与随访1年再发率的相关性。绘制受试者工作特征曲线(ROC曲线)评估血清IL-13和MIP-1α水平对重症哮喘患者随访1年预后的判断价值。检验水准为α=0.05。
2 结果 2.1 3组研究对象的一般资料3组研究对象的年龄、性别比、BMI、吸烟史、过敏性紫癜病史和糖尿病史等指标比较差异均无统计学意义(P>0.05)。见表 1。
Group | n | Age(year) | Sex ratio(Male:female) | BMI(kg·m-2) | Smoking history (η/%) | Allergic purpura history (η/%) | Diabetic history (η/%) |
Control | 50 | 21.4±7.6 | 24:26 | 18.6±1.9 | 12.0(6/50) | - | - |
Mild asthma | 60 | 19.8±8.9 | 29:31 | 18.1±1.7 | 15.0(9/60) | 6.7(4/60) | 10.0(6/60) |
Severe asthma | 42 | 23.1±9.6 | 19:23 | 17.6±1.4 | 14.3(6/42) | 7.1(3/42) | 9.5(4/42) |
t/χ2 | 1.784 | 0.107 | 1.569 | 0.217 | 3.213 | 2.712 | |
P | 0.077 | 0.948 | 0.120 | 0.897 | 0.096 | 0.138 | |
“-”:No data. |
重症哮喘组与轻症哮喘组患者血清IL-6、IL-13、TNF-α和MIP-1α水平随着治疗时间延长而逐渐降低(P < 0.05),而FEV1、FEV1/FVC、MMEF和PEF随着治疗时间延长而逐渐增加(P < 0.05);对照组研究对象各指标随时间延长差异均无统计学意义(P>0.05)。3组研究对象各时间点血清IL-6、IL-13、TNF-α和MIP-1α水平及FEV1、FEV1/FVC、MMEF和PEF比较差异有统计学意义(P < 0.05)。同一时间点重症哮喘组患者血清IL-6、IL-13、TNF-α和MIP-1α水平最高,高于轻症哮喘组(P < 0.05)和对照组(P < 0.05),轻症哮喘组次之,对照组最低;而重症哮喘组患者FEV1、FEV1/FVC、MMEF和PEF最低,低于轻症哮喘组(P < 0.05)和对照组(P < 0.05),轻症哮喘组次之,对照组最高;重症哮喘组与轻症哮喘组患者血清IL-6、IL-13、TNF-α和MIP-1α水平及FEV1、FEV1/FVC、MMEF和PEF变化趋势有差别。见表 2。
(x±s) | |||||||||||||||||||||||||||||
Group | n | Time point | IL-6 [ρB/(ng·L-1)] |
IL-13 [ρB/(ng·L-1)] |
TNF-α [ρB/(ng·L-1)] |
MIP-1α [ρB/(ng·L-1)] |
FEV1(V/L) | FEV1/FVC (η/%) | MMEF (L·s-1) | PEF(L·s-1) | |||||||||||||||||||
Control | 50 | Before therapy | 7.6±1.2 | 15.2±3.3 | 37.4±4.8 | 1.5±0.4 | 5.86±0.69 | 94.2±7.0 | 4.98±0.76 | 10.23±1.02 | |||||||||||||||||||
1d after therapy | 7.9±1.1 | 14.9±2.0 | 40.1±5.6 | 1.4±0.2 | 6.09±1.01 | 93.9±6.9 | 5.11±0.69 | 9.86±0.94 | |||||||||||||||||||||
3d after therapy | 7.5±1.0 | 15.0±2.2 | 36.9±6.1 | 1.3±0.3 | 5.98±0.97 | 93.7±7.2 | 5.08±0.77 | 9.97±0.86 | |||||||||||||||||||||
7d after therapy | 7.1±1.4 | 14.7±2.6 | 38.8±4.4 | 1.4±0.4 | 6.05±0.81 | 94.5±7.1 | 5.13±0.89 | 10.11±0.96 | |||||||||||||||||||||
F | 7.236 | 7.124 | 7.856 | 7.652 | 7.321 | 7.403 | 7.796 | 7.247 | |||||||||||||||||||||
P | 0.072 | 0.074 | 0.056 | 0.060 | 0.065 | 0.063 | 0.058 | 0.071 | |||||||||||||||||||||
Mild asthma | 60 | Before therapy | 21.2±3.9 | 36.7±5.3 | 97.4±9.8 | 6.4±1.0 | 3.10±0.35 | 61.1±5.2 | 2.16±0.38 | 5.28±0.40 | |||||||||||||||||||
1d after therapy | 18.9±5.0 | 35.9±4.9 | 91.1±10.2 | 5.9±1.2 | 3.14±0.45 | 63.9±5.8 | 2.21±0.32 | 5.37±0.42 | |||||||||||||||||||||
3d after therapy | 15.3±3.5 | 29.6±4.5 | 76.2±8.3 | 4.8±1.3 | 3.88±0.34 | 70.6±6.5 | 3.32±0.63 | 6.43±0.65 | |||||||||||||||||||||
7d aftertherapy | 12.2±3.4 | 24.4±3.2 | 60.9±7.2 | 3.4±0.6 | 4.10±0.41 | 80.5±7.7 | 4.09±0.72 | 7.74±0.72 | |||||||||||||||||||||
F | 10.856 | 8.769 | 8.882 | 11.892 | 8.389 | 9.452 | 9.884 | 9.264 | |||||||||||||||||||||
P | 0.016 | 0.036 | 0.034 | 0.009 | 0.040 | 0.021 | 0.018 | 0.025 | |||||||||||||||||||||
Severe asthma | 42 | Before therapy | 28.4±5.7*△ | 47.8±6.4*△ | 129.4±15.3*△ | 7.6±1.8*△ | 1.93±0.20*△ | 55.3±6.1*△ | 1.40±0.22*△ | 4.29±0.54*△ | |||||||||||||||||||
1d after therapy | 27.5±6.2*△ | 44.7±5.8*△ | 123.9±12.9*△ | 7.1±1.4*△ | 2.09±0.24*△ | 54.2±6.8*△ | 1.49±0.29*△ | 4.38±0.59*△ | |||||||||||||||||||||
3d after therapy | 24.2±4.9*△ | 37.6±3.6*△ | 93.0±9.8*△ | 6.4±0.8*△ | 2.78±0.28*△ | 61.6±6.6*△ | 2.24±0.38*△ | 5.25±0.68*△ | |||||||||||||||||||||
7d after therapy | 19.7±3.1*△ | 31.4±4.5*△ | 72.1±7.5*△ | 5.1±0.3*△ | 3.02±0.36*△ | 67.2±7.2*△ | 2.81±0.45*△ | 6.25±0.76*△ | |||||||||||||||||||||
F | 12.879 | 8.357 | 8.925 | 9.394 | 23.057 | 8.401 | 12.841 | 9.024 | |||||||||||||||||||||
P | 0.004 | 0.041 | 0.032 | 0.023 | < 0.01 | 0.039 | 0.005 | 0.030 | |||||||||||||||||||||
*P < 0.05 compared with control group at the same time point; △P < 0.05 compared with mild asthma group at the same time point. |
本研究选择治疗第7天患者的血清标记物和肺功能指标进行Pearson相关分析,结果显示:重症哮喘患者血清IL-13水平与FEV1、MMEF及PEF均呈负相关关系(r=-0.801,P=0.013;r=-0.719,P=0.029;r=-0.721,P=0.028),且血清MIP-1α水平与肺功能指标亦呈负相关关系(r=-0.821,P=0.010;r=-0.752,P=0.023;r=-0.694,P=0.035)。见表 3。
Index | FEV1 | MMEF | PEF | |||||
r | P | r | P | r | P | |||
IL-13 | -0.801 | 0.013 | -0.719 | 0.029 | -0.721 | 0.028 | ||
MIP-1α | -0.821 | 0.010 | -0.752 | 0.023 | -0.694 | 0.035 |
治疗第7天重症哮喘组中控制亚组患者血清IL-13和MIP-1α水平明显低于再发亚组(P < 0.01)。见表 4。
[x±s, ρB/(ng·L-1)] | |||||||||||||||||||||||||||||
Group | n | IL-13 | MIP-1α | ||||||||||||||||||||||||||
Preservation sub-group | 25 | 29.2±4.6 | 3.7±0.9 | ||||||||||||||||||||||||||
Recurrence sub-group | 17 | 38.5±8.7 | 5.3±1.2 | ||||||||||||||||||||||||||
t | 4.522 | 4.145 | |||||||||||||||||||||||||||
P | < 0.01 | < 0.01 |
选定应变量为重症哮喘患者随访1年再发率,自变量选定为年龄和治疗前后患者血清IL-13、MIP-1α、TNF-α、IL-6水平差值,全模型多元Logistic回归分析结果显示:治疗前后患者血清IL-13和MIP-1α水平差值是随访1年重症哮喘患者预后的危险因素(OR=2.867, P=0.023;OR=2.135, P=0.033)。见表 5。
Factor | Regression coefficient (β) | Wald value | Standard error (SE) | Odd ratio (OR) | P |
Age | 0.010 | 0.688 | 0.012 | 1.010 | 0.139 |
Serum level of IL-13 | 1.053 | 8.282 | 0.366 | 2.867 | 0.024 |
Serum level of MIP-1α | 0.758 | 6.521 | 0.297 | 2.135 | 0.030 |
Serum level of TNF-α | 0.587 | 2.038 | 0.411 | 1.798 | 0.058 |
Serum level of IL-6 | 0.376 | 1.413 | 0.316 | 1.456 | 0.066 |
治疗前ROC曲线评估血清IL-13和MIP-1α水平预测重症哮喘患者的价值结果显示:血清IL-13水平的截断值为32.5 ng·L-1时,预测重症哮喘患者随访1年重症哮喘再发的曲线下面积(AUC)为0.824,P=0.034,其预测灵敏度为78.7%,特异度为84.1%;血清MIP-1α水平的截断值为4.6 ng·L-1,预测重症哮喘患者随访1年未控制重症哮喘再发的AUC为0.806,P=0.038,其预测灵敏度为80.9%,特异度为79.8%;血清IL-13和MIP-1α水平联合预测重症哮喘患者随访1年重症哮喘再发的AUC最大为0.878,P=0.028,其灵敏度为84.5%,特异度为86.7%。见图 1。
3 讨论支气管哮喘本质为气道慢性炎症反应,由吸入变应原和感染等多种诱因而诱导发作。反复发作会加重病情,形成气道重塑,引起不可逆性的气道阻塞和肺功能下降[7]。重症哮喘患者的症状更为严重,肺功能降低更加明显,药物控制更加困难,其发病机制更为复杂[8]。近年来研究[9]显示:多种炎性细胞和细胞因子的参与可导致机体免疫失衡,且被炎症网络级联放大,出现严重的气道炎症,进而出现气道阻塞以及气道高反应等。重症哮喘患者的预后较差,病死率较高,因此加强对重症哮喘的早期预测评估和及时发现并强化控制炎症反应能及时阻断病情发展,改善患者预后[10]。
目前临床对支气管哮喘病情评估主要依据肺功能指标和临床症状,但有研究[11-12]证实:重症哮喘的气道炎症加重出现早于肺功能指标及临床症状恶化,因此需要寻找适宜的反映机体炎症反应的敏感标记物来评估重症哮喘患者病情和预后。与哮喘密切相关的IL-6和TNF-α等细胞因子虽然与哮喘的发病和病情演变有较好的相关性,但是作为判断重症哮喘患者气道炎症控制标准以及评估病情程度指标的敏感性和特异性仍不能令人满意。
IL-13是新发现的具有较好潜在临床前景的Th2型细胞因子,其参与多种炎症疾病的免疫调节[13-14]。研究[15-16]显示:IL-13通过激活嗜酸性粒细胞,促进IgE分泌水平,调节凋亡进程,参与小气道重塑,诱导并维持气道高反应及炎症反应,因此IL-13被认为能独立参与哮喘发病过程,也是重症哮喘的重要调节点之一。MIP-1α是一类C-C趋化因子,主要由支气管哮喘气道炎症过程中激活的嗜酸性粒细胞和肥大细胞及肺泡巨噬细胞等释放[17-18]。MIP-1α在哮喘的发生发展过程中发挥重要作用,可诱导和趋化CD8+T淋巴细胞、嗜酸性粒细胞和肥大细胞等浸润,且MIP-1α水平的高低与哮喘患者病情的严重程度有密切关系[19-21]。因此临床研究者推测动态检测IL-13与MIP-1α水平能有效诊断重症哮喘患者的病情严重程度以及评估预后,但目前尚未见临床报道予以证实。为此本研究通过分析本院收治的重症哮喘患者临床资料为诊病的临床治疗提供循证依据。
本研究结果显示:3组患者的年龄、性别比、吸烟史和既往内科病史等一般观察指标比较差异无统计学意义,表明本研究中的干扰因素导致误差控制较好。在任意同一时间点重症哮喘组患者血清IL-6、IL-13、TNF-α和MIP-1α水平均明显高于轻症哮喘组,并且这也与重症哮喘组患者肺功能指标严重的结果一致,表明在哮喘患者中这些血清标记物能有效辨别炎症反应和病情程度。随着治疗的进行,其循环水平呈进行性降低,同时肺功能指标也随之改善,提示血清IL-13和MIP-1α水平与病情严重程度可能存在正相关关系,并且这2个指标水平变化趋势可以较好地反映抗炎治疗措施是否有效以及气道炎症是否改善。
进一步分析显示:血清IL-13和MIP-1α水平与肺功能指标呈负相关关系,且相关程度较高,因此也证实血清IL-13与MIP-1α水平能有效评估重症哮喘患者的病情。本研究也进行了为期1年的短期随访,随访结果显示未再发重症哮喘患者血清IL-13与MIP-1α水平明显低于再发重症哮喘患者,也提示IL-13和MIP-1α水平能够反映重症哮喘患者的短期预后。进一步应用全模型多元Logistic回归分析显示:治疗后血清IL-13与MIP-1α水平降低的幅度是重症哮喘患者短期预后的危险因素,因此动态监测血清IL-13与MIP-1α水平能对重症哮喘再发情况进行有效评估,降低幅度越显著,患者预后越好。应用ROC曲线评估治疗前血清IL-13与MIP-1α水平对预测重症哮喘患者的短期重症哮喘再发的临床价值较佳,并且敏感性和特异性也较好。本研究对于IL-13和MIP-1α在体内进行相互调节的具体分子机制未进行分析,故仍然需要后继研究进一步探讨。
[1] |
金蕊, 佟金平, 苗姝. 哮喘患者血清中巨噬细胞炎症蛋白-1的表达及其临床意义[J]. 内科急危重症杂志, 2017, 23(5): 362-364. |
[2] |
YANG T, LI Y, LYU Z, et al. Characteristics of proinflammatory cytokines and chemokines in airways of asthmatics: relationships with disease severity and infiltration of inflammatory cells[J]. Chin Med J (Engl), 2017, 130(17): 2033-2040. DOI:10.4103/0366-6999.213428 |
[3] |
MEDREK S K, PARULEKAR A D, HANANIA N A. Predictive biomarkers for asthma therapy[J]. Curr Allergy Asthma Rep, 2017, 17(10): 69. DOI:10.1007/s11882-017-0739-5 |
[4] |
WU F, HUANG Y, ZHANG P, et al. Interleukin-13 peptide vaccine induces protective humoral immunity in murine asthma models[J]. Oncotarget, 2017, 9(6): 6678-6690. |
[5] |
HAMMAD MAHMOUD HAMMAD R, HAMED DHED, ELDOSOKY MAER, et al. Plasma microRNA-21, microRNA-146a and IL-13 expression in asthmatic children[J]. Innate Immun, 2018, 24(3): 171-179. DOI:10.1177/1753425918763521 |
[6] |
中华医学会呼吸病学分会哮喘学组, 中国哮喘联盟. 重症哮喘诊断与处理中国专家共识[J]. 中华结核和呼吸杂志, 2017, 40(11): 813-829. DOI:10.3760/cma.j.issn.1001-0939.2017.11.006 |
[7] |
QUIRCE S, PHILLIPS-ANGLES E, DOMÍNGUEZ-ORTEGA J, et al. Biologics in the treatment of severe asthma[J]. Allergol Immunopathol (Madr), 2017, 45(Suppl 1): 45-49. |
[8] |
SINGH M, AGARWAL A, CHATTERJEE B, et al. Correlation of cutaneous sensitivity and cytokine response in children with asthma[J]. Lung India, 2017, 34(6): 506-510. DOI:10.4103/lungindia.lungindia_357_16 |
[9] |
DING F, LIU B, ZOU W, et al. LPS exposure in early life protects against mucus hypersecretion in ovalbumin-induced asthma by down-regulation of the IL-13 and JAK-STAT6 pathways[J]. Cell Physiol Biochem, 2018, 46(3): 1263-1274. DOI:10.1159/000489109 |
[10] |
NTONTSI P, PAPATHANASSIOU E, LOUKIDES S, et al. Targeted anti-IL-13 therapies in asthma: current data and future perspectives[J]. Expert Opin Investig Drugs, 2018, 27(2): 179-186. DOI:10.1080/13543784.2018.1427729 |
[11] |
NAKAMURA Y, SUGANO A, OHTA M, et al. Docking analysis and the possibility of prediction efficacy for an anti-IL-13 biopharmaceutical treatment with tralokinumab and lebrikizumab for bronchial asthma[J]. PLoS One, 2017, 12(11): e0188407. DOI:10.1371/journal.pone.0188407 |
[12] |
PARULEKAR A D, KAO C C, DIAMANT Z, et al. Targeting the interleukin-4 and interleukin-13 pathways in severe asthma: current knowledge and future needs[J]. Curr Opin Pulm Med, 2018, 24(1): 50-55. DOI:10.1097/MCP.0000000000000436 |
[13] |
BUZNEY C D, GOTTLIEB A B, ROSMARIN D. Asthma and atopic dermatitis: a review of targeted inhibition of interleukin-4 and interleukin-13 as therapy for atopic disease[J]. J Drugs Dermatol, 2016, 15(2): 165-171. |
[14] |
TSILOGIANNI Z, HILLAS G, BAKAKOS P, et al. Sputum interleukin-13 as a biomarker for the evaluation of asthma control[J]. Clin Exp Allergy, 2016, 46(7): 923-931. DOI:10.1111/cea.12729 |
[15] |
BAVEREL P G, WHITE N, VICINI P, et al. Dose-exposure-response relationship of the investigational anti-interleukin-13 monoclonal antibody tralokinumab in patients with severe, uncontrolled asthma[J]. Clin Pharmacol Ther, 2018, 103(5): 826-835. DOI:10.1002/cpt.803 |
[16] |
YOSRI H, ELKASHEF W F, SAID E, et al. Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model[J]. Int Immunopharmacol, 2017, 50: 305-312. DOI:10.1016/j.intimp.2017.07.012 |
[17] |
KAUR M, BELL T, SALEK-ARDAKANI S, et al. Macrophage adaptation in airway inflammatory resolution[J]. Eur Respir Rev, 2015, 24(137): 510-515. DOI:10.1183/16000617.0030-2015 |
[18] |
肖新怀, 梁小敏, 苏丽芳, 等. 哮喘患者MIP-1α等炎症因子在血清中的表达及临床意义[J]. 中国医师杂志, 2017, 19(8): 1200-1206. DOI:10.3760/cma.j.issn.1008-1372.2017.08.020 |
[19] |
SUGAI K, KIMURA H, MIYAJI Y, et al. MIP-1α level in nasopharyngeal aspirates at the first wheezing episode predicts recurrent wheezing[J]. J Allergy Clin Immunol, 2016, 137(3): 774-781. DOI:10.1016/j.jaci.2015.08.032 |
[20] |
ROJAS-DOTOR S, SEGURA-MENDEZ NH, MIYAGUI-NAMIKAWA K, et al. Expression of resistin, CXCR3, IP-10, CCR5 and MIP-1α in obese patients with different severity of asthma[J]. Biol Res, 2013, 46(1): 13-20. DOI:10.4067/S0716-97602013000100002 |
[21] |
ISHIOKA T, YAMADA Y, KIMURA H, et al. Elevated macrophage inflammatory protein 1α and interleukin-17 production in an experimental asthma model infected with respiratory syncytial virus[J]. Int Arch Allergy Immunol, 2013, 161(Suppl 2): 129-137. |