吉林大学学报(医学版)  2018, Vol. 44 Issue (06): 1205-1211

扩展功能

文章信息

王廷刚, 薛峰, 李宇, 牛兆健, 王野
WANG Tinggang, XUE Feng, LI Yu, NIU Zhaojian, WANG Ye
miR-26a靶向HMGA1基因对结肠癌细胞生长、侵袭和迁移的影响
Effects of miR-26a targeting HMGA1 gene on growth, invasion and migration of colon cancer cells
吉林大学学报(医学版), 2018, 44(06): 1205-1211
Journal of Jilin University (Medicine Edition), 2018, 44(06): 1205-1211
10.13481/j.1671-587x.20180617

文章历史

收稿日期: 2018-05-21
miR-26a靶向HMGA1基因对结肠癌细胞生长、侵袭和迁移的影响
王廷刚1 , 薛峰2 , 李宇2 , 牛兆健2 , 王野1     
1. 青岛海慈医疗集团普外科, 山东 青岛 266000;
2. 青岛大学医学院附属医院普外科, 山东 青岛 266000
[摘要]: 目的: 探讨miR-26a靶向高迁移率族蛋白1(HMGA1)基因对结肠癌细胞生长、侵袭和迁移的影响,阐明HMGA1基因是否为miR-26a的靶基因。方法: 将miR-NC(对照)、miR-26a mimics(模拟物)和miR-26a inhibitor(抑制物)转染人结肠癌SW480细胞作为miR-NC组、miR-26a mimics组和miR-26a inhibitor组。RT-PCR和Western blotting法分别检测各组SW480细胞中HMGA1 mRNA和蛋白表达水平。采用荧光素酶报告基因检测试剂盒检测各组SW480细胞中双荧光素酶活性,以此确定HMGA1是否为miR-26a的靶基因。采用CCK8实验检测各组细胞增殖活力,Transwell小室法检测各组细胞侵袭数和迁移数。结果: HMGA1基因是miR-26a的靶基因。与miR-NC组比较,转染24、48和72 h时miR-26a mimics组SW480细胞增殖活力明显降低(P < 0.01),而miR-26a inhibitor组细胞增殖活力明显升高(P < 0.01)。与miR-NC组比较,各时间点miR-26a mimics组和miR-26a mimics+pcDNA3.1-HMGA1组细胞增殖活力、细胞侵袭数和细胞迁移数均降低(P < 0.01),而miR-NC+pcDNA3.1-HMGA1组细胞增殖活力、细胞侵袭数和细胞迁移数均升高(P < 0.01);与miR-26a mimics组比较,各时间点miR-26a mimics+pcDNA3.1-HMGA1组细胞增殖活力、细胞侵袭数和细胞迁移数均升高(P < 0.01);与miR-NC+pcDNA3.1-HMGA1组比较,各时间点miR-26a+pcDNA3.1-HMGA1组细胞增殖活力、细胞侵袭数和细胞迁移数均降低(P < 0.01)。结论: HMGA1是miR-26a的靶基因。上调miR-26a表达可抑制人结肠癌SW480细胞增殖,下调miR-26a表达可促进人结肠癌SW480细胞增殖。
关键词: miR-26a    高迁移率族蛋白1    结肠肿瘤    增殖    侵袭    迁移    
Effects of miR-26a targeting HMGA1 gene on growth, invasion and migration of colon cancer cells
WANG Tinggang1, XUE Feng2, LI Yu2, NIU Zhaojian2, WANG Ye1     
1. Department of General Surgery, Qingdao Haici Medical Group, Qingdao 266000, China;
2. Department of General Surgery, Affiliated Hospital, College of Medical Sciences, Qiingdao University, Qingdao 266000, China
[ABSTRACT]: Objective: To investigate the effects of miR-26a targeting high mobility group protein 1(HMGA1) gene on the growth, invasion and migration of colon cancer cells, and to clarify whether the HMGA1 gene was the target gene of miR-26a. Methods: The miR-NC(miR-NC group), miR-26a mimics(miR-26a mimics group) and miR-26a inhibitor (miR-26a inhibitor group) were transfected into the human colon cancer SW480 cells. RT-PCR and Western blotting methods were used to detect the mRNA and protein expression levels of HMGA1. Luciferase reporter gene detection kit was used to detect the double luciferase activity in SW480 cells and to determine whether HMGA1 was the target gene of miR-26a.The cell proliferation activities of cells in various groups were detected by CCK8 assay; the number of invasion and migration cells was detected by Transwell chamber method. Results: HMGA1 gene was the target gene of miR-26a.Compared with miR-NC group, the proliferation activities of colon cancer SW480 cells in miR-26a mimics group at after 24, 48 and 72 h after transfection were significantly decreased(P < 0.01), while the proliferation activities of colon cancer SW480 cells in miR-26a inhibitor group were significantly increased (P < 0.01). Compared with miR-NC group, the proliferation activities of colon cancer SW480 cells, the number of invasion and migration cells in miR-26a mimics group and miR-26a mimics+pcDNA3.1-HMGA1 group at different time points were significantly decreased(P < 0.01); the proliferation activities of colon cancer SW480 cells, the number of invasion and migration cells in miR-NC+pcDNA3.1-HMGA1 group were increased (P < 0.01).Compared with miR-26a mimics group, the proliferation activities of colon cancer SW480 cells, the number of invasion and migration cells in miR-26a mimics+pcDNA3.1-HMGA1 group at different time points were increased (P < 0.01);compared with miR-NC+pcDNA3.1-HMGA1 group, the proliferation activities of colon cancer SW480 cells, the number of invasion and migration cells in miR-26 mimics+pcDNA3.1-HMGA1 group at different time points were decreased(P < 0.01). Conclusion: HMGA1 gene is the target gene of miR-26a.Up-regulation of the expression of miR-26a can inhibit the proliferation of colon cancer SW480 cells and down-regulation of the expression of miR-26a can promote the proliferation of colon cancer SW480 cells.
KEYWORDS: miR-26a     high mobility group protein 1     colon neoplasm     proliferation     invasion     migration    

结肠癌是常见的发生于消化系统的恶性肿瘤,其发病率和死亡率分别位居恶性肿瘤第2位和第4位。目前对结肠癌的形成、发展、治疗和预后虽有新的认识,但仍未发现合适的标记物用于分析结肠癌的发病机制、诊断和治疗[1-2]

结肠癌的发生是一个多步骤、多因素和多阶段的过程,目前对结肠癌的研究[3]主要集中在mRNA和蛋白水平。微小RNA(microRNA,miRNA)是一类长度为18~25个核苷酸的小分子非编码RNA,可在转录后调控基因的表达,目前关于miRNA抑制肿瘤发生的研究[4]逐渐增多,miR-26a是miRNA的一种,其在肿瘤中作用的研究[5]也明显增多。研究[6]显示:在鼻咽癌组织和细胞中miR-26a表达水平降低,并通过靶向EZH2基因抑制癌细胞的生长和致瘤性。高迁移率族蛋白1(high mobility group protein1,HMGA1)是miR-26a的一个靶基因,miR-26a可靶向HMGA1调控膀胱癌细胞的生长、凋亡、侵袭和迁移[7]。作为HMGA家族一员,HMGA1在人类各种肿瘤发生发展中起重要作用[8]。miR-26a在不同癌症中的功能与其靶标有关,关于其靶向调节HMGA1对结肠癌细胞的生物学特性的影响机制尚不清楚。因此,本研究旨在探讨miR-26a靶向HMGA1对结肠癌细胞生长、侵袭和迁移的影响,以期为后续研究提供依据。

1 材料与方法 1.1 细胞、主要试剂和仪器

人结肠癌SW480细胞购自中国科学院细胞库。胎牛血清、RPMI1640培养基、胰酶和青链霉素购自美国Gibco公司,BCA和CCK8试剂盒购自中国碧云天生物技术有限公司,SYBR Green购自上海生工生物工程有限公司,双荧光报告基因检测试剂盒购自美国Promega公司,miR-26a mimics、miR-26ainhibitor和miR-NC购自广州锐博生物科技有限公司,pcDNA3.1载体购自美国Invitrogen公司,PGL3荧光素酶报告基因载体购自北京普洛麦格生物技术有限公司。CO2细胞培养箱购自美国Thermo公司,倒置荧光显微镜购自日本Olympus公司,实时定量PCR仪购自美国ABI公司。

1.2 细胞培养

将装有人结肠癌SW480细胞的冻存管从液氮罐中取出,37℃水浴解冻后,采用移液枪将细胞转移到5 mL无菌离心管中,加入含有10%FBS、100 mg·L-1链霉素和100 U·L-1青霉素的RPMI1640培养基中,1 000 r·min-1离心5 min,弃去上清,加入细胞培养液悬浮细胞,接种到细胞培养板中,置于37℃、5% CO2培养箱中培养。细胞贴壁后换液1次,之后每2~3 d换液1次,细胞融合度达到80%~90%时进行传代。

1.3 细胞转染和细胞中HMGA1mRNA和蛋白表达水平检测

取生长至对数期的人结肠癌SW480细胞,加入0.25 %胰酶消化细胞,消化完全后将细胞转移到新的离心管中,1 000 r·min-1离心5 min,弃去上清,加入不含有胎牛血清的不完全培养液接种到细胞培养板中,在37℃、5% CO2培养箱中培养。当细胞融合度达60%时,将miR-NC(miR-NC组)、miR-26a mimics(模拟物,miR-26amimics组)和miR-26a inhibitor(抑制物,miR-26a inhibitor组)与不完全培养基混合后加入至人结肠癌SW480细胞中,滴加至24孔板表面,37℃、5% CO2培养箱中培养48 h。采用定量RT-PCR(qRT-PCR)和Western blotting法检测SW480细胞中HMGA1mRNA和蛋白表达水平。

1.4 荧光素酶报告基因检测各组SW480细胞中双荧光素酶活性

通过TargetScan( http://www.targetscan.org/)、PicTa(http://pictar.mdc-berlin.de/)和The miRBase(http://mirbase.org/)三大靶基因预测库预测到miR-26a与HMGA1的3′-UTR有结合位点。将含有miR-26a结合位点HMGA1的3′-UTR片段插入PGL3荧光素酶报告基因载体,构建野生型和突变型HMGA1的3′-UTR荧光素酶报告载体,分别命名为Wt-HMGA1和Mut-HMGA1。将构建好的质粒进行共转染并分为3组,即miR-NC+miR-26a mimics组、Wt-HMGA1+miR-26a mimics组和Mut-HMGA1+miR-26a mimics组。置于37℃、5%CO2培养箱中培养24 h后收集细胞,采用双荧光素酶报告基因检测试剂盒检测各组SW480细胞中双荧光素酶活性。

1.5 CCK8法检测人结肠癌SW480细胞增殖活力

取转染后生长至对数期的miR-NC组、miR-26a mimics组和miR-26a inhibitor组细胞,采用细胞培养液悬浮细胞,细胞浓度调整为3×105mL-1,接种于96孔细胞培养板中,每孔加入100 μL细胞悬液,置于37℃、5% CO2培养箱中培养24、48和72 h后,加入10 μL CCK8溶液,置于37℃、5% CO2培养箱孵育2 h,酶标仪在490 nm波长处测定并记录各组吸光度(A)值,以A值反映细胞的增殖活力。

1.6 CCK8法检测转染后细胞增殖活力

将人结肠癌SW480细胞分为miR-NC组(未转染)、miR-26a mimics组(未转染)、miR-26a mimics+pcDNA3.1-HMGA1质粒共转染组(miR-26a mimics转染pcDNA3.1-HMGA1质粒)和miR-NC+pcDNA3.1-HMGA1质粒共转染组(miR-NC转染pcDNA3.1-HMGA1质粒)。取各组对数生长期的人结肠癌SW480细胞,采用0.25 %胰酶消化细胞,转移细胞至新的EP管中,1 000 r·min-1离心5 min,弃上清,与不完全培养液接种到细胞培养板中,置于37℃、5% CO2培养箱中培养24、48和72 h后,参照1.3步骤检测各组细胞的A值,以A(490)/A(630)反映各组细胞的增殖活力。

1.7 Transwell小室法检测各组SW480细胞中侵袭细胞数

将细胞分为miR-NC组、miR-26a mimics组、miR-26a mimics+pcDNA3.1-HMGA1质粒共转染组和miR-NC+pcDNA3.1-HMGA1质粒共转染组。取生长至对数期的人结肠癌SW480细胞,调整细胞浓度为1×105mL-1,取100 μL细胞悬液接种于覆盖有Matrigel基质胶的Transwell小室的上室,下层加入含10% FBS的RPMI1640培养基500 μL,培养72 h后弃去培养液,用棉签轻轻拭掉膜上的细胞,HE染色后在倒置显微镜下观察各组侵袭细胞数。

1.8 Transwell小室法检测各组SW480细胞中迁移细胞数

将细胞分为miR-NC组、miR-26a mimics组、miR-26a mimics+pcDNA3.1-HMGA1质粒共转染组和miR-NC+pcDNA3.1-HMGA1质粒共转染组。除了Transwell室上未铺Matrigel基质胶外,其他的操作如同1.7步骤。

1.9 统计学分析

采用SPSS20.0统计软件进行统计学分析。各组人结肠癌SW480细胞中HMGA1 mRNA表达水平、细胞增殖活力、侵袭细胞数和迁移细胞数以x±s表示,组间比较采用t检验,组内两两比较采用SNK-q检验。检验水准α=0.05。

2 结果 2.1 各组SW480细胞中HMGA1 mRNA和蛋白表达水平及荧光素酶活性

miR-26a mimics组SW480细胞中HMGA1 mRNA表达水平(0.273± 0.092)低于miR-NC组(0.992±0.112)(t=8.592,P=0.001),miR-26a inhibitor组SW480细胞中HMGA1 mRNA表达水平(3.754±0.241)高于miR-NC组(t=18.001,P=0.000),Western blotting检测各组SW480细胞中HMGA1蛋白表达水平见图 1~3。Wt- HMGA1+miR-26a mimics共转染组荧光素酶活性(0.383±0.054)低于miR-NC+miR-26a mimics共转染组(1.030±0.071)(t=12.563,P=0.000),而Mut-HMGA1+miR-26a mimics共转染组与miR-NC+miR-26a mimics共转染组(1.001±0.081)SW480细胞中荧光素酶活性比较差异无统计学意义(t=0.466,P=0.665),见图 4,即HMGA1是miR-26a的靶基因。

A:miR-NC group; B:miR-26a mimics group; C:miR-26a inhibitor group.*P<0.05 vs miR-NC group. 图 1 各组SW480细胞中HMGA1 mRNA表达水平 Figure 1 Expression levels of HMGA1 mRNA in SW480 cells in various groups
Lane 1:miR-NC+miR-26a inhibitor group; Lane 2:Wt-HMGA1+miR-26a mimics group; Lane 3:Mut-HMGA1+miR-26a mimics group. 图 2 各组SW480细胞中HMGA1蛋白表达电泳图 Figure 2 Electrophoregram of HMGA1 protein in SW480 cells in various groups
A:miR-NC group; B:miR-26a mimics group; C:miR-26a inhibitor group.*P < 0.01 vs miR-NC group. 图 3 各组SW480细胞中HMGA1蛋白表达水平 Figure 3 Expression levels of HMGA1 protein in SW480 cells in various groups
A:miR-NC+miR-125a mimics; B:Wt-HMGA1+miR-125a mimics; C:Mutt-HMGA1+miR-125a mimics.*P < 0.01 vs miR-NC+miR-26a mimics group. 图 4 各组SW480细胞中双荧光素酶活性 Figure 4 Duble luciferase activities of SW480 cells in various groups
2.2 各组人结肠癌SW480细胞增殖活力

miR-NC、miR-26a mimics和miR-26a inhibitor组细胞转染24(F=15.516,P=0.004)、48(F=41.849,P=0.000)和72 h(F=85.050,P=0.000)后细胞增殖活力比较差异均有统计学意义,miR-26a mimics组细胞增殖活力在上述3个时间点均明显低于miR-NC组(t24=2.566,P24=0.043;t48=4.721,P48=0.003;t72=6.547,P72=0.001),而miR-26a inhibitor组细胞增殖活力在上述3个时间点均明显高于miR-NC组(t24=2.999,P24=0.024;t48=4.426,P48=0.004;t72=6.496,P72=0.001)。见图 5表 1

*P < 0.05 vs miR-NC group. 图 5 CCK8法检测各组细胞增殖活力 Figure 5 Proliferation activities of cells in various groups detected by CCK8 method
表 1 不同时间点各组结肠癌SW480细胞的增殖活力 Table 1 Proliferation activities of colon cancer SW480 cells in various groups at different time points
(n=3, x±s)
Group Prolieration activity
(t/h) 24 48 72
miR-NC 0.345±0.036 0.462±0.041 0.578±0.046
miR-26a mimics 0.262±0.036* 0.286±0.042* 0.322±0.043*
miR-26a inhibitor 0.442±0.046* 0.627±0.053* 0.832±0.054*
F 15.516 41.849 85.050
P 0.004 0.000 0.000
* P < 0.05 vs miR-NC group.
2.3 共转染后各组细胞增殖活力

miR-NC组、miR-26a mimics组、miR-26a mimics+pcDNA3.1-HMGA1组和miR-NC+pcDNA3.1-HMGA1组细胞转染24(F=56.233,P=0.000)、48(F=60.131,P=0.000)和72 h(F=78.398,P=0.000)后SW480细胞增殖活力比较差异均有统计学意义;miR-26a mimics组(t24=7.537,P24=0.000;t48=8.265,P48=0.000;t72=10.416,P72=0.000)、miR-26a mimics+pcDNA3.1-HMGA1组(t24=2.895,P24=0.028;t48=4.216,P48=0.003;t72=5.149,P72=0.001)细胞增殖活力在3个时间点均明显低于miR-NC组,miR-NC+pcDNA3.1-HMGA1组细胞增殖活力在3个时间点均明显高于miR-NC组(t24=4.264,P24=0.003;t48=4.484,P48=0.002;t72=4.002,P72=0.004);miR-26a mimics+pcDNA3.1-HMGA1组细胞增殖活力在3个时间点明显高于miR-26a mimics组(t24=4.427,P24=0.002;t48=4.049,P48=0.004;t72=5.267,P72=0.001),低于miR-NC+pcDNA3.1-HMGA1组(t24=7.026,P24=0.000;t48=8.700,P48=0.002;t72=9.151,P72=0.004)。见表 2

表 2 不同时间点共转染后各组细胞增殖活力 Table 2 Proliferation activities of colon cancer SW480 cells in various groups at different time points after co-transfection
(n=3, x±s)
Group Proliferation activity
(t/h) 24 48 72
miR-NC 0.366±0.036 0.538±0.041 0.697±0.046
miR-26a mimics 0.206±0.036*△ 0.291±0.041*△ 0.343±0.043*△
miR-26a mimics +pcDNA3.1-HMGA1 0.469±0.031* 0.412±0.034* 0.522±0.039*
miR-NC + pcDNA3.1-HMGA1 0.625±0.034*△ 0.672±0.029*△ 0.833±0.038*△
F 79.073 60.131 78.398
P 0.000 0.000 0.000
* P < 0.01 vs miR-NC group; P < 0.01 vs miR-26a mimics + pcDNA3.1-HMGA1 group.
2.4 共转染后各组SW480细胞侵袭细胞数

miR-NC组、miR-26a mimics组、miR-26a mimics+ pcDNA3.1-HMGA1组和miR-NC+pcDNA3.1-HMGA1组细胞转染72 h后,Transwell小室法检测细胞侵袭结果显示:miR-26a mimics组和miR-26a mimics+pcDNA3.1-HMGA1组侵袭细胞数均明显低于miR-NC组(t1=12.953,P1=0.000;t2=4.741,P2=0.002),miR-NC+pcDNA3.1-HMGA1组侵袭细胞数明显高于miR-NC组(t=4.956,P=0.001);miR-26a mimics+pcDNA3.1-HMGA1组侵袭细胞数明显高于miR-26a mimics组(t=8.212,P=0.000),低于miR-NC+pcDNA3.1-HMGA1组(t=9.697,P=0.000)。见表 3

表 3 共转染后各组侵袭细胞数 Table 3 Number of invasion cells in various groups after co-transfection
Group Number of invasion cells Number ofmigration cells
miR-NC 139.8±5.6 189.8±8.7
miR-26a mimics 67.4±6.2* 97.4±9.6*
miR-26a mimics+ pcDNA3.1-HMGA1 113.3±7.1*△# 147.3±10.5*△#
miR-NC+ pcDNA3.1-HMGA1 167.5±8.2* 239.2±13.8*
F 116.168 93.540
P 0.000 0.000
* P < 0.01 vs miR-NC group; P < 0.01 vs miR-26a mimics group; # P < 0.01 vs miR-NC+pcDNA3.1-HMGA1 group.
2.5 共转染后各组SW480细胞中迁移细胞数

miR-NC组、miR-26a mimics组、miR-26a mimics+ pcDNA3.1-HMGA1组和miR-NC+pcDNA3.1-HMGA1组细胞转染72 h后,Transwell小室法检测结果显示:miR-26a mimics组和miR-26a mimics+pcDNA3.1-HMGA1组迁移细胞数均明显低于miR-NC组(t1=10.456,P1=0.000;t2=4.809,P2=0.001),miR-NC+pcDNA3.1-HMGA1组迁移细胞数明显高于miR-NC组(t=5.590,P=0.001);miR-26a mimics+pcDNA3.1-HMGA1组迁移细胞数明显高于miR-26a mimics组(t=16.046,P=0.000),低于miR-NC+pcDNA3.1-HMGA1组(t=10.400,P=0.000)。见表 3

3 讨论

在过去的几十年间,研究者[9-10]发现:miRNA可作为主要的调控因子参与肿瘤的发生,这给肿瘤分子途径的研究提供了新的视角,针对不同类型、不同时期和级别的肿瘤参与调控的miRNA可能不同,这使miRNA作为特异性肿瘤标志物成为可能。miR-26a在肿瘤方面已有很多研究,但其在肿瘤发生中的角色仍有争议[11]。研究[12-15]显示:miR-26a在肝癌和乳腺癌等肿瘤中表达水平下调,其与靶基因结合可抑制肿瘤生长;但在肺癌和胆囊癌中可通过糖原合成激酶3β(GSK-3β)使miR-26a表达水平上调,促进肿瘤的发生。miR-26a表达和生物学功能的不同可能与癌细胞遗传背景有关。miR-26a在结肠癌细胞中的作用尚未清楚,因此本研究的目的是探讨miR-26a的生物学特性。

不同肿瘤中miR-26a的作用可能不同,这与所调控的靶基因有关[16]。HMGA1可调节多个转录因子的功能,其作为癌基因在肿瘤的发生发展中起重要作用,其在正常人中一般低表达或者表达缺失,而在一些癌症患者中常过度表达[17]。研究[18]显示:HMGA1的过度表达与膀胱癌的肿瘤分期、等级、复发和预后有关,降低HMGA1的表达可阻滞细胞周期和降低细胞活性。为了验证miR-26a是否与HMGA1共同参与结肠癌的发生发展,本研究首先验证了HMGA1是否为miR-26a的靶基因,将构建的野生型和突变型HMGA1的3′-UTR荧光素酶报告载体转染至人结肠癌SW480细胞中,并通过共转染检测细胞中荧光素酶活性,结果证实HMGA1是miR-26a的靶基因。

研究[19]显示:miR-26a在肝癌中表达下调,其表达与肝癌患者的生存期及对干扰素的敏感性有关。在乳腺癌细胞和组织中miR-26a表达水平下调,将miR-26a mimics转染细胞可明显抑制细胞的生长[20]。本研究将miR-NC、miR-26a mimics和miR-26a inhibitor共转染人结肠癌SW480细胞,转染24、48和72 h后CCK8实验检测结果显示:miR-26a mimics组细胞活力明显低于miR-NC组,miR-26a inhibitor组细胞活力明显高于miR-NC组,说明miR-26a在人结肠癌发生中起重要作用。

研究[21-22]显示:HMGA基因相关的miRNA在垂体腺瘤中表达下调,进而使HMGA1和HMGA2表达上调,但在无功能的垂体腺瘤中,下调miRNA与HMGA1上调无关,说明能够靶向HMGA基因的miRNA下调可增加人垂体腺瘤中HMGA蛋白表达。研究[23-24]显示:miR-296可通过抑制HMGA1转录从而抑制HMGA1表达,当强制表达miR-296后,可通过上调HMGA1明显降低人前列腺癌细胞的增殖和侵袭,表明HMGA1可作为miRNA的靶基因对癌细胞发生发展起作用。已有研究[25-27]证实HMGA1是miR-26a的靶基因,但miR-26a是否靶向调控HMGA1对结肠癌细胞的增殖、侵袭和迁移起作用尚不清楚。本研究结果显示:miR-26a mimics组和miR-26a mimics+ pcDNA3.1-HMGA1组细胞活力、侵袭和迁移数均明显低于miR-NC组,miR-NC+pcDNA3.1-HMGA1组细胞活力、侵袭和迁移数均明显高于miR-NC组;miR-26a mimics+pcDNA3.1-HMGA1组细胞活力、侵袭和迁移数明显高于miR-26a mimics组,低于miR-NC+pcDNA3.1-HMGA1组,说明miR-26a靶向HMGA1调控结肠癌细胞的生物学特性。

综上所述,HMGA1是miR-26a的靶基因,上调miR-26a表达可抑制人结肠癌SW480细胞增殖,下调miR-26a表达可促进细胞增殖,miR-26a可靶向HMGA1抑制细胞增殖、侵袭和迁移。

参考文献
[1] 罗真真, 张震, 乔亚敏, 等. 萝卜硫素对结直肠癌SW620细胞增殖、凋亡及迁移的影响[J]. 郑州大学学报:医学版, 2017, 52(3): 281–284.
[2] Li J, Mao X, Wang X, et al. miR-433 reduces cell viability and promotes cell apoptosis by regulating MACC1 in colorectal cancer[J]. Oncol Lett, 2017, 13(1): 81–88.
[3] 宋军民, 杨超, 常远, 等. miR-126在人结肠癌细胞中的表达及其对结肠癌细胞生物学行为的影响[J]. 中国老年学杂志, 2015, 35(6): 1453–1455. DOI:10.3969/j.issn.1005-9202.2015.06.007
[4] 杨泽波, 张媛媛, 陶开义, 等. miR-381在食管癌组织中的表达及临床意义[J]. 河北医学, 2018(3): 362–365. DOI:10.3969/j.issn.1006-6233.2018.03.003
[5] Sun TY, Xie HJ, He H, et al. miR-26a inhibits the proliferation of ovarian cancer cells via regulating CDC6 expression[J]. Am J Transl Res, 2016, 8(2): 1037–1046.
[6] 王刚. miR-26介导EZH2调控肝癌细胞増殖及迁移的作用机制研究[D].济南: 山东大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10422-1015368007.htm
[7] 林荣凯. miR-26及其靶基因HMGA1对膀胱癌的影响[D].重庆: 第三军医大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=D787265
[8] Akhter MZ, Rajeswari MR. Triplex forming oligonucleotides targeted to hmga1 selectively inhibit its expression and induce apoptosis in human cervical cancer[J]. J Biomol Struct Dyn, 2017, 35(4): 689–703.
[9] 崔瑞新, 吕风华, 岳莹, 等. microRNA-499靶控的PI3 K/Akt通路在大鼠缺血-再灌注心肌损伤中的作用[J]. 郑州大学学报:医学版, 2016, 51(6): 740–743.
[10] Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer[J]. Cancer Res, 2016, 76(13): 3666–3670.
[11] Paladini L, Fabris L, Bottai G, et al. Targeting microRNAs as key modulators of tumor immune response[J]. J Exp Clin Cancer Res, 2016, 35: 103.
[12] 邵青, 刘月, 宁守斌, 等. MiR-26a诱导人肝癌细胞凋亡的机制[J]. 华南国防医学杂志, 2015(10): 725–729.
[13] Fkih Mhamed I, Privat M, Trimeche M, et al. miR-10b, miR-26a, miR-146a And miR-153 expression in triple negative vs non triple negative breast cancer:potential biomarkers[J]. Pathol Oncol Res, 2017, 23(4): 1–13.
[14] 林高阳. miR-26a靶向GSK-3β调控β-catenin信号通路增强肺癌细胞转移潜能的机制研究[D].天津: 天津医科大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10062-1016703873.htm
[15] Chandra V, Kim JJ, Mittal B, et al. MicroRNA aberrations:An emerging field for gallbladder cancer management[J]. World J Gastroenterol, 2016, 22(5): 1787–1799. DOI:10.3748/wjg.v22.i5.1787
[16] Li J, An G, Zhang M, et al. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells[J]. Biochem Biophys Res Commun, 2016, 477(4): 743–748. DOI:10.1016/j.bbrc.2016.06.129
[17] Sepe R, Piscuoglio S, Quintavalle C, et al. HMGA1 overexpression is associated with a particular subset of human breast carcinomas[J]. J Clin Pathol, 2016, 69(2): 117–121. DOI:10.1136/jclinpath-2015-202907
[18] Cheng Y, Yang X, Deng X, et al. MicroRNA-218 inhibits bladder cancer cell proliferation, migration, and invasion by targeting BMI-1[J]. Tumour Biol, 2015, 36(10): 8015–8023. DOI:10.1007/s13277-015-3532-x
[19] Huang FY, Wong DK, Seto WK, et al. Estradiol induces apoptosis via activation of miRNA-23a and p53:implication for gender difference in liver cancer development[J]. Oncotarget, 2015, 6(33): 34941.
[20] Guzman N, Agarwal K, Asthagiri D, et al. Breast cancer-specific miR signature unique to extracellular vesicles includes "microrna-like" tRNA fragments[J]. Mol Cancer Res, 2015, 13(5): 891–901.
[21] Esposito F, De Martino M, D'Angelo D, et al. HMGA1-pseudogene expression is induced in human pituitary tumors[J]. Cell Cycle, 2015, 14(9): 1471–1475. DOI:10.1080/15384101.2015.1021520
[22] Kitchen MO, Yacqub-Usman K, Emes RD, et al. Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells[J]. Pituitary, 2015, 18(5): 674–684.
[23] Zhai H, Sui M, Jiang L, et al. MiR-296 promotes colorectal cancer cells growth through regulating NF-κB[J]. Int J clinexppath, 2016, 9(4): 4391–4396.
[24] Borges NM, do Vale Elias M, Fook-Alves VL, et al. Angiomirs expression profiling in diffuse large B-Cell lymphoma[J]. Oncotarget, 2016, 7(4): 4806–4816.
[25] Zhong Y, Yao G, Zhao G, et al. miR-26a suppresses the growth and metastasis via targeting matrix metalloproteinase 14 in pancreatic ductal adenocarcinoma[J]. Int J Clinexppath, 2016, 9(4): 4803–4809.
[26] 张玲, 屈亚威, 谈涛, 等. 高分辨率显微内镜对结肠癌诊断价值的初步研究[J]. 解放军医学杂志, 2016, 41(9): 746–749.
[27] 王蓓, 林玲. 家族性高胆固醇血症临床表型及其与基因型关系[J]. 中国实用内科杂志, 2016, 36(6): 508–511.