2. 海底科学与探测技术教育部重点实验室/中国海洋大学海洋地球科学学院, 山东 青岛 266100
2. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education/College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China
0 引言
华南板块由扬子地块和华夏地块沿江山—绍兴断裂带发生拼合[1-4],但关于华夏与扬子两大地块碰撞拼合的时限与方式长期存在争议,严重制约了对华南构造演化的认识。主流观点有两种:发生于0.82~1.00 Ga[1, 4-14];碰撞发生在820 Ma甚至更晚[15-18]。目前来看,只有少数学者认同华夏与扬子地块沿江山—绍兴断裂带在加里东期完成最终拼合的观点[19-25]。
最近,董学发等[23]提出浙江龙泉一带构造混杂岩的形成与古大洋地壳的俯冲、消减有关;彭松柏等[24-25]认为扬子地块与华夏地块之间存在早古生代洋盆并发生俯冲-增生碰撞造山作用。为了理清华夏与扬子两大地块碰撞拼合的时限,深化对华南前泥盆纪大地构造格架及演化的认识,本文对出露于浙江省诸暨地区的原“陈蔡岩群”进行了露头尺度的解剖,并对该区斜长角闪岩、大理岩、(含榴)黑云斜长片麻岩、变砂岩、变基性岩等进行了LA-ICP-MS锆石U-Pb年代学测试,并结合地球化学研究,讨论了“陈蔡岩群”的构造属性及其对扬子与华夏两大地块碰撞拼贴的指示意义。
1 “陈蔡俯冲增生杂岩”地质概况“陈蔡俯冲增生杂岩”原称“陈蔡岩群”,主要分布在浙江省诸暨境内,另外在新昌—嵊州一带也有零星出露。区域上由于白垩纪火山岩发育,加之后期断裂的严重破坏,陈蔡俯冲增生杂岩多以小的断块或构造窗的形式整体呈NE向断块状展布(图 1),前人将陈蔡俯冲增生杂岩自下而上划为捣臼湾组、下河图组、下吴宅组和徐岸组4个组[26],主要岩石类型有含榴黑云斜长片麻岩、斜长角闪岩、大理岩、片岩及变长石石英砂岩等。陈蔡俯冲增生杂岩经受了多期变形变质改造,岩石局部具有较强的混合岩化,说明其原始固有的地层特征已经发生了明显改变。
2 “陈蔡俯冲增生杂岩”中的洋岛海山组合 2.1 岩石学特征该套岩石组合主要出露于诸暨市陈蔡镇下河图村一带,呈NE向条带状展布(图 2)。斜长角闪岩呈黑绿色,似层状与大理岩共生,偶见呈团块状夹于大理岩中,可见少量浅色长英质脉体,应为变质作用过程中出溶作用产物[23], 并见后期花岗质脉体侵入;大理岩多为白色,含少量透辉石等暗色矿物及结晶非常粗大(一般粒径>2 cm)的方解石脉体。可见后期的基性岩脉侵入该变质岩组合中。
斜长角闪岩黑绿色,细粒块状。镜下呈不等粒、粒状变晶结构,弱片麻状构造。主要矿物共生组合为斜长石(体积分数约30%)、角闪石(体积分数约70%)(图 3a),部分样品中可见少量的黑云母(体积分数不到1%,略有绿泥石化)。斜长石和角闪石多为半自形,粒径一般都小于0.5 mm,部分粒径可达1 mm;角闪石单偏光下呈黄绿色-绿色多色性,正中突起,部分样品中可见一定程度的定向排列,另可见少量不透明矿物,可能为变质作用过程中析出的铁质质点。
大理岩呈粒状变晶结构,主要矿物为方解石,矿物颗粒较大,一般都大于0.5 mm。大部分样品中还有细小的石英颗粒,并充填于方解石粒间;零星可见透辉石(图 3b)。
2.2 地质年代学特征前人对该套岩石(特别是斜长角闪岩)做过较多的年代学研究工作,如:王存智等[22]利用ICP-MS锆石U-Pb法测得斜长角闪岩变质年龄为(420.6±1.8) Ma;Zhao等[27]利用ICP-MS锆石U-Pb法测得陈蔡斜长角闪岩变质年龄为(435±3)、(436±3)、(445±4) Ma。但斜长角闪岩和大理岩的成岩年龄尚未获得可靠的数据,本研究通过高精度的锆石SHRIMP U-Pb测试工作,获得了灰岩(大理岩)中碎屑锆石的最小年龄为(479.2±9.5) Ma,变质时代为(424.7±2.9) Ma,其成岩时代应介于二者之间;同时,获得斜长角闪岩中最小的岩浆锆石年龄为(507.7±7.8) Ma,其成岩年龄应为507.7~445.0 Ma。综合考虑,斜长角闪岩及大理岩原岩的成岩时代可能为479~445 Ma。
2.3 地球化学特征及其原岩下河图村斜长角闪岩稀土元素和微量元素特征均都表现出类似于OIB(洋岛玄武岩)的不相容元素配分型式(图 4),反映源区特征的Nb/La平均值为1.18,Th/Ta平均值为1.41,与典型OIB的Nb/La、Th/Ta值相近[28]。在Ta/Yb-Nb/Yb [29]和Nb/ Yb-La/Yb [30]图解(图 5a,b)中,下河图样品具有类似于OIB特征;在w(V)-w (Ti)/1 000和La/Nb-w(La)图解(图 5c,d)中,具有与板内玄武岩和洋岛玄武岩相似的特征,表明斜长角闪岩的原岩可能形成于与洋岛海山有关的环境。
下河图村大理岩的δ13CPDB值为-1.861‰~2.066‰,δ18OSMOW基本大于15‰,暗示其原岩可能为海相碳酸盐,并有较明显的δ18O降低现象[33]。同时,下河图村大理岩不同于陆相沉积低w(Sr)(< 90×10-6)和Sr/Ba值(< 0.2),而相对高w(V)(>110×10-6)和w(Ga)(>18×10-6)的特征,指示了海相沉积环境[34],与文献[35]的结论一致。在δ13CPDB-δ18OSMOW碳氧同位素示踪图解(图 6)中,基本投在海相碳酸盐岩区域并沿受碳酸盐溶解作用影响趋势线分布,推测其为海相碳酸盐岩,其δ18O值较低,可能是受到了变质作用过程中去气作用的影响。
因此,下河图村斜长角闪岩与大理岩的原岩与古洋岛海山组合的岩石组合相似,其原岩应形成于洋岛海山构造环境。
3 陈蔡俯冲增生杂岩中的原地岩块 3.1 岩石学特征该套岩石主要出露于诸暨市璜山镇萃溪村及东和乡下步溪村,其主体为厚层变砂岩、透镜状/团块状斜长角闪岩(图 7a),另可见少量后期的花岗岩侵入(图 7b)。
变砂岩主要呈灰白色,中-细粒结构,块状构造。根据不同部位长石含量不同,可细分为变长石石英砂岩、变石英砂岩,在经过一定程度的构造置换和构造变形、变质后,表现为“整体近似无序,而局部有序”。高大村变长石石英砂岩中的石英和长石均沿片理方向强烈的定向拉长,石英条带和长石条带常常“互层”产出,非常容易被误认为是残留的原生层理,其实则为片理(图 7c);石英的亚颗粒化比较明显,彼此之间多呈缝合线状接触,发育波状消光;长石多有泥化和绢云母化;二者常常呈一定程度的定向排列(图 8a)。
斜长角闪岩呈黑绿色,细粒块状。镜下呈粒状变晶结构,矿物粒径一般都为0.5 mm左右,略具定向排列(图 8b)。主要矿物共生组合为斜长石(体积分数为35%~40%)和角闪石(体积分数为50%~60%),另含少量绿帘石(体积分数为2%~5%)及石英(体积分数为 < 2%)、黑云母等;副矿物有榍石、磷灰石、锆石及金属矿物等,偶见铁质析出,并可见后期方解石细脉。后期有长英质脉体侵入,部分样品表现出明显的硅化和碳酸岩化。
3.2 地质年代学特征关于该套岩石前人所做研究工作较少。本次研究对出露于萃溪村和下步溪村的变长石石英砂岩和斜长角闪岩进行了ICP-MS锆石U-Pb研究。
变砂岩 下步溪村变长石石英砂岩样品碎屑锆石具有连续的自新太古代到古元古代的碎屑锆石年龄,其207Pb/206U年龄为1 530~3 620 Ma,谐和线的上下交点分别为(1 705±120)和(3 314±150) Ma。而在碎屑锆石的年龄频率直方图上,显示存在2 021~2 105 Ma和2 450 Ma两个主峰以及2 289 Ma的次级峰。萃溪地区斜长角闪岩样品95个测点的207Pb/206U年龄为1 710~2 932 Ma,且存在1 863和2 464 Ma的主峰,2 308和2 666 Ma的次级峰。根据二者的碎屑锆石年龄谱推测,二者可能均为古-中元古代之交沉积的地层。
斜长角闪岩 下步溪村斜长角闪岩38个锆石分析点206Pb/238U年龄加权平均值为(424.6±2.0) Ma(MSWD=0.05,n=38);而萃溪斜长角闪岩29个分析点的206Pb/238U年龄加权平均值为(438.0±2.5) Ma(MSWD=2.3,n=29),代表了二者的变质年龄。该变质年龄与下河图村斜长角闪岩和大理岩的变质年龄基本一致,推测为同期变质作用的产物。
3.3 地球化学特征及其原岩斜长角闪岩 下步溪村和萃溪村斜长角闪岩原岩为拉斑玄武质岩(图略)。其稀土元素特征与典型的OIB[28]相类似(图 9a),而Nb元素丰度变化较大((1.38~85.30)×10-6)(图 9b),部分样品原岩属于富Nb玄武岩(w(Nb) >7×10-6)[37-40];在微量元素球粒陨石标准化图中可见明显两种不同类型的样品:一种是明显的Nb、Ta正异常特征(图 9b),另一种是明显的Nb、Ta亏损特征(图 9b);Eu (δEu=0.80~1.18)和Ce (δCe=0.93~1.02)元素无很明显异常。
依据地球化学元素特征,结合稀土元素配分曲线及微量元素原始地幔标准化图解,可以将下步溪村斜长角闪岩分为3类。
第一类明显富集Nb元素(9.82×10-6~85.3×10-6),稀土元素配分曲线呈明显轻稀土富集,类似OIB的配分曲线;微量元素蛛网图上可见明显的Nb、Ta正异常,显示类似于OIB的特征[41],在Th/Yb-Ta/Yb中主要投影于OIB区域(图 10a),在w(TiO2) -w(Zr)图解中主要落入板内玄武岩区(图 10b);其La/Ce值为0.39~0.50,大于原始地幔岩的值(0.387) [42],显示其应来自富集的地幔源区[42]。
在La/Nb-w(La)构造环境判别图解(图 11a)中,该类斜长角闪岩全部落入洋岛玄武岩(OIB)区;在Zr/Y- w(Zr)图解和2Nb-Zr/4-Y图解(图 11b, 12a)中,全部落入板内碱性玄武岩和板内拉斑玄武岩区内;结合其微量元素分布特征,推测该类斜长角闪岩的原岩是洋岛玄武岩(OIB),原岩可能形成于与洋岛海山有关的环境。岩浆来自具有OIB特征的富集地幔源区,Nb的富集可能与熔融程度很低的熔体交代作用有关[44]。
第二类同样富集Nb元素(4.79×10-6~12.40×10-6)和TiO2(0.76%~2.62%),微量元素蛛网图(图 9b)中高场强元素(HFSE)Nb、Ta明显亏损,Hf、Zr、Ti弱亏损,而大离子亲石元素Sr富集,类似于消减带岛弧玄武岩(IAB)的特征[48],是受来源于俯冲板片的富LILE和LREE流体交代过的地幔楔橄榄岩的部分熔融所形成的[49]。第一类与第二类斜长角闪岩均是富Nb的玄武岩,这与Nb-Nb/U图解[38](图略)判别的结果相符。
个别样品(201-5-1)的w(MgO)较高(8.05%),Mg#值为58.97,表明该类斜长角闪岩岩浆的Nb、Ta亏损不可能是因板内岩浆受地壳混染所致,可能与俯冲板片部分熔融之后与上覆地幔橄榄岩反应有关[50-53]。在La/Nb-w(La)构造环境判别图解(图 11a)中,全部落入岛弧玄武岩(IAB)区;在Ti/100-Zr-3Y图解(图 12b)中,大部分样品落入岛弧玄武岩、钙碱性玄武岩及板内玄武岩区内;在Ti/100-Zr-Sr/2图解(图 12c)中,大部分样品落入洋中脊玄武岩和钙碱性玄武岩区内;而在Hf/3-Th-Ta图解(图 12d)中,大部分样品落在岛弧拉斑玄武岩区内。推断第二类斜长角闪岩原岩为岛弧玄武岩。
目前对于富Nb玄武岩成因仍存在争议,主流观点有两种:地幔楔橄榄岩被派生于消减大洋岩石圈的熔体(被称作埃达克熔体)交代,导致形成富集HFSE的富Nb岛弧玄武岩[37-40];岛弧之下的地幔是一种“大理石花纹状”或“脉纹状”地幔,在这种地幔中,“似OIB”富集组分以各种大小嵌布于“似MORB”亏损基质之中。上述两种幔源组分间不同程度的混合,产生了富Nb岛弧玄武岩中Nb和其他HFSE富集程度的变化[54]。相比而言,第二种成因模式的岩石地球化学证据更为充分[44]。因此,该类富Nb斜长角闪岩的形成很可能与本区早古生代俯冲事件有关。
第三类斜长角闪岩高场强元素Nb、Ta明显亏损,Hf、Zr、Ti弱亏损,大离子亲石元素Sr富集,地球化学特征类似于第二类斜长角闪岩,但是w(Nb)较低((1.38~4.37)×10-6),指示其原岩为岛弧玄武岩,产生于与俯冲消减作用有关的岩浆活动。通常情况下,与消减作用有关的玄武质岩石亏损Ta、富集Th,Th/Ta值多在4以上,而产生于岛弧环境的玄武岩比值通常大于3 [55-56],下步溪村第二类和第三类斜长角闪岩的Th/Ta平均值为4.65;在w(TiO2) -w(Zr)图解(图 10b)上,该类玄武岩全部落入火山弧玄武岩区内,在Zr/Y-w(Zr)图解(图 11b)中,落入岛弧拉斑玄武岩和板内玄武岩区域;La/Nb-w(La)构造环境判别图解(图 11a)中,第二类和第三类斜长角闪岩大部分落在岛弧玄武岩区内;在Ti/100-Zr-3Y图解和Ti/100-Zr-Sr/2图解中大部分落入岛弧玄武岩和岛弧拉斑玄武岩区内(图 12b,c);而在Hf/3-Th-Ta图解中样品大部分落入岛弧拉斑玄武岩区内(图 12d)。因此,该类斜长角闪岩的原岩可能为岛弧拉斑玄武岩,形成于消减带的岛弧环境。
变长石石英砂岩 下步溪村变长石石英砂岩未经历后期流体作用的影响,其地球化学特征能够用来判别构造属性[57]。根据Bhatia[57]提出的常量元素、微量元素构造背景判别图(图 13a、b),研究区样品大多落入或者靠近活动大陆边缘区域;在SiO2、CaO、MgO、FeOT、K2O、MnO、A12O3、Na2O和TiO2相关的F1-F2[58]双变量物源构造环境图解(图 13c)中,所有变砂岩样品基本靠近活动大陆边缘或者大陆岛弧的环境,显示总体上该区的变砂岩主要来自活动大陆边缘背景下的产物。
4 “陈蔡俯冲增生杂岩”中的基质陈蔡俯冲增生杂岩的基质可能为片麻岩或者片岩类(图 14a)。
4.1 岩石学特征片麻岩的主要矿物共生组合为黑云母+石榴子石+石英+斜长石±矽线石±钾长石±白云母。黑云母和矽线石交织共生,沿片麻理弯曲延伸,黑云母中可见有矽线石的雏晶晶出(图 14b)。白云母的产出状态有两种:一种是与黑云母共生(可能是黑云母析出铁质质点而成);另一种与斜长石共生,从斜长石内部或边部产出(可能是长石蚀变的结果)。长英质矿物发生部分熔融而呈文象结构,对应于野外露头所见之片麻岩的深熔现象。石榴子石多含长英质矿物和黑云母包裹体而呈筛状结构,代表了早期进变质作用阶段的矿物共生组合(图 14c);部分石榴子石呈明显的核边结构,核部含较多包裹体,而边部较为干净,反映石榴子石经历了二期生长阶段;另外,部分样品中可见明显的石榴子石发生熔蚀或退变成黑云母+斜长石的组合,但保留了石榴子石的假象或有少量石榴子石残留(图 14d)。
4.2 地质年代学特征前人对该地区片麻岩类进行了许多地质年代学测试工作,并取得了较多可供参考的数据。其中,片麻岩变质时代为加里东期已经形成共识,如Li等[3]和高林志等[59]利用锆石SHRIMP U-Pb法分别测得石榴片麻岩变质年龄为(447±7) Ma和431 Ma;胡艳华等[60]利用ICP-MS锆石U-Pb法测得片麻岩变质年龄为(435±4) Ma。但该套片麻岩的成岩年龄尚未获得可靠的数据,本研究利用ICP-MS锆石U-Pb法测得片麻岩中岩浆锆石年龄为(598±7) ~(1 469±16) Ma(多数为780~840 Ma),反映其物源主要来自于新元古代;其变质年龄为(441±3) Ma(MSWD=0.35,n=8),因此,该套岩石的成岩年龄应为598~441 Ma。
4.3 地球化学特征及其原岩在Simonen[61]提出的(al+fm)-(c+alk) -Si判别图解(图 15a)中,所有的样品均落入砂质沉积岩和泥质沉积岩的分界线附近,暗示其原岩主要为砂泥质沉积岩。
在La/Th-w(Hf)判别图解(图 15b)中,样品基本落在长英质源区的右侧,沿“增加古老沉积物成分”趋势线分布,暗示其原岩主要仍是砂泥质沉积岩,且有大量古老沉积物的加入。全岩地球化学分析表明,样品具有岛弧岩浆岩的地球化学特征,在Th-Co-Zr/10判别图解(图 15c)中,多数落入大陆岛弧区域,暗示其可能是形成于活动大陆边缘或大陆岛弧环境的沉积岩,主要碎屑物质来源于周围的火山弧。
综上所述,片麻岩、片岩的原岩主体为形成于活动大陆边缘或岛弧环境的砂泥质沉积岩类,并有古老碎屑物质的加入;碎屑锆石年龄表明片麻岩原岩的主要物源供给者为新元古代的地质体;最年轻的碎屑锆石时代为598 Ma,暗示其成岩时代在早古生代,经历了加里东期(447~435 Ma)变质作用。
5 地质意义自20世纪70年代以来,国内外地质学者对陈蔡岩群开展了一系列的研究工作,并取得了一系列丰硕的成果[33, 62-69]。本次研究在诸暨一带的原“陈蔡岩群”新识别出代表洋岛海山系统的大理岩、斜长角闪岩组合,获得其成岩年龄分别为479.2~424.7 Ma和507.7~420.6 Ma;划分了3种不同构造环境的斜长角闪岩类岩块,其原岩分别为形成于消减带岛弧环境的岛弧拉斑玄武岩、形成于俯冲环境下的富Nb玄武岩和洋岛海山环境下的具OIB特征的碱性玄武岩类;获得了代表基质的含榴黑云斜长片麻岩成岩时代为598~441 Ma。
虽然大多数学者认为华南洋在约820 Ma前关闭,加里东运动属于陆内造山[3, 6, 70-74],但越来越多的地质证据表明,扬子与华夏之间可能在加里东期才最终碰撞拼贴。
年代学研究表明,华夏地区基底的变质、变形作用主要发生加里东期,经历了强烈的再造和深熔作用[75-76],局部发生了角闪岩相-麻粒岩相变质作用[3, 76-78]和混合岩化[79];泥盆纪/奥陶纪角度不整合面之下前寒武基底-早古生代地层发生韧性剪切[9]和褶皱冲断变形[70]及广泛的岩浆活动[80],均呈现出碰撞造山带的特征;江山-绍兴断裂带内出露的龙游群和陈蔡群变质岩系呈现顺时针的PTt轨迹[3, 81],指示了碰撞造山作用过程;武夷山和南岭地区加里东期(约440 Ma)的麻粒岩相变质作用峰期温度为750~900 ℃、压力达到1.10~1.15 GPa[77-78],高于陆内造山作用下绿片岩相-角闪岩相的变质作用温压条件(400~500 ℃、0.3~0.8 GPa);江山-绍兴断裂带龙游地区退变榴闪岩变质锆石的年龄约为450 Ma,指示了扬子和华夏在加里东期(450~455 Ma)可能发生了碰撞造山事件[82-83];在华夏地块发现了志留纪辉长岩[73],表明加里东期存在可能的岛弧和幔源岩浆活动,明显区别于板内造山作用的岩浆活动性质;钦杭结合带西南段415 Ma海相火山岩,指示华夏-扬子在加里东期为俯冲增生造山带[84];直到约790 Ma扬子陆块东南缘仍受到强烈的洋壳俯冲,尚未与华夏陆块发生碰撞拼贴[18]。
同时,Wong等[85]通过对江山-绍兴断裂带两侧中生代酸性岩的研究认为,这两个块体在新元古代时期可能并未完全拼合;王存智等[86]在赣东北高镁安山岩中获得LA-ICP-MS锆石U-Pb法年龄为(794.8±6.0) Ma,提出该套岩石形成于大洋岛弧(洋内弧)环境,据此提出约800 Ma扬子和华夏两大陆块尚未碰撞拼合;Zhao等[27]通过对陈蔡岩群不同类型岩石的系统研究,认为扬子和华夏在古生代仍然存在大洋,陈蔡岩群为大洋洋壳的残迹。研究区存在479~445 Ma的洋岛海山组合,结合基质(黑云斜长片麻岩)中最年轻的碎屑锆石年龄(598 Ma)以及王存智等[22]和Zhao等[27]的研究结果,我们认为扬子和华夏两个地块碰撞拼合时间应在洋岛海山组合和基质形成之后、变质作用发生之前,因此我们将这一时代限定为445~420 Ma,而陈蔡岩群则可能是碰撞过程中形成的俯冲增生杂岩,其内有洋岛海山组合、洋岛玄武岩、岛弧岩浆岩、远洋沉积物等不同岩性、不同时代、不同构造属性的地质体[23, 26],伴随两大陆块的碰撞拼合而发生区域角闪岩相变质作用。
[1] |
水涛, 徐步台, 梁如华, 等. 绍兴-江山古陆对接带[J].
科学通报, 1986, 31(6): 444-448.
Shui Tao, Xu Butai, Liang Ruhua, et al. The Ancient Land Docking Zone Between Shaoxing-Jiangshan[J]. Chinese Science Bulletin, 1986, 31(6): 444-448. |
[2] |
周新民, 朱云鹤. 江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质[J].
中国科学:D辑:地球科学, 1992, 22(3): 296-304.
Zhou Xinmin, Zhu Yunhe. Magmatic Mixing and Precambrian Geology on Both Sides of Jiang-Shao Fault Zone[J]. Science in China:Series D:Earth Science, 1992, 22(3): 296-304. |
[3] | Li Z X, Li X H, Wartho J A, et al. Magmatic and Metamorphic Events During the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China:New Age Constraints and P-T Conditions[J]. GSA Bulletin, 2010, 122(5/6): 772-793. |
[4] | Zhao G C, Cawood P A. Precambrian Geology of China[J]. Precambrian Research, 2012, 222/223: 13-54. DOI:10.1016/j.precamres.2012.09.017 |
[5] | Li X H, Li Z X, Li W X. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China:A Synthesis[J]. Gondwana Research, 2014, 25: 1202-1215. DOI:10.1016/j.gr.2014.01.003 |
[6] |
舒良树. 华南构造演化的基本特征[J].
地质通报, 2012, 31(7): 1035-1053.
Shu Liangshu. An Analysis of Principal Features of Tectonic Evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053. |
[7] | Guo L Z, Shi Y S, Lu H F, et al. The Pre-Devonian Tectonic Patterns and Evolution of South China[J]. Journal of Asian Earth Sciences, 1989, 3(1): 87-93. |
[8] | Wang X L, Zhou J C, Griffin W L, et al. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen:Dating the Assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159(1): 117-131. |
[9] | Wang Y J, Fan W M, Zhang G W, et al. Phanerozoic Tectonics of the South China Block:Key Observations and Controversies[J]. Gondwana Research, 2012, 23(4): 1273-1305. |
[10] | Wang X S, Gao J, Klemd R, et al. Early Neo-proterozoic Multiple Arc-Back-Arc System Formation During Subduction-Accretion Processes Between the Yangtze and Cathaysia Blocks:New Constraints from the Supra-Subduction Zone NE Jiangxi Ophiolite (South China)[J]. Lithos, 2015, 236/237: 90-105. DOI:10.1016/j.lithos.2015.08.007 |
[11] | Wang Y J, Zhang Y Z, Fan W M. Early Neo-proterozoic Accretionary Assemblage in the Cathaysia Block:Geochronological, Lu-Hf Isotopic and Geochemical Evidence from Granitoid Gneisses[J]. Precambrian Research, 2014, 249(4): 144-161. |
[12] | Yao J L, Shu L S, Santosh M, et al. Palaeozoic Metamorphism of the Neoproterozoic Basement in NE Cathaysia:Zircon U-Pb Ages, Hf Isotope and Whole Rock Geochemistry from the Chencai Group[J]. Journal of the Geological Society, 2013, 171(2): 281-297. |
[13] | Yao J L, Shu L S, Santosh M. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt:Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China[J]. Precambrian Research, 2015, 262(1): 84-100. |
[14] | Zheng Y F, Xiao W J, Zhao G C. Introduction to Tectonics of China[J]. Gondwana Research, 2013, 23(4): 1189-1206. DOI:10.1016/j.gr.2012.10.001 |
[15] | Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust[J]. Lithos, 2007, 96(1/2): 127-150. |
[16] | Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism Along the Western Margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1): 51-67. |
[17] |
徐先兵, 汤帅, 李源, 等. 江南造山带东段新元古代至早中生代多期造山作用特征[J].
中国地质, 2015, 42(1): 33-50.
Xu Xianbing, Tang Shuai, Li Yuan, et al. Characteristics of Neoproterozoic-Early Mesozoic Multiphase Orogenic Activities of Eastern Jiangnan Orogen[J]. Geology in China, 2015, 42(1): 33-50. |
[18] |
姜杨, 赵希林, 林寿发, 等. 扬子克拉通东南缘新元古代陆缘弧型TTG的厘定及其构造意义[J].
地质学报, 2014, 88(8): 1461-1474.
Jiang Yang, Zhao Xilin, Lin Shoufa, et al. Identificationand Tectonic Implication of Neoproterozoic Continental Margin-Arc TTG Assemblage in Southeastern Margin of the Yangtze Carton[J]. Acta Geoscientica Sinica, 2014, 88(8): 1461-1474. |
[19] | Gu X X, Liu J M, Zheng M H, et al. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China:Geochemical Evidence[J]. Journal of Sedimentary Research, 2002, 72(3): 393-407. DOI:10.1306/081601720393 |
[20] |
马瑞士. 华南构造演化新思考:兼论"华夏古陆"说中的几个问题[J].
高校地质学报, 2006, 12(4): 448-456.
Ma Ruishi. New Thought About The Tectonic Evolution of the South China:With Discussion on Several Problems of the Cathaysian Old Land[J]. Geological Journal of China Universities, 2006, 12(4): 448-456. |
[21] |
任纪舜, 李崇. 华夏古陆及相关问题:中国南部前泥盆纪大地构造[J].
地质学报, 2016, 90(4): 607-614.
Ren Jishun, Li Chong. Cathaysian Old Land and Relevant Problems:Pre-Devonian Tectonic of Southern China[J]. Acta Geoscientica Sinica, 2016, 90(4): 607-614. |
[22] |
王存智, 姜杨, 邢光福, 等. 陈蔡岩群下河图斜长角闪岩年代学、地球化学特征及其构造意义[J].
岩石矿物学杂志, 2016, 35(3): 425-442.
Wang Cunzhi, Jiang Yang, Xing Guangfu, et al. Geochronological and Geochemical Characteristics of the Xiahetu Amphibolites from Chencai Group and Their Tectonic Implications[J]. Acta Petrologica et Mineralogica, 2016, 35(3): 425-442. |
[23] |
董学发, 余盛强, 唐增才, 等. 浙江"陈蔡增生杂岩"中洋内弧型变基性火山岩的地球化学特征及其地质意义[J].
中国地质, 2016, 43(3): 817-828.
Dong Xuefa, Yu Shengqiang, Tang Zengcai, et al. Geochemical Characteristics of the Intra-Oceanic Arc Type Metabasic-Volcanics in Chencai Accretion Complex of Zhejiang Province and Their Geological Significance[J]. Geology in China, 2016, 43(3): 817-828. DOI:10.12029/gc20160309 |
[24] |
彭松柏, 刘松峰, 林木森, 等. 华夏早古生代俯冲作用:I:来自糯垌蛇绿岩的新证据[J].
地球科学, 2016, 41(5): 765-777.
Peng Songbo, Liu Songfeng, Lin Musen, et al. Early Paleozoic Subduction in Cathaysia:I:New Evidence from the Nuodong Ophiolite[J]. Earth Science, 2016, 41(5): 765-777. DOI:10.11764/j.issn.1672-1926.2016.05.765 |
[25] |
彭松柏, 刘松峰, 林木森, 等. 华夏早古生代俯冲作用:Ⅱ:大爽高镁-镁质安山岩新证据[J].
地球科学, 2016, 41(6): 931-947.
Peng Songbo, Liu Songfeng, Lin Musen, et al. Early Paleozoic Subduction in Cathaysia:Ⅱ:New Evidence from the Dashuang High Magnesian-Magnesian Andesite[J]. Earth Science, 2016, 41(6): 931-947. |
[26] |
孔祥生, 李志飞, 冯长根.
浙江陈蔡地区前寒武纪地质[M]. 北京: 地质出版社, 1995: 1-119.
Kong Xiangsheng, Li Zhifei, Feng Changgen. Precambrian Geology in Chencai of Zhejiang Province[M]. Beijing: Geological Publishing House, 1995: 1-119. |
[27] | Zhao L, Zhai M G, Zhou X W, et al. Geochronology and Geochemistry of a Suite of Mafic Rocks in Chencai Area, South China:Implications for Petrogenesis and Tectonic Setting[J]. Lithos, 2015, 236/237: 226-244. DOI:10.1016/j.lithos.2015.09.004 |
[28] | Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalt:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19 |
[29] | Pearce J A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust[J]. Lithos, 2008, 100(1/2/3/4): 14-48. |
[30] | Green N L. Influence of Slab Thermal Structure on Basalt Source Regions and Melting Conditions:REE and HFSE Constraints on from the Garibaldi Volcanic Belt, Northern Cascadia Subduction System[J]. Lithos, 2006, 87(1/2): 23-49. |
[31] | Shervais J W. Ti-V Plots and the Petrogenesis of Modern and Ophiolitc Lavas[J]. Earth and Planetary Science Letters, 1982, 59(1): 101-108. DOI:10.1016/0012-821X(82)90120-0 |
[32] | Regelous M, Hofmann A W, Abouchami W, et al. Geochemistry of Lavas from the Emperor Seamounts and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42Ma[J]. Journal of Petrology, 2003, 44(1): 113-140. DOI:10.1093/petrology/44.1.113 |
[33] | Melezhik V A, Gorokhov I M, Fallick A E, et al. Strontium and Carbon Isotope Geochemistry Applied to Dating of Carbonate Sedimentation:An Example from High-Grade Rocks of the Norwegian Caledonides[J]. Precambrian Research, 2001, 108(3/4): 267-292. |
[34] |
王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J].
同济大学学报(自然科学版), 1979, 7(2): 51-60.
Wang Yiyou, Guo Wenying, Zhang Guodong. Applicationof Several Geochemical Marks in the Sedimentary Environment of Funing Group in Jinhu Depression[J]. Journal of Tongji University (Natural Edition), 1979, 7(2): 51-60. |
[35] |
徐步台. 陈蔡群大理岩的碳氧同位素组成及其地质应用[J].
浙江地质, 1986, 2(2): 49-54.
Xu Butai. Carbon and Oxygen Isotopic Compositions of Marbles in Chencai Group and Their Geological Applications[J]. Geology in Zhejiang, 1986, 2(2): 49-54. |
[36] | Keller J, Hoefs J. Stable Isotope Characteristics of Recent Nnatrocarbonatites from Oldoinyo Lengai[M]. Heidelberg: Springer Press, 1995: 113-123. |
[37] | Kepezhinaskas P K, Defant M J, Drummond M S. Progressive Enrichment of Island-Arc Mantle by Melt-Peridotite Interaction from Kamchatka Adakites[J]. Geochimica et Cosmochimica Acta, 1996, 60(7): 1217-1229. DOI:10.1016/0016-7037(96)00001-4 |
[38] | Defant M J, Drummond M S, Mount S T. Helens:Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc[J]. Geology, 1993, 21(6): 547-550. DOI:10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2 |
[39] | Sajona F G, Maury R C, Bellon H, et al. Initiation of Subduction and the Generation of Slab Melt in Western and Eastern Mindanao, Philippines[J]. Geology, 1993, 21(11): 1007-1010. DOI:10.1130/0091-7613(1993)021<1007:IOSATG>2.3.CO;2 |
[40] | Sajona F G, Maury R C, Bellon H, et al. High Field Strength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines)[J]. Journal of Petrology, 1996, 37(3): 693-726. DOI:10.1093/petrology/37.3.693 |
[41] |
谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J].
吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
Tan Hongqi, Liu Yuping. Genesis of Amphibolite in Mengdong Group-Complex in Southeastern Yunnan and Its Tectonic Significance[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6): 1763-1783. |
[42] | Wilson M. Igneous Petrogenesis[M]. London: Ox-ford University Press, 1989: 245-285. |
[43] | Moore G M, Carmichael I S E, Renne P. Basaltic Volcanism and Extension Near the Intersection of the Sierra Madre Volcanic Province and the Mexian Volcanic Belt[J]. Geological Society of America Bulletin, 1994, 106(3): 383-394. DOI:10.1130/0016-7606(1994)106<0383:BVAENT>2.3.CO;2 |
[44] |
牛耀龄. 板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题[J].
科学通报, 2010, 55(2): 103-114.
Niu Yaoling. Some of the Basic Concepts and Problems of the Origin of the Island Ocean Basalts (OIB)[J]. Chinese Science Bulletin, 2010, 55(2): 103-114. |
[45] | Meschede M. A Method of Discriminating Between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram[J]. Chemical Geology, 1986, 56(3/4): 207-218. |
[46] | Pearce J A, Cann J R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analysis[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300. DOI:10.1016/0012-821X(73)90129-5 |
[47] | Wood D A. The Application of a Th-Hf-Ta Diagram to Problem of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30. DOI:10.1016/0012-821X(80)90116-8 |
[48] | Condie K C. Sources of Proterozoic Mafic Dyke Swarms:Constraints from Th/Ta and La/Yb Ratios[J]. Precambrian Research, 1997, 81(1/2): 3-14. |
[49] | Thompson R N, Morrison M A, Hendy G L, et al. An Assessment of the Relative Roles of a Crust and Mantle in Magma Genesis:An Elemental Approach[J]. Philosophical Transactions of the Royal Society of London, 1984, 310: 549-590. DOI:10.1098/rsta.1984.0008 |
[50] | Tatsumi Y. High-Mg Andesites in the Setouchi Vo-lcanic Belt, Southwestern Japan:Analogy to Archean Magmatism and Continental Crust Formation?[J]. Annual Review of Earch and Planetary Science Letters, 2006, 34(1): 467-499. DOI:10.1146/annurev.earth.34.031405.125014 |
[51] | Yogodzinski G M, Volynets O N, Koloskov A V, et al. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, Far Western Aleutians[J]. Journal of Petrology, 1994, 35(1): 163-204. DOI:10.1093/petrology/35.1.163 |
[52] | Furukawa Y, Tatsumi Y. Melting of a Subducting Slab and Production of High-Mg Andesite Magma:Unusual Magmatism in SW Japan at 13-15 Ma[J]. Geophysical Research Letters, 1999, 26(15): 2271-2274. DOI:10.1029/1999GL900512 |
[53] | Tatsumi Y, Hanyu T. Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere:Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan[J]. Geocheimistry, Geophysics, Geosystems, 2003, 4(9): 1-19. |
[54] | Castillo P R. An Overview of Adakite Petrogensis[J]. Chinese Science Bulletin, 2006, 51(3): 257-268. DOI:10.1007/s11434-006-0257-7 |
[55] | Pearce J A. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins[C]//Hawkesworth C J. Continental Basalt s and Mantle Xenoliths. Nantwich: Shiva Publications, 1983: 231-249. |
[56] | Pearce J A, Norry M J. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47. DOI:10.1007/BF00375192 |
[57] | Bhatia M R. Plate Tectonics and Geochemical Com-position of Sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627. DOI:10.1086/628815 |
[58] |
杨江海, 杜远生, 徐亚军, 等. 砂岩的主量元素特征与盆地物源分析[J].
中国地质, 2007, 34(6): 1032-1044.
Yang Jianghai, Du Yuansheng, Xu Yajun, et al. Major Element Characteristics of Sandstones and Provenance Analysis of Basins[J]. Geology in China, 2007, 34(6): 1032-1044. |
[59] |
高林志, 丁孝忠, 刘燕学, 等. 江山-绍兴断裂带陈蔡岩群片麻岩SHRIMP锆石U-Pb年龄及其地质意义[J].
地质通报, 2014, 33(5): 641-648.
Gao Linzhi, Ding Xiaozhong, Liu Yanxue, et al. SHRIMP Zircon U-Pb Dating of Neoproterozoic Chencai Complex in Jiangshan-Shaoxing Fault Zone and Its Implications[J]. Geological Bulletin of China, 2014, 33(5): 641-648. |
[60] |
胡艳华, 顾明光, 徐岩, 等. 浙江诸暨地区陈蔡群加里东期变质年龄的确认及其地质意义[J].
地质通报, 2011, 30(11): 1661-1670.
Hu Yanhua, Gu Mingguang, Xu Yan, et al. The Confirmation of the Age of Caledonian Chencai Group in Zhuji Area of Zhejiang Province and Its Geological Significance[J]. Geological Bulletin of China, 2011, 30(11): 1661-1670. DOI:10.3969/j.issn.1671-2552.2011.11.002 |
[61] | Simonen A. Stratigraphy and Sedimentation of the Svecofennidic, Early Archean Supracrustal Rocks in Southwestern Finland[J]. Bulletin de la Commission Geologigue de Finlande, 1953, 160: 1-64. |
[62] |
陈绍海, 周新华, 李继亮, 等. 浙江陈蔡群斜长角闪岩的地球化学特征及其大地构造背景探讨[J].
地质科学, 1999, 34(2): 154-165.
Chen Shaohai, Zhou Xinhua, Li Jiliang, et al. Geochemistry of the Amphibolites from Chencai Group, Zhejiang Province:Implications for the Tectonic Settings[J]. Chinese Journal of Geology, 1999, 34(2): 154-165. |
[63] |
兰玉琦, 叶瑛, 兰翔, 等. 浙江陈蔡群孔兹岩系的变质地质学研究[J].
浙江大学学报(自然科学版), 1995, 29(3): 303-309.
Lan Yuqi, Ye Ying, Lan Xiang, et al. Metamorphic Geological Research on Khondalite Series in Chencai Group, Zhejiang Province[J]. Journal of Zhejiang University (Natural Science), 1995, 29(3): 303-309. |
[64] |
李福佩, 董传万, 沈忠悦, 等. 浙北诸暨陈蔡地区韧性剪切带的研究[J].
浙江大学学报(自然科学版), 1991, 25(6): 644-650.
Li Fupei, Dong Chuanwan, Shen Zhongyue, et al. Study on Ductile Shear Zone of Chencai Area in Zhuji, Zhejiang Province[J]. Journal of Zhejiang University (Natural Science), 1991, 25(6): 644-650. |
[65] |
叶瑛, 兰玉琦, 陈彦绍, 等. 浙江省陈蔡群的40Ar-39Ar年龄与变质年代[J].
岩石学报, 1994, 10(2): 193-201.
Ye Ying, Lan Yuqi, Chen Yanshao, et al. 40Ar-39Ar Age and Metamorphic Age of Chencai in Zhejiang Province[J]. Acta Petrologica Sinica, 1994, 10(2): 193-201. |
[66] |
叶瑛, 兰玉琦, 沈忠悦. 浙江陈蔡群两类斜长角闪岩的地球化学及原岩构造环境[J].
矿物岩石地球化学通报, 1995, 14(1): 7-12.
Ye Ying, Lan Yuqi, Shen Zhongyue. Geochemistryand Prospective Tectonic Setting of Two Types of Amphibolites of Chencai Group in Zhejiang Province[J]. Bulletin of Mineralogy, Pertology and Geochemistry, 1995, 14(1): 7-12. |
[67] |
赵国春, 孙德有. 浙西南陈蔡群变质阶段划分及变质作用p-T-D轨变研究[J].
长春地质学院学报, 1994, 24(3): 246-253.
Zhao Guochun, Sun Deyou. Studyon the Classification of Metamorphic Stage and the p-T-D Trajectory of Metamorphism in Chencai Group, Southwest Zhejiang Province[J]. Journal of Changchun University of Earth Sciences, 1994, 24(3): 246-253. |
[68] | Xu X B, Li Y, Tang S, et al. Neoproterozoic to Early Paleozoic Polyorogenic Deformation in the Southeastern Margin of the Yangtze Block:Constraints from Structural Analysis and 40Ar/39Ar Geochronology[J]. Journal of Asian Earth Sciences, 2015, 98(1): 141-151. |
[69] | Yao J L, Shu L S, Cawood P A, et al. Delineating and Characterizing the Boundary of the Cathaysia Block and the Jiangnan Orogenic Belt in South China[J]. Precambrian Research, 2016, 275: 265-277. DOI:10.1016/j.precamres.2016.01.023 |
[70] | Charvet J, Shu L S, Faure M, et al. Structural Development of the Lower Paleozoic Belt of South China:Genesis of an Intracontinental Orogen[J]. Journal Asian Earth Sciences, 2010, 39(4): 309-330. DOI:10.1016/j.jseaes.2010.03.006 |
[71] |
李三忠, 李玺瑶, 赵淑娟, 等. 全球早古生代造山带:Ⅲ:华南陆内造山[J].
吉林大学学报(地球科学版), 2016, 46(4): 1005-1025.
Li Sanzhong, Li Xiyao, Zhao Shujuan, et al. Global Early Paleozoic Orogens:Ⅲ:Intracontinental Orogen in South China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1005-1025. |
[72] | Song M J, Shu L S, Santosh M. Late Early Paleozoic and Early Mesozoic Intracontinental Orogeny in the South China Craton:Geochronological and Geochemical Evidence[J]. Lithos, 2015, 232: 360-374. DOI:10.1016/j.lithos.2015.06.019 |
[73] | Wang Y J, Zhang A M, Fan W M, et al. Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block:Geochronological and Geochemical Evidence[J]. Lithos, 2013, 160/161: 37-54. DOI:10.1016/j.lithos.2012.11.004 |
[74] | Yu Y, Huang X L, He P L. I-Type Granitoids Associated with the Early Paleozoic Intracontinental Orogenic Collapse Along Pre-Existing Block Boundary in South China[J]. Lithos, 2016, 248/249/250/251: 353-365. |
[75] | Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb Zircon Geochronology and Geochemistry of Metavolcanic and Metasedimentary Rocks in Northwestern Fujian, Cathaysia Block, China:Tectonic Implications and the Need to Redefine Lithostratigraphic Units[J]. Gondwana Research, 2007, 12(1): 166-183. |
[76] |
曾雯, 张利, 周汉文, 等. 华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约[J].
科学通报, 2008, 53(3): 335-344.
Zeng Wen, Zhang Li, Zhou Hanwen, et al. Reconstruction of the Paleoproterozoic Basins of the Cathaysian Block in Caledonian:Constraints from the Zircon U-Pb Age, Hf Isotope and Trace Element[J]. Chinese Science Bulletin, 2008, 53(3): 335-344. |
[77] |
于津海, 周新民, O'ReillyS Y, 等. 南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究[J].
科学通报, 2005, 50(16): 1758-1767.
Yu Jinhai, Zhou Xinmin, O'Reilly S Y, et al. Formation Age and Protolith Properties of the Granulite Facies Metamorphic Rocks in the Eastern Section of Nanling U-Pb-Hf Isotopic Study of Zircon[J]. Chinese Science Bulletin, 2005, 50(16): 1758-1767. DOI:10.3321/j.issn:0023-074X.2005.16.015 |
[78] |
于津海, 楼法生, 王丽娟, 等. 赣东北弋阳早古生代麻粒岩的发现及其地质意义[J].
科学通报, 2014, 59(35): 3508-3516.
Yu Jinhai, Lou Fasheng, Wang Lijuan, et al. Discovery of Early Paleozoic Granulite in Yiyang, Northeast Jiangxi and Its Geological Significance[J]. Chinese Science Bulletin, 2014, 59(35): 3508-3516. |
[79] |
刘锐, 张利, 周汉文, 等. 闽西北加里东期混合岩及花岗岩的成因:同变形地壳深熔作用[J].
岩石学报, 2008, 24(6): 1205-1222.
Liu Rui, Zhang Li, Zhou Hanwen, et al. Petrogenesis of the Caledonian Migmatites and Related Granites in Northwestern Fujian Province, South China:Syn-Deformational Crustal Anatexis[J]. Acta Petrologica Sinica, 2008, 24(6): 1205-1222. |
[80] |
张芳荣, 舒良树, 王德滋, 等. 华南东段加里东期花岗岩类形成构造背景探讨[J].
地学前缘, 2009, 16(1): 248-260.
Zhang Fangrong, Shu Liangshu, Wang Dezi, et al. Discussion on the Tectonic Setting of Caledonian Granitoids in the Eastern Segment of South China[J]. Earth Science Frontiers, 2009, 16(1): 248-260. |
[81] | Xiang H, Zhang L, Zhou H W, et al. U-Pb Zircon Geochronology and Hf Isotope Study of Metamorphosed Basic-Ultrabasic Rocks from Metamorphic Basement in Southwestern Zhejiang:The Re-Sponse of the Cathaysia Block to Indosinian Orogenic Event[J]. Science China (Earth Sciences), 2008, 51(6): 788-800. DOI:10.1007/s11430-008-0053-0 |
[82] |
汪建国, 余盛强, 胡艳华, 等. 江山绍兴结合带榴闪岩的发现及岩石学、年代学特征[J].
中国地质, 2014, 41(4): 1356-1363.
Wang Jianguo, Yu Shengqiang, Hu Yanhua, et al. The Discovery, Petrology and Geochronology of the Retrograde Eclogite in Jiangshan-Shaoxing Suture Zone[J]. Geology in China, 2014, 41(4): 1356-1363. |
[83] |
邢光福, 姜杨, 陈志洪, 等. 钦杭结合带首次发现加里东期榴闪岩[J]. 资源调查与环境, 2013, 34(4): 封面二.
Xing Guangfu, Jiang Yang, Chen Zhihong, et al. First Discovery of Caledonian Garnet Amphibolite in the Qin-Hang Belt[J]. Resource Investigation and Environment, 2013, 34(4): Inside Front Cover. |
[84] |
覃小锋, 王宗起, 王涛, 等. 桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约[J].
地球学报, 2015, 36(3): 283-292.
Qin Xiaofeng, Wang Zongqi, Wang Tao, et al. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi:Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt[J]. Acta Geoscience Sinica, 2015, 36(3): 283-292. DOI:10.3975/cagsb.2015.03.03 |
[85] | Wong J, Sun M, Xing G F, et al. Zircon U-Pb and Hf Isotopic Study of Mesozoic Felsic Rocks from Eastern Zhejiang, South China:Geochemical Contrast Between the Yangtze and Cathaysia Blocks[J]. Gondwana Research, 2011, 19(1): 244-259. DOI:10.1016/j.gr.2010.06.004 |
[86] |
王存智, 余明刚, 黄志忠, 等. 赣东北蛇绿岩带新元古代(~800 Ma)高镁安山岩的发现及其意义[J].
地质论评, 2016, 62(5): 1185-1200.
Wang Cunzhi, Yu Minggang, Huang Zhizhong, et al. Recognition and Significance of Neoproterozoic(ca.800 Ma) High-Mg Andesites in the NE Jiangxi Ophiolite Belt[J]. Geological Review, 2016, 62(5): 1185-1200. |