吉林大学学报(医学版)  2018, Vol. 44 Issue (06): 1312-1316

扩展功能

文章信息

李波, 唐思嘉, 刘可可, 刘璐瑶, 张雯雯, 董春玲
姜黄素治疗急性肺损伤效果和机制的研究进展
Research progress in therapeutic effect and mechanism of curcumin in treatment of acute lung injury
吉林大学学报(医学版), 2018, 44(06): 1312-1316
Journal of Jilin University (Medicine Edition), 2018, 44(06): 1312-1316
10.13481/j.1671-587x.20180635

文章历史

收稿日期: 2017-10-18
姜黄素治疗急性肺损伤效果和机制的研究进展
李波1 , 唐思嘉1 , 刘可可1 , 刘璐瑶1 , 张雯雯1 , 董春玲2     
1. 吉林大学口腔医院实验教学中心, 吉林 长春 130021;
2. 吉林大学第二医院呼吸内科, 吉林 长春 130041
[摘要]: 急性肺损伤(ALI)是以肺弥散功能障碍为主要特征的临床危重急症,病情易加重发展为急性呼吸窘迫综合征。目前除机械通气以外,ALI缺乏有效的治疗方法,其病死率高达40%以上。姜黄素是一种从植物姜黄中提取的多酚类活性成分,有较高的生物活性,姜黄素对ALI有明显的治疗作用。本文针对由各种致病因素引起的ALI采用姜黄素治疗的效果和作用机制进行综合论述。
关键词: 姜黄素    急性肺损伤    机械通气    急性呼吸窘迫综合征    
Research progress in therapeutic effect and mechanism of curcumin in treatment of acute lung injury

急性肺损伤(acute lung injury, ALI)临床病死率较高,多年来研究者们致力于寻找有效的治疗方法。姜黄素是一种从植物姜黄中提取的多酚类活性成分,已有多项研究[1-5]结果表明:其有明显的抗炎、抗氧化应激和抗细胞凋亡等生物效应,并在多条通路的多个分子靶点发挥作用。近年来,国内外研究[6-7]结果表明:姜黄素已成为治疗ALI的有效药物,可以通过多条细胞通路和多个分子靶点发挥治疗作用。

1 ALI

ALI是由肺内外致病因素引起的以肺弥散功能障碍为特征的疾病,其病理过程有多种促炎细胞、促炎因子、炎症因子和炎性细胞参与,涉及多条氧化应激通路,ALI破坏肺血管内皮细胞和肺泡上皮细胞,引起低氧血症[8-12],并可进一步发展为更严重的急性呼吸窘迫综合征、肺组织弥漫性炎性浸润并发进行性低氧血症以及肺毛细血管通透性增加,最终导致肺顺应性下降、气体交换功能受限,ALI病死率可高达40%~60%[13-15]。目前临床上的治疗方案以机械通气为主,但是治疗效果不好,且该方法本身就容易引起肺组织损伤[16-17],对于个体化参数的设置要求也较高[18]。当机械通气不能缓解病情时可采用气道压力释放通气、吸入血管舒张剂或高频振荡通气等方法进行治疗,但效果仍不理想[19]。由于尚无明确有效的治疗方案,ALI的发病机制也尚未完全阐明,故对于ALI的治疗仍然是医学上的一个难题。

2 姜黄素

姜黄素是一种从植物姜黄中提取的黄色多酚类物质,古时中国用其来治疗溃疡、肝脏疾病和关节炎等多种疾病[20]。研究[1-5]显示:姜黄素能够调节多个信号途径的分子靶点,包括多种细胞转录因子、炎症因子、酶、生长因子和受体等,进而表现出相应的抗炎、抗氧化、抗细胞凋亡、抗病毒、抗癌和免疫调节等活性,从而用于保护多种脏器功能。姜黄素水溶性低,代谢稳定性和化学稳定性也均较低,容易自氧化降解,其碱性水解产物(阿魏酸、香草醛、阿魏醛和阿魏酰甲烷)和自氧化产物(双环戊二酮)的效应和生物活性均低于姜黄素,这限制了姜黄素的临床应用[21]。近年来,一些人工合成的姜黄素类似物表现出了较高的水溶性和生物利用度,进一步增加了姜黄素临床应用的可能性[22-26]。采用维生素E纳米乳剂作为姜黄素药物载体能增加其药效[27],采用牛血清白蛋白(bovine serum albumin, BSA)纳米颗粒作为载体的姜黄素在细胞中有更好的稳定性[28]。在水性介质中,抗菌剂地喹氯铵(dequalinium, DQA)的单链两亲分子自缔合,形成囊泡结构,称为DQA小体,将其作为姜黄素载体,极大提高了姜黄素的水溶性和生物利用率[29]。姜黄素药理作用广泛,但其应用限制较大,如何提高其稳定性和生物利用率逐渐成为人们关注的一个焦点。

3 姜黄素对ALI的治疗作用

多项研究[6, 30]结果表明:姜黄素对多种原因引起的ALI有很好的缓解效应,且作用机制较复杂。百草枯是全球广泛应用的除草剂,是常见有机磷农药的一种,已有研究[31]表明其对人和动物有强烈毒性作用,主要引起肺、肾和肝脏等器官损害,其中最主要受累的器官是肺脏,常常引起ALI,且易因急性呼吸窘迫综合征或呼吸衰竭致死[32]。研究[6]显示:姜黄素能有效缓解百草枯所致的ALI。姜黄素能明显增加百草枯处理的小鼠肺组织中的超氧化物歧化酶(superoxide dismutase, SOD)和过氧化氢酶活性,降低丙二醛(malonaldehyde, MDA)、乳酸脱氢酶(lactate dehydrogenase, LDH)水平和肺湿/干重比,减少支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)中的总细胞数、髓过氧化物酶(myeloperoxidase, MPO)水平以及嗜中性粒细胞浸润,降低肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)和一氧化氮(nitric oxide, NO)等水平,降低小鼠死亡率[6]。基质金属蛋白酶(matrix metalloproteinases, MMPs)是在肺损伤早期由多种促炎细胞(淋巴细胞、巨噬细胞、中性粒细胞、成纤维细胞和内皮细胞)分泌的因子。姜黄素能抑制基质金属蛋白酶9(matrix metalloproteinases-9, MMP-9)活性,并使α平滑肌肌动蛋白(α-smooth muscle actin, α-SMA)分泌减少,从而抑制肺损伤早期的肺纤维化,减少蛋白沉积和小支气管损伤,抑制活性氧(reactive oxygen species, ROS)水平[7],上述研究表明姜黄素既能抑制ALI病程中的炎症反应,也能减轻氧化应激水平,从而对早期肺损伤有治疗作用。另一种应用较为广泛的杀虫除螨剂毒死蝉,在较低剂量下即可造成动物死亡[33],且对于肺脏的毒性作用明显[34]。姜黄素也可以缓解毒死蝉对肺的较为长期的毒性作用[35]。上述研究结果表明:姜黄素不仅可以缓解有机磷农药中毒导致的ALI,且对于肺功能也有长期保护作用,提示姜黄素另一个潜在的应用价值。脓毒症常引起多器官损伤,且机制复杂多变,常涉及多个信号通路和分子靶点[36],其引起的ALI以重症急性炎症为主,伴有毛细血管通透性明显增加[37-38]。研究[30]表明姜黄素能有效治疗或缓解脓毒症诱导的ALI,使ALI模型大鼠的存活率提高40%~50%。姜黄素可增强腺苷单磷酸激活蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)及其下游的乙酰辅酶A羧化酶(acetyl-CoA carboxylase, ACC)的磷酸化,且具有时间和浓度依赖性,能减少脂多糖(lipopolysaccharide, LPS)诱导巨噬细胞产生的TNF-α、巨噬细胞炎症蛋白2(macrophage inflammatory protein-2, MIP-2)、白细胞介素6(interleukin-6, IL-6)水平以及BALF中的嗜中性粒细胞数,降低肺MPO水平和肺湿/干重比[39]。人工合成的姜黄素类似物大多发挥抗炎作用以缓解ALI,且苯环上甲氧基(eOCH3)的位置对于抗炎作用的强弱起重要作用,白藜芦醇与某些姜黄素类似物缔合醛醇分子也有抗炎保护肺组织的作用[22-26]。也有研究[40]表明姜黄素作用于NF-κB通路可抑制炎症反应,并可能通过抑制TGF-β1/SMAD3通路来维持肺组织中血管内皮细胞稳定[41]。姜黄素可降低NO和MDA水平,并使SOD和过氧化氢酶的水平升高,通过其抗氧化功能发挥对ALI的治疗作用[42]。由于脓毒症是临床上较为严重的一种疾病,对于其引起并发症的研究较多,但姜黄素治疗脓毒症引起ALI的研究与其临床重要性不成比例。未来应将姜黄素对于脓毒症引起的ALI的治疗机制或不同机制之间的效果对比进行更加深入的研究。

缺血-再灌注常引起多器官损伤,其中ALI较为常见,最主要表现为组织氧化应激损伤[43]。许多研究[44-48]表明姜黄素能有效缓解缺血-再灌注引起的ALI。姜黄素可降低ALI时MMP-9活性、MPO活性、IL-6水平和细胞间黏附分子1(intercellular cell adhesion molecule-1, ICAM-1)等炎症指数发挥抗炎作用,增加SOD活性、减少MDA水平、降低血清总氧化状态(total oxidative status, TOS)和氧化应激指数(oxidative stress index, OSI)从而发挥抗氧化作用。姜黄素的抗炎和抗氧化作用是通过抑制NF-κB通路实现的。BALF上清液中的蛋白浓度降低,显示姜黄素改善了肺泡毛细血管通透性。组织病理学检查结果显示姜黄素能减缓肺组织损伤程度,也有研究[49]结果表明姜黄素并不能缓解缺血-再灌注所致的肺损伤,其抗炎、抗氧化和降低肺损伤评分的作用均未观察到,提示对于姜黄素缓解缺血-再灌注所致ALI的机制仍需进一步探索和研究,以解释这2种相互矛盾的结果。

除上述几种ALI之外,姜黄素还能有效治疗许多其他类型的ALI。姜黄素能通过激活Erk1/2通路防止新生儿长期高氧引发的肺损伤,这为姜黄素治疗支气管发育不良提供了潜在可能[50]。平均粒径为200 nm的姜黄素可保护低压缺氧引起的ALI。纳米姜黄素通过抑制Akt/Erk信号通路实现其对低压缺氧条件下肺的保护功效,使ET-1/2/3及其受体的表达下降至正常水平,Na+/K+ATP酶(Na+/K+ATPase)上升至正常水平,预防肺水肿形成,维持肺氧化还原状态,且效果强于姜黄素[51]。对于长期射线照射引起的肺损伤,姜黄素也有较好的治疗效果,其能抑制NF-κB通路,降低TNF-α、TNF受体1(TNF receptor 1, TNFR1)和环氧合酶2(cyclooxygenase-2, COX-2)水平,抑制肺的炎症和纤维化[52]。对于剂量高达15 mg·kg-1的强氧化剂重铬酸钾(K2Cr2O7)引起的多器官损伤,姜黄素通过其抗氧化作用而表现出明显的对心、肺和肾等器官的保护作用[53]。姜黄素对糖尿病引起的肺损伤也有缓解作用。姜黄素抑制NF-κB的激活,从而抑制NO和前列腺素E2(prostaglandin E2, PGE2)的合成,减少肺部炎症反应和氧化应激,并最终缓解糖尿病引起的肺损伤[54]。研究[55]显示:在大鼠热吸入性ALI模型中,姜黄素通过增强CFTR基因表达从而抑制MAPK/NF-κB通路活化,降低了热吸入损伤时COX-2、PGE2和IL-8水平,证明其具有缓解热损伤引起肺部炎症的潜力。

4 展望

综上所述,姜黄素可有效治疗ALI,其能通过调节多个信号通路的分子靶点发挥对ALI的治疗作用,且对长期肺损伤、其他呼吸系统疾病和多种器官损伤亦有保护作用。然而现在仍有一些与文中结论相悖的研究结果,说明目前关于姜黄素治疗ALI的分子水平机制的研究仍然缺乏,且姜黄素在生物体内的稳定性和生物利用率也有待提高。未来研究者需要进一步研究和探讨并完善姜黄素治疗ALI的机制,并为姜黄素能安全且准确应用于临床提供支持。

参考文献
[1] Shakeri F, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of curcumin in ovalbumin-sensitized rat[J]. Biofactors, 2017, 43(4): 567–576. DOI:10.1002/biof.v43.4
[2] Hu A, Huang JJ, Zhang JF, et al. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway[J]. Oncotarget, 2017, 8(31): 50747–50760.
[3] Xu X, Zhu Y. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway[J]. Am J Transl Res, 2017, 9(8): 3633–3641.
[4] Han S, Xu J, Guo X, et al. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production[J]. Clin Exp Pharmacol Physiol, 2018, 45(1): 84–93. DOI:10.1111/1440-1681.12848
[5] Shrestha S, Zhu J, Wang Q, et al. Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKbeta/NF-kappaB/COX-2 signaling pathway[J]. Int J Oncol, 2017, 51(4): 1249–1260. DOI:10.3892/ijo.2017.4097
[6] Tyagi N, Kumari A, Dash D, et al. Protective effects of intranasal curcumin on paraquot induced acute lung injury (ALI) in mice[J]. Environ Toxicol Pharmacol, 2014, 38(3): 913–921. DOI:10.1016/j.etap.2014.10.003
[7] Tyagi N, Dash D, Singh R. Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model[J]. Inflammopharmacology, 2016, 24(6): 335–345. DOI:10.1007/s10787-016-0286-z
[8] Lu Q, Mundy M, Chambers E, et al. Alda-1 protects against acrolein-induced acute lung injury and endothelial barrier dysfunction[J]. Am J Respir Cell Mol Biol, 2017, 57(6): 662–673. DOI:10.1165/rcmb.2016-0342OC
[9] Zhang Q, Wu D, Yang Y, et al. Dexmedetomidine alleviates hyperoxia-induced acute lung injury via inhibiting NLRP3 inflammasome activation[J]. Cell Physiol Biochem, 2017, 42(5): 1907–1919. DOI:10.1159/000479609
[10] Lax S, Rayes J, Wichaiyo S, et al. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(6): L1016–L1029. DOI:10.1152/ajplung.00023.2017
[11] Gong Y, Lan H, Yu Z, et al. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells[J]. Biochem Biophys Commun, 2017, 491(2): 522–529. DOI:10.1016/j.bbrc.2017.05.173
[12] Huang H, Wang Y. The protective effect of cinnamaldehyde on lipopolysaccharide induced acute lung injury in mice[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(8): 58–63. DOI:10.14715/cmb/2017.63.8.13
[13] Máca J, Jor O, Holub M, et al. Past and present ARDS mortality rates:a systematic review[J]. Respir Care, 2017, 62(1): 113–122. DOI:10.4187/respcare.04716
[14] Balakrishnan A, Drobatz KJ, Silverstein DC. Retrospective evaluation of the prevalence, risk factors, management, outcome, and necropsy findings of acute lung injury and acute respiratory distress syndrome in dogs and cats:29 cases (2011-2013)[J]. J Vet Emerg Crit Care (San Antonio), 2017, 27(6): 662–673. DOI:10.1111/vec.2017.27.issue-6
[15] Tan Z, Wang H, Sun J, et al. Effects of propofol pretreatment on lung morphology and heme oxygenase-1 expression in oleic acid-induced acute lung injury in rats[J]. Acta Cir Bras, 2018, 33(3): 250–258. DOI:10.1590/s0102-865020180030000007
[16] Frat JP, Coudroy R, Marjanovic N, et al. High-flow nasal oxygen therapy and noninvasive ventilation in the management of acute hypoxemic respiratory failure[J]. Ann Transl Med, 2017, 5(14): 297. DOI:10.21037/atm
[17] Xu Z, Gu L, Bian Q, et al. Oxygenation, inflammatory response and lung injury during one lung ventilation in rabbits using inspired oxygen fraction of 0.6 vs 1.0[J]. J Biomed Res, 2016, 31(1): 56–64.
[18] Nieman GF, Satalin J. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI)[J]. Intensive Care Med Exp, 2017, 5(1): 8. DOI:10.1186/s40635-017-0121-x
[19] Schmidt GA. Managing acute lung injury[J]. Clin Chest Med, 2016, 37(4): 647–658. DOI:10.1016/j.ccm.2016.07.005
[20] Shishodia S, Sethi G, Aggarwal BB. Curcumin:getting back to the roots[J]. Ann N Y Acad Sci, 2005, 1056: 206–217. DOI:10.1196/annals.1352.010
[21] Zhu J, Sanidad KZ, Sukamtoh E, et al. Potential roles of chemical degradation in the biological activities of curcumin[J]. Food Funct, 2017, 8(3): 907–914. DOI:10.1039/C6FO01770C
[22] Francis AP, Devasena T, Ganapathy S, et al. Multi-walled carbon nanotube-induced inhalation toxicity:Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate[J]. Nanomedicine, 2018, 14(6): 1809–1822. DOI:10.1016/j.nano.2018.05.003
[23] Zhou G, Sun G, Zhou Y, et al. Transcriptomic analysis of human non-small lung cancer cells A549 treated by one synthetic curcumin derivative MHMD[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(9): 35–39. DOI:10.14715/cmb/2017.63.9.7
[24] Zhang Y, Liang D, Dong L, et al. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury[J]. Respir Res, 2015, 16: 43. DOI:10.1186/s12931-015-0199-1
[25] Feng J, Xiao B, Chen W, et al. Synthesis and anti-inflammatory evaluation of novel C66 analogs for the treatment of LPS-induced acute lung injury[J]. Chem Biol Drug Des, 2015, 86(4): 753–763. DOI:10.1111/cbdd.2015.86.issue-4
[26] Feng C, Xia Y, Zou P, et al. Curcumin analog L48H37 induces apoptosis through ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human lung cancer cells[J]. Mol Carcinog, 2017, 56(7): 1765–1777. DOI:10.1002/mc.v56.7
[27] Shukla P, Dwivedi P, Gupta PK, et al. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis[J]. Expert Opin Drug Deliv, 2014, 11(11): 1697–1712. DOI:10.1517/17425247.2014.932769
[28] Jiang Y, Wong S, Chen F, et al. Influencing selectivity to cancer cells with mixed nanoparticles prepared from albumin-polymer conjugates and block copolymers[J]. Bioconjug Chem, 2017, 28(4): 979–985. DOI:10.1021/acs.bioconjchem.6b00698
[29] Zupancic Š, Kocbek P, Zariwala MG, et al. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation[J]. Mol Pharm, 2014, 11(7): 2334–2345. DOI:10.1021/mp500003q
[30] Xiao X, Yang M, Sun D, et al. Curcumin protects against sepsis-induced acute lung injury in rats[J]. J Surg Res, 2012, 176(1): e31–e39. DOI:10.1016/j.jss.2011.11.1032
[31] Silva R, Carmo H, Vilas-Boas V, et al. Several transport systems contribute to the intestinal uptake of Paraquat, modulating its cytotoxic effects[J]. Toxicol Lett, 2015, 232(1): 271–283. DOI:10.1016/j.toxlet.2014.10.015
[32] Nguyen V, Malik DS, Howland MA. Methylene blue protects against paraquat-induced acute lung injury in rats[J]. Int Immunopharmacol, 2014, 20(2): 358. DOI:10.1016/j.intimp.2014.03.012
[33] Gilani RA, Rafique M, Rehman A, et al. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas[J]. J Basic Microbiol, 2016, 56(2): 105–119. DOI:10.1002/jobm.v56.2
[34] Uzun FG, Demir F, Kalender S, et al. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats[J]. Food Chem Toxicol, 2010, 48(6): 1714–1720. DOI:10.1016/j.fct.2010.03.051
[35] Hassani S, Sepand MR, Jafari A, et al. Protective effects of curcumin and vitamin E against chlorpyrifos-induced lung oxidative damage[J]. Hum Exp Toxicol, 2015, 34(6): 668–676. DOI:10.1177/0960327114550888
[36] Wang Y, Shan X, Dai Y, et al. Curcumin analog L48H37 prevents lipopolysaccharide-induced TLR4 signaling pathway activation and sepsis via targeting MD2[J]. J Pharmacol Exp Ther, 2015, 353(3): 539–550. DOI:10.1124/jpet.115.222570
[37] Miyashita T, Ahmed AK, Nakanuma S, et al. A three-phase approach for the early identification of acute lung injury induced by severe sepsis[J]. In Vivo, 2016, 30(4): 341–349.
[38] Schnoor M, García Ponce A, Vadillo E, et al. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis[J]. Cell Mol Life Sci, 2017, 74(11): 1985–1997. DOI:10.1007/s00018-016-2449-x
[39] Kim J, Jeong SW, Quan H, et al. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK[J]. J Anesth, 2016, 30(1): 100–108. DOI:10.1007/s00540-015-2073-1
[40] Xu F, Diao R, Liu J, et al. Curcumin attenuates staphylococcus aureus-induced acute lung injury[J]. Clin Respir J, 2015, 9(1): 87–97. DOI:10.1111/crj.2015.9.issue-1
[41] Xu F, Lin SH, Yang YZ, et al. The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-beta1/SMAD3 pathway[J]. Int Immunopharmacol, 2013, 16(1): 1–6. DOI:10.1016/j.intimp.2013.03.014
[42] Kumari A, Tyagi N, Dash D, et al. Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice[J]. Inflammation, 2014, 38(3): 1103–1112.
[43] Fard N, Saffari A, Emami G, et al. Acute respiratory distress syndrome induction by pulmonary ischemia-reperfusion injury in large animal models[J]. J Surg Res, 2014, 189(2): 274–284. DOI:10.1016/j.jss.2014.02.034
[44] Wu NC, Wang JJ. Curcumin attenuates liver warm ischemia and reperfusion-induced combined restrictive and obstructive lung disease by reducing matrix metalloprotease 9 activity[J]. Transplant Proc, 2014, 46(4): 1135–1138. DOI:10.1016/j.transproceed.2013.12.020
[45] Fan Z, Yao J, Li Y, et al. Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb[J]. Int J Clin Exp Pathol, 2015, 8(4): 3451–3459.
[46] Okudan N, Belviranli M, Gökbel H, et al. Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury[J]. Phytomedicine, 2013, 20(10): 844–848. DOI:10.1016/j.phymed.2013.03.022
[47] Aydin MS, Caliskan A, Kocarslan A, et al. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat[J]. Int J Surg, 2014, 12(6): 601–605. DOI:10.1016/j.ijsu.2014.04.013
[48] Yeh JH, Yang YC, Wang JC, et al. Curcumin attenuates renal ischemia and reperfusion injury-induced restrictive respiratory insufficiency[J]. Transplant Proc, 2013, 45(10): 3542–3545. DOI:10.1016/j.transproceed.2013.09.004
[49] Oguz A, Kapan M, Onder A, et al. The effects of curcumin on the liver and remote organs after hepatic ischemia reperfusion injury formed with Pringle manoeuvre in rats[J]. Eur Rev Med Pharmacol Sci, 2013, 17(4): 457–466.
[50] Sakurai R, Villarreal P, Husain S, et al. Curcumin protects the developing lung against long-term hyperoxic injury[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(4): L301–L311. DOI:10.1152/ajplung.00082.2013
[51] Nehra S, Bhardwaj V, Bansal A, et al. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats[J]. J Physiol Biochem, 2016, 72(4): 763–779. DOI:10.1007/s13105-016-0515-3
[52] Cho YJ, Yi CO, Jeon BT, et al. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs[J]. Korean J Physiol Pharmacol, 2013, 17(4): 267–274. DOI:10.4196/kjpp.2013.17.4.267
[53] Garcia-Nino WR, Zatarain-Barron ZL, Hernandez-Pando R, et al. Oxidative stress markers and histological analysis in diverse organs from rats treated with a hepatotoxic dose of Cr(Ⅵ):effect of curcumin[J]. Biol Trace Elem Res, 2015, 167(1): 130–145. DOI:10.1007/s12011-015-0283-x
[54] Zhang F, Yang F, Zhao H, et al. Curcumin alleviates lung injury in diabetic rats by inhibiting NF-kappaB pathway[J]. Clin Exp Pharmacol Physiol, 2015, 42(9): 956–963. DOI:10.1111/cep.2015.42.issue-9
[55] Dong ZW, Chen J, Ruan YC, et al. CFTR-regulated MAPK/NF-kappaB signaling in pulmonary inflammation in thermal inhalation injury[J]. Sci Rep, 2015, 5: 15946–15958. DOI:10.1038/srep15946