[1] |
DE LUCA F.
Regulatory role for growth hormone in statural growth:IGF-dependent and IGF-independent effects on growth plate chondrogenesis and longitudinal bone growth[J]. Pediatr Endocrinol Rev, 2018, 16(Suppl 1): 33–38.
|
|
[2] |
李松.
下颌髁状突软骨与生长板软骨生长发育的比较研究[J]. 昆明医科大学学报, 2014, 35(2): 1–4.
|
|
[3] |
BONAFE L, CORMIER-DAIRE V, HALL C, et al.
Nosology and classification of genetic skeletal disorders:2015 revision[J]. Am J Med Genet A, 2015, 167A(12): 2869–2892.
|
|
[4] |
GARRISON P, YUE SN, HANSON J, et al.
Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage[J]. PLoS One, 2017, 12(5): e0176752.
DOI:10.1371/journal.pone.0176752 |
|
[5] |
AICHER S, KAKKANAS A, COHEN L, et al.
Differential regulation of the Wnt/β-catenin pathway by hepatitis C virus recombinants expressing core from various genotypes[J]. Sci Rep, 2018, 8(1): 11185.
DOI:10.1038/s41598-018-29078-2 |
|
[6] |
KIMURA T, OZAKI T, FUJITA K, et al.
Proposal of patient-specific growth plate cartilage xenograft model for FGFR3 chondrodysplasia[J]. Osteoarthr Cartilage, 2018, 26(11): 1551–1561.
DOI:10.1016/j.joca.2018.07.015 |
|
[7] |
HARAGUCHI R, KITAZAWA R, IMAI Y, et al.
Growth plate-derived hedgehog-signal-responsive cells provide skeletal tissue components in growing bone[J]. Histochem Cell Biol, 2018, 149(4): 365–373.
DOI:10.1007/s00418-018-1641-5 |
|
[8] |
ZHENG YX, LIU CC, NI L, et al.
Cell type-specific effects of Notch signaling activation on intervertebral discs:Implications for intervertebral disc degeneration[J]. J Cell Physiol, 2018, 233(7): 5431–5440.
DOI:10.1002/jcp.26385 |
|
[9] |
徐真然, 罗飞宏.
生长板的局部调控新进展[J]. 医学综述, 2018, 24(19): 3772–3776.
DOI:10.3969/j.issn.1006-2084.2018.19.006 |
|
[10] |
SHI C, IURA A, TERAJIMA M, et al.
Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors[J]. Sci Rep, 2016, 6: 24256.
DOI:10.1038/srep24256 |
|
[11] |
SAMSA WE, ZHOU X, ZHOU G.
Signaling pathways regulating cartilage growth plate formation and activity[J]. Semin Cell Dev Biol, 2017, 62: 3–15.
DOI:10.1016/j.semcdb.2016.07.008 |
|
[12] |
LEFEBVRE V, DVIR-GINZBERG M.
SOX9 and the many facets of its regulation in the chondrocyte lineage[J]. Connect Tissue Res, 2017, 58(1): 2–14.
DOI:10.1080/03008207.2016.1183667 |
|
[13] |
HISCOCK T W, TSCHOPP P, TABIN C J.
On the formation of digits and joints during limb development[J]. Dev Cell, 2017, 41(5): 459–465.
DOI:10.1016/j.devcel.2017.04.021 |
|
[14] |
VAN DINTHER M, VISSER N, DE GORTER DJ, et al.
ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type Ⅰ receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation[J]. J Bone Miner Res, 2010, 25(6): 1208–1215.
|
|
[15] |
RIGUEUR D, BRUGGER S, ANBARCHIAN T, et al.
The type Ⅰ BMP receptor ACVR1/ALK2 is required for chondrogenesis during development[J]. J Bone Miner Res, 2015, 30(4): 733–741.
DOI:10.1002/jbmr.2385 |
|
[16] |
YOON BS, OVCHINNIKOV DA, YOSHⅡ I, et al.
Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo[J]. Proc Natl Acad Sci U S A, 2005, 102(14): 5062–5067.
DOI:10.1073/pnas.0500031102 |
|
[17] |
RETTING K N, SONG B, YOON B S, et al.
BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation[J]. Development, 2009, 136(7): 1093–1104.
DOI:10.1242/dev.029926 |
|
[18] |
ZHANG H, BRADLEY A.
Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development[J]. Development, 1996, 122(10): 2977–2986.
|
|
[19] |
SHU B, ZHANG M, XIE R, et al.
BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development[J]. J Cell Sci, 2011, 124(Pt 20): 3428–3440.
|
|
[20] |
ESTRADA K D, WANG W G, RETTING K N, et al.
Smad7 regulates terminal maturation of chondrocytes in the growth plate[J]. Dev Biol, 2013, 382(2): 375–384.
DOI:10.1016/j.ydbio.2013.08.021 |
|
[21] |
ESTRADA K D, RETTING K N, CHIN A M, et al.
Smad6 is essential to limit BMP signaling during cartilage development[J]. J Bone Miner Res, 2011, 26(10): 2498–2510.
DOI:10.1002/jbmr.v26.10 |
|
[22] |
GAO L, SHEU T J, DONG YF, et al.
TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages[J]. J Cell Sci, 2013, 126(Pt 24): 5704–5713.
|
|
[23] |
KAWANO Y, KYPTA R.
Secreted antagonists of the Wnt signalling pathway[J]. J Cell Sci, 2003, 116(Pt 13): 2627–2634.
|
|
[24] |
BHATTARAM P, PENZO-MÉNDEZ A, KATO K, et al.
SOXC proteins amplify canonical WNT signaling to secure nonchondrocytic fates in skeletogenesis[J]. J Cell Biol, 2014, 207(5): 657–671.
DOI:10.1083/jcb.201405098 |
|
[25] |
AKIYAMA H, LYONS J P, MORI-AKIYAMA Y, et al.
Interactions between Sox9 and beta-catenin control chondrocyte differentiation[J]. Genes Dev, 2004, 18(9): 1072–1087.
DOI:10.1101/gad.1171104 |
|
[26] |
CHAO B N, BALDWIN W H, HEALEY J F, et al.
Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene[J]. J Thromb Haemost, 2016, 14(2): 346–355.
DOI:10.1111/jth.13202 |
|
[27] |
ZHU M, CHEN M, ZUSCIK M, et al.
Inhibition of beta-catenin signaling in articular chondrocytes results in articular cartilage destruction[J]. Arthritis Rheum, 2008, 58(7): 2053–2064.
DOI:10.1002/art.v58:7 |
|
[28] |
HUNG I H, SCHOENWOLF G C, LEWANDOSKI M, et al.
A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development[J]. Dev Biol, 2016, 411(1): 72–84.
DOI:10.1016/j.ydbio.2016.01.008 |
|
[29] |
ORNITZ D M, MARIE P J.
Fibroblast growth factor signaling in skeletal development and disease[J]. Genes Dev, 2015, 29(14): 1463–1486.
DOI:10.1101/gad.266551.115 |
|
[30] |
KARUPPAIAH K, YU K, LIM J, et al.
FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth[J]. Development, 2016, 143(10): 1811–1822.
DOI:10.1242/dev.131722 |
|
[31] |
MATSUSHITA T, CHAN Y Y, KAWANAMI A, et al.
Extracellular signal-regulated kinase 1(ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis[J]. Mol Cell Biol, 2009, 29(21): 5843–5857.
DOI:10.1128/MCB.01549-08 |
|
[32] |
LIU ES, RAIMANN A, CHAE BT, et al.
c-Raf promotes angiogenesis during normal growth plate maturation[J]. Development, 2016, 143(2): 348–355.
DOI:10.1242/dev.127142 |
|
[33] |
LEE R T, ZHAO Z, INGHAM P W.
Hedgehog signalling[J]. Development, 2016, 143(3): 367–372.
DOI:10.1242/dev.120154 |
|
[34] |
CHIANG C, LITINGTUNG Y, LEE E, et al.
Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function[J]. Nature, 1996, 383(6599): 407–413.
DOI:10.1038/383407a0 |
|
[35] |
AMANO K, DENSMORE M J, LANSKE B.
Conditional deletion of Indian Hedgehog in limb mesenchyme results in complete loss of growth plate formation but allows mature osteoblast differentiation[J]. J Bone Miner Res, 2015, 30(12): 2262–2272.
DOI:10.1002/jbmr.2582 |
|
[36] |
ENGIN F, LEE B.
NOTCHing the bone:insights into multi-functionality[J]. Bone, 2010, 46(2): 274–280.
DOI:10.1016/j.bone.2009.05.027 |
|
[37] |
WANG C C, INZANA J A, MIRANDO A J, et al.
NOTCH signaling in skeletal progenitors is critical for fracture repair[J]. J Clin Invest, 2016, 126(4): 1471–1481.
DOI:10.1172/JCI80672 |
|
[38] |
CHEN S, TAO J N, BAE Y J, et al.
Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9[J]. J Bone Miner Res, 2013, 28(3): 649–659.
DOI:10.1002/jbmr.1770 |
|
[39] |
KOHN A, RUTKOWSKI T P, LIU Z Y, et al.
Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9[J]. Bone Res, 2015, 3: 15021.
DOI:10.1038/boneres.2015.21 |
|
[40] |
RUTKOWSKI T P, KOHN A, SHARMA D, et al.
HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development[J]. J Cell Sci, 2016, 129(11): 2145–2155.
DOI:10.1242/jcs.181271 |
|
[41] |
VORTKAMP A, LEE K, LANSKE B, et al.
Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein[J]. Science, 1996, 273(5275): 613–622.
DOI:10.1126/science.273.5275.613 |
|
[42] |
CUNNINGHAM T J, DUESTER G.
Mechanisms of retinoic acid signalling and its roles in organ and limb development[J]. Nat Rev Mol Cell Biol, 2015, 16(2): 110–123.
DOI:10.1038/nrm3932 |
|
[43] |
YAN B, ZHANG Z M, JIN D D, et al.
mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation[J]. Nat Commun, 2016, 7: 11151.
DOI:10.1038/ncomms11151 |
|
[44] |
MURRAY P G, HANSON D, COULSON T, et al.
3-M syndrome:a growth disorder associated with IGF2 silencing[J]. Endocr Connect, 2013, 2(4): 225–235.
DOI:10.1530/EC-13-0065 |
|
[45] |
REALE M E, WEBB I C, WANG X, et al.
The transcription factor Runx2 is under circadian control in the suprachiasmatic nucleus and functions in the control of rhythmic behavior[J]. PLoS One, 2013, 8(1): e54317.
DOI:10.1371/journal.pone.0054317 |
|