文章快速检索  
  高级检索
东北地区嫩江东北部早古生代闪长岩的成因探讨:锆石U-Pb年代学和地球化学证据
齐忠友1, 冯志强2,3, 温泉波2, 张铁安1, 刘宾强2, 李小玉1, 杜兵盈1     
1. 黑龙江省区域地质调查所, 哈尔滨 150080;
2. 吉林大学地球科学学院, 长春 130061;
3. 太原理工大学矿业工程学院, 太原 030024
摘要: 东北兴安地块与松嫩地块的拼贴演化历史一直存在较大争议, 而早古生代岩浆记录的发现无疑对该问题的解决具有重要意义。笔者在黑龙江省嫩江依克特地区识别出了早古生代闪长岩体, 其LA-ICP-MS锆石U-Pb年龄为(435.3±1.1)Ma, 该闪长岩体的SiO2质量分数为55.01%~61.82%, 全碱(Na2O+K2O)质量分数为4.55%~6.94%, Na2O/K2O值变化(2.01~48.60)较大, Al2O3质量分数为14.97%~16.67%, 具有中等程度的K2O(0.10%~2.12%)、TiO2(0.99%~1.42%)和P2O5(0.33%~0.49%)以及低的TFeO/MgO(0.51~0.96)值, 属于中钾钙碱性系列。其A/CNK值为0.78~1.35, A/NK值为1.63~2.21, 大体符合I型花岗岩特点。依克特闪长岩的稀土总量较高(w(ΣREE)=227.02×10-6~289.17×10-6), 轻重稀土分异明显[(La/Yb)N=9.86~13.93], 并具有弱的铕异常(Eu/Eu*=0.88~1.02);具有明显高场强元素(Nb和Ti)亏损的特征。上述特征表明, 岩浆源区为受俯冲流体交代地幔楔的部分熔融。结合区域资料, 本文认为依克特闪长岩体形成于活动大陆边缘环境, 与嫩江-黑河洋的洋壳持续俯冲相关。
关键词: 早古生代     闪长岩     锆石U-Pb年代学     地球化学     小兴安岭     嫩江    
Petrogenesis of the Early Paleozoic Diorite in the Northeast Nenjiang Area: Evidence from Zircon U-Pb Chronology and Geochemistry
Qi Zhongyou1, Feng Zhiqiang2,3, Wen Quanbo2, Zhang Tiean1, Liu Binqiang2, Li Xiaoyu1, Du Bingying1     
1. Heilongjiang Province Institute of Regional Geological Survey, Haerbin 150080, China;
2. College of Earth Science, Jilin University, Changchun 130061, China;
3. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Supported by the Natural Science Foundation of China (41602235, 41502207, 41302175) and the Project of China Geological Survey (12120114033501)
Abstract: NE China was traditionally considered the eastern part of the Central Asian Orogenic Belt (CAOB) and was composed of different mico-blocks in the Paleozoic. There are some debates about the collision age and location between the Xing'an and Songliao-Nenjiang blocks in NE China. The discovery of the records of the Early Paleozoic magmatism is a key to solve the debates. Early Paleozoic diorites are indentified in this study in the Nenjiang area, western Heilongjiang Province. The LA-ICP-MS zircon U-Pb dating indicates an age of (435.3±1.1) Ma. The diorites have 55.01%-61.82 wt% SiO2, and 14.97%-16.67 wt% Al2O3, with Na2O+K2O=4.55%-6.94 wt%, and exhibit high Na2O/K2O and low FeOT/MgO (0.51-0.96) ratios, and moderate K2O (0.10%-2.12%), TiO2 (0.99%-1.42%), and P2O5 (0.33%-0.49%). These results indicate that the diorites belong to medium K calc-alkaline series. Their A/CNK and A/NK values range from 0.78 to 1.35 and 1.63 to 2.21 respectively, which are generally consistent with those of type I granites. The diorites display right-inclined rare earth element (REE) patterns (La/Yb)N=9.86-13.93, with relatively high total REE abundances (ΣREE=227.02×10-6-289.17×10-6), and week Eu anomalies (Eu/Eu*=0.88-1.02). In trace elements, the diorites are characterized by depletion in high field strength elements (HFSEs, such as Nb and Ti). The primary magma of the diorites in the northeast Nenjiang area was generated by partial melting of mantle wedge that had been metasomatized by subduction-related fluids. Integrating regional data and the research result of this study it is suggest that the Nenjiang diorites was formed in an active continental margin setting, resulting from subduction of the paleo Nenjiang-Heihe oceanic plate located between the Xing'an and Songliao blocks.
Key words: Early Paleozoic     diorite     U-Pb dating     geochemistry     Lesser Xing'an Range     Nenjiang area    

0 引言

中亚造山带(又称阿尔泰造山带),作为全球最大、最为复杂的造山带之一,一直以来是广大学者研究的热点,其演化过程的研究将对全球板块运动、古大陆的分裂和聚合、矿产资源的形成机制与分布有着重要意义[1-9]。尽管对于中亚造山带研究有着诸多的意义,但由于中亚造山带覆盖广阔,相关细节研究仍然较为缺乏。近年来,虽然对中亚造山带西段开展了众多研究[10-14],但其东段,尤其是东北地区,经历了古亚洲洋构造域和西太平洋构造域在时间和空间上的叠加与改造[15],以及大量的植被和中、新生代盆地沉积的覆盖,导致了东北地区各块体拼贴演化过程仍存在较大争论。

东北地区西部自西向东依次包括额尔古纳地块、兴安地块、松嫩(松辽)地块,各地块之间分别以得尔布干断裂、嫩江-黑河缝合带为界(图 1a)[16]。关于得尔布干断裂,早期学者将其作为古生代时期额尔古纳地块和兴安地块的拼贴界线[17-20]。但最新研究结果表明,得尔布干断裂是一条具有明显重力异常[16, 21]的中生代走滑断裂[22-24],并不具有缝合带性质,而在其东侧却发现了相关缝合带的证据,因而根据新林E-MORB型蛇绿混杂岩(539 Ma K-Ar)[25]、阿里河辉石岩(629 Ma U-Pb)[26]、吉峰蛇绿混杂岩中的E-MORB型辉长岩[27]、头道桥蓝片岩(511 Ma U-Pb)[28-29]以及塔河造山后花岗岩(~480 Ma U-Pb)[30],将形成于早古生代的新林-喜桂图缝合带作为额尔古纳地块和兴安地块的拼贴界线。

a据文献[16]修编。 图 1 东北地区构造单元分区图(a)和研究区地质图(b) Figure 1 Tectonic sketch maps of NE China (a) and geological sketch map of the study area (b)

至于兴安地块与松嫩地块之间的嫩江-黑河洋被提出后,其所代表大洋的俯冲闭合过程及两地块拼贴时限一直存在争议;部分学者根据多宝山斑岩型Cu矿成矿年龄(~480 Ma),认为嫩江-黑河洋在早奥陶世开始俯冲消减[31-36],于晚泥盆世之前消亡[37-39],导致兴安地块与松嫩地块碰撞拼贴,晚古生代形成统一佳蒙地块[40-42];部分学者根据岩浆活动认为该大洋于晚泥盆世-早石炭世消亡[43-47];另部分学者则认为早二叠世该大洋仍未闭合[48-50]。由此可见,嫩江-黑河洋是从奥陶纪一直持续俯冲到晚泥盆世?早石炭世末?还是二叠纪?仍存在较大争论。

最近,笔者在嫩江依克特地区识别出一套早古生代闪长岩体,本文对该岩体进行了详细的岩石学、年代学和地球化学研究,以期探讨早古生代嫩江地区的大地构造背景与该闪长岩形成的动力学机制,为构建兴安与松嫩地块之间大洋演化提供最新的数据资料。

1 地质背景与样品描述

研究区位于黑龙江省嫩江依克特东北部,大地构造位置上位于扎兰屯-嫩江-黑河缝合带北段,兴安地块以东,松嫩地块以西,研究区属于小兴安岭的中部,盛产铜、钼等矿产资源。早期资料显示该区出露的最老地层单元为凤水沟河组,主要由一套片岩、片麻岩、变粒岩、长英质角岩和大理岩组成[51];但最新锆石U-Pb年龄测试显示,黑河附近凤水沟河组中变粒岩及其片麻状花岗岩侵入体最小值分别为256 Ma和183 Ma,并不是先前认为的新元古代,而是晚古生代[52]。奥陶系为中酸性凝灰岩、熔岩及陆相复理石建造,显示活动大陆边缘特点[50-52];志留系以稳定陆源碎屑岩夹火山岩为主,可见图瓦贝化石[53-56];泥盆系为海相碳酸盐沉积夹中基性火山岩[51];石炭系-二叠系主要为火山岩及部分碎屑岩[56]。区内分布着大面积的古生代花岗质岩石(图 1b),以二长花岗岩和闪长岩为主。研究区的闪长岩仅分布依克特以东一带,呈多个小岩株出露,发育面积较小(约5.16 km2)。在1:20万霍龙门幅地质图中,这些闪长岩时代被归属于早石炭世[56]。野外观察表明,依克特闪长岩岩体岩性较单一,受后期构造运动改造明显,普遍具片理化、碎裂岩化,局部具糜棱岩化(图 2ab)。

a、b.闪长岩野外照片;c、d.闪长岩镜下特征。Q.石英;Amp.角闪石;Pl.斜长石。 图 2 依克特闪长岩野外及镜下照片 Figure 2 Field and microscopic photographs of the diorites in the Yikete area

本文所测定的嫩江依克特地区闪长岩样品(D9225)的岩石学特征如下(图 2):

采样点位于嫩江县依克特(49°58′05″N,125°48′39″E)。岩石呈灰白色,以柱粒结构为主,似斑状结构次之(图 2ab),岩石粒度为0.5~5.0 mm。主要矿物由斜长石、角闪石、石英组成,局部见5%黑云母及少量钾长石。斜长石呈半自形粒状,聚片双晶发育,体积分数为50%~60%,具绿帘石化及黝帘石化;角闪石半自形柱状,体积分数为30%~40%,大部分充填于斜长石空隙间,有时与斜长石构成嵌晶含长结构,具不同程度的帘石化及碳酸盐化(图 2cd)。

2 分析方法

本文测年锆石的分选在河北廊坊地质调查院完成,锆石U-Pb同位素定年在中国地质调查局天津地质调查中心实验室进行。将人工重砂分选的锆石颗粒用环氧树脂固定并抛光,使锆石颗粒露出核部。在测定之前,用体积分数为3%的HNO3清洗样品表面,以除去表面污垢;然后进行透射光和反射光照相,并在英国Gatan公司生产的Mono CL3+阴极发光装置系统上进行阴极发光(CL)照相。实验采用激光剥蚀等离子体分析技术(LA-ICP-MS),实验激光束斑直径为32 um,频率为10 Hz,激光能量为0.09 J,采用高纯氦气作为剥蚀物质的载气,每个分析点的气体背景采集时间为30 s,信号采集时间为40 s。采用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610进行仪器最佳化,利用哈佛大学国际标准锆石91500作为外部校正[57]。分析结果采用GLITTER (ver4.0 Macquarie University)程序。年龄计算采用Isoplot程序(Ver3.23)处理。实验数据运用Andersen的方法进行同位素比值校正[58],以消除普通204 Pb的影响。详细流程和原理参见文献[59]的阐述。测试数据见表 1

表 1 嫩江依克特闪长岩(D9225)锆石LA-ICP-MS U-Pb分析结果 Table 1 LA-ICP-MS zircon U-Pb isotope data of the Yikete diorites (D9225)
样品号 wB/10-6 同位素比值 年龄/Ma
Pb U 206Pb/238U 207Pb/235U 208Pb/232Th 232Th/238U 206Pb/238U 207Pb/235U
1 10 128 0.069 7 0.000 4 0.665 4 0.012 0 0.028 6 0.001 1 0.680 7 0.003 5 434 3 518 9
2 3 41 0.070 0 0.000 5 0.556 6 0.038 0 0.024 2 0.001 0 0.796 1 0.005 4 436 3 449 31
3 2 26 0.070 4 0.000 6 0.540 4 0.048 0 0.024 7 0.001 0 0.888 5 0.005 2 439 4 439 39
4 10 119 0.069 8 0.000 4 0.575 9 0.013 2 0.023 1 0.000 9 1.076 8 0.005 9 435 3 462 11
5 16 192 0.069 9 0.000 4 0.541 1 0.008 2 0.022 3 0.000 8 0.894 8 0.006 8 436 3 439 7
6 41 520 0.069 6 0.000 4 0.535 4 0.004 4 0.021 8 0.000 8 0.801 9 0.004 1 434 3 435 4
7 8 96 0.070 0 0.000 4 0.574 0 0.018 0 0.020 8 0.000 8 0.952 0 0.004 7 436 3 461 14
8 9 105 0.069 5 0.000 4 0.612 6 0.018 7 0.021 1 0.000 8 1.157 9 0.006 0 433 3 485 15
9 7 80 0.069 7 0.000 5 0.585 3 0.017 6 0.021 0 0.000 8 1.102 0 0.006 1 434 3 468 14
10 3 37 0.068 7 0.000 5 0.539 4 0.029 5 0.023 3 0.001 0 0.801 9 0.007 9 429 3 438 24
11 18 234 0.069 9 0.000 4 0.540 5 0.006 1 0.021 2 0.000 8 0.779 8 0.003 7 436 3 439 5
12 9 103 0.069 8 0.000 4 0.538 3 0.015 9 0.021 0 0.000 8 1.148 4 0.005 6 435 3 437 13
13 3 38 0.069 7 0.000 5 0.540 7 0.039 6 0.022 2 0.001 0 0.639 1 0.003 2 434 3 439 32
14 6 75 0.070 0 0.000 4 0.543 5 0.016 5 0.021 3 0.000 8 0.758 1 0.003 7 436 3 441 13
15 11 143 0.069 9 0.000 4 0.576 3 0.010 6 0.021 2 0.000 8 0.806 7 0.004 0 435 3 462 9
16 13 158 0.070 1 0.000 4 0.547 5 0.008 6 0.020 9 0.000 8 1.082 3 0.005 2 437 3 443 7
17 4 47 0.069 4 0.000 5 0.643 5 0.031 7 0.022 0 0.000 9 1.111 5 0.005 6 433 3 505 25
18 26 331 0.070 0 0.000 4 0.553 0 0.005 8 0.019 9 0.000 8 0.874 1 0.004 2 435 3 447 5
19 3 41 0.069 9 0.000 5 0.590 1 0.039 0 0.019 7 0.000 8 1.197 8 0.006 6 435 3 471 31
20 3 37 0.070 2 0.000 4 0.552 5 0.008 9 0.020 4 0.000 8 1.114 1 0.005 4 437 3 447 7
21 12 151 0.070 2 0.000 4 0.569 6 0.003 6 0.019 3 0.000 7 0.869 3 0.006 1 437 3 458 3
22 39 486 0.069 8 0.000 5 0.539 3 0.032 9 0.019 2 0.000 8 1.032 7 0.005 0 435 3 438 27
23 6 67 0.070 0 0.000 4 0.581 7 0.013 1 0.019 8 0.000 8 1.144 7 0.006 8 436 3 466 10
24 10 121 0.070 1 0.000 5 0.549 7 0.031 5 0.019 6 0.000 8 0.882 5 0.005 1 437 3 445 25
25 4 50 0.070 1 0.000 5 0.549 2 0.003 9 0.019 3 0.001 0 0.659 5 0.032 0 436 3 444 3
注:同位素比率已采用208 Pb校正法进行了普通铅校正。

选择新鲜样品经过无污染碎样后,在中国地质调查局天津地质调查中心实验室进行主量、微量和稀土元素分析。主量元素采用X-荧光光谱法(XRF)分析,分析准确度和精度优于5%;微量元素和稀土元素的分析采用电感耦合等离子质谱(ICP-MS)分析方法,准确度和精度优于10%;测试数据见表 2

表 2 依克特闪长岩主量元素、微量元素分析结果 Table 2 Major and trace element analyzing results of the Yikete diorites
样品号 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 烧失量 总量 Mg# K2O+
Na2O
A/
CNK
A/
NK
P La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Cs Rb Sr Ba Ga Nb Ta Zr Hf Th V Cr Co Ni B Sc U Ti ∑REE δEu (La/
Yb) N
D9226 60.43 1.24 16.67 2.92 2.63 0.09 2.75 4.10 4.82 2.12 0.37 1.63 99.77 50.89 6.94 0.94 1.63 1 614.00 45.77 135.4 15.75 55.10 9.18 2.99 8.45 1.34 6.46 1.53 3.38 0.66 2.72 0.44 34.67 15.59 73.10 780.20 868.50 30.60 51.67 5.16 364.30 19.56 14.73 162.30 81.90 17.46 45.14 22.50 15.59 3.27 7 405.00 289.17 1.02 11.34
D9227 61.82 0.99 15.95 2.65 2.95 0.10 2.92 3.92 3.98 1.98 0.33 2.23 99.82 52.02 5.96 1.01 1.84 1 435.00 46.37 95.02 11.23 41.77 7.88 2.24 6.99 1.15 5.96 1.13 3.18 0.48 3.17 0.45 27.58 12.45 50.40 404.80 665.70 18.76 21.95 1.43 311.80 14.40 8.01 95.00 56.40 15.80 31.70 18.71 12.45 1.56 5 924.00 227.02 0.90 9.86
D9225 55.01 1.42 14.97 3.42 4.55 0.14 6.01 6.84 3.31 1.24 0.49 2.42 99.82 60.95 4.55 0.78 2.21 2 143.00 51.83 96.93 12.59 47.60 8.79 2.43 7.79 1.34 6.64 1.58 3.41 0.68 2.76 0.45 34.14 27.36 42.10 679.80 402.00 26.70 25.96 1.66 219.50 10.64 6.00 234.30 220.30 35.00 106.70 9.15 27.36 1.58 8 514.00 244.82 0.88 12.66
TC30 59.89 1.28 16.50 2.49 3.31 4.19 2.74 2.25 4.86 0.10 0.38 1.76 99.74 49.44 4.96 1.35 2.04 1 678.00 48.76 95.01 11.71 45.04 7.62 2.19 6.87 1.01 5.04 0.98 2.54 0.43 2.36 0.36 24.50 0.90 40.60 617.70 952.30 22.31 33.58 1.41 426.10 19.31 6.15 125.20 51.70 19.60 39.10 22.20 14.67 1.42 7 699.00 229.92 0.91 13.93
注:主量元素质量分数单位为%;微量元素和稀土元素质量分数单位为10-6; Mg#=100 (w (MgO)/40.31)/(w (MgO)/40.31+w (TFeO)/71.85)。
3 分析结果 3.1 闪长岩年龄

嫩江县依克特地区闪长岩(D9225)锆石CL图像(图 3)显示,锆石为短柱状到长柱状,多为半自形,较发育振荡环带,粒径为80~120 μm,长宽比值为1:1~2:1,Th/U值多为0.64~1.16(表 1),显示为岩浆锆石。测年数据结果见表 1,25个测试点集中分布在谐和线上,得到206 Pb /238 U加权平均年龄为(435.3±1.1) Ma (MSWD=0.43,n=25)(图 4)。该年龄被解释为闪长岩体侵位年龄,表明其形成于早志留世,并不是前人认为的早石炭世。

图 3 嫩江东依克特闪长岩中部分锆石的CL图像 Figure 3 CL images of selected zircon from the Yikete diorite
图 4 嫩江依克特地区闪长岩锆石U-Pb谐和图(a)和频数图(b) Figure 4 Concordia diagram (a) and frequency diagram (b) showing LA-ICP-MS zircon U-Pb dating result for the Yikete diorites
3.2 地球化学 3.2.1 主量元素

依克特闪长岩的SiO2质量分数为55.01%~61.82%,全碱(Na2O + K2O)质量分数为4.55%~6.94%,Na2O/K2O值(2.01~48.60)变化较大,并且Na2O质量分数远大于K2O质量分数,Al2O3质量分数为14.97%~16.67%,具有中K2O (0.10%~2.12%)、TiO2(0.99%~1.42%)和P2O5(0.33%~0.49%)质量分数以及低的TFeO/MgO (0.51~0.96)值特征。该闪长岩大部分落入中钾钙碱性系列(图 5),与同时代多宝山矿集区内高钾-中钾火山岩相类似[60]。其A/CNK值为0.78~1.35,属于次铝-过铝质,A/NK值为1.63~2.21,里特曼指数(σ)为1.45~2.76。总体来看,该区闪长岩为略贫碱、次铝质钙碱性岩石,主体符合I型花岗岩特点。

图中阴影区域引自文献[60]。 图 5 依克特闪长岩w(SiO2) -w(K2O)图解 Figure 5 w(SiO2)-w(K2O) diagrams of the diorites in the Yikete area
3.2.2 微量元素

依克特闪长岩的稀土元素总质量分数为227.02×10-6~289.17×10-6,轻稀土元素(LREE)相对重稀土元素(HREE)富集,LREE/HREE值为9.09~10.93,平均值为10.01,(La/Yb)N值为9.86~13.93。在稀土元素球粒陨石标准化模式图(图 6a)上,所有样品均表现为右倾的曲线,伴随有弱的Eu负异常(Eu/Eu*值为0.88~1.02)。微量元素蛛网图(图 6b)显示,高场强元素(HFSE) Nb、Ti元素负异常,Th、Zr正异常,大离子亲石元素(LILE) Rb、Sr、K负异常特征,总体与俯冲带岛弧岩浆作用类似。Nb、Ti的亏损反映了岩浆受到了地壳物质的强烈混染或者可能与源区流体的交代作用有关。闪长岩中Ba/Nb的比值变化较大,而Ba/Rb的比值相对稳定,说明岩石受后期的蚀变作用较弱[63],这与岩相学观察相吻合,其主量和微量元素分析结果基本上代表了原始岩浆的特征。

a.标准化值据文献[61];b.标准化值据文献[62]。图中阴影区域引自文献[60]。 图 6 依克特闪长岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) Figure 6 Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element spider diagrams (b) for the Yikete diorites
4 讨论 4.1 形成时代

对于依克特闪长岩的形成时代,前人曾根据野外地层接触关系将该侵入岩归属于泥盆纪-二叠纪[53],但没有同位素定年资料的支持。本文测定闪长岩的锆石具有岩浆成因的生长环带,它们的Th/U值多为0.64~1.16,暗示这些锆石为岩浆成因,因此其年龄(435.3±1.1) Ma代表锆石的结晶年龄,亦即闪长岩体的侵位年龄,表明依克特地区闪长岩形成于早志留世。这与其侵入奥陶系裸河组[56]的地质事实相吻合。此外,依克特闪长岩的年龄与多宝山地区早古生代的玄武安山岩(450 Ma)、安山岩(447 Ma)[60]的年龄相近,代表了嫩江地区早志留世岩浆作用的深成侵入相。

4.2 岩石成因

依克特闪长岩显示贫碱(全碱质量分数为4.55%~6.94%)、次铝-过铝质钙碱性特点,具较高的Mg#值(49.44~60.95)和富Na,显示岩浆源区为岩石圈地幔的属性。闪长岩样品富集Ba、Hf,亏损Nb、Ti特征可能主要有两种形成机制:1)强烈地壳混染;2)由于俯冲带流体而形成的富集地幔熔融。Nb/U、Ta/U值通常可以作为判断地壳混染的参考指示。样品的Nb/U、Ta/U值分别为17.49、1.13,明显低于MORB/OIB值(Nb/U=47、Ta/U=2.7)[64],而接近于地壳值(Nb/U=12.1、Ta/U=1.1)[65],并且样品La/Nb和Ba/Nb低于陆壳值[66],显示出一定地壳混染特征。然而,依克特闪长岩又具有弱的Zr、Hf正异常,表明其不是简单陆壳混染的产物。结合该区域同时代的中基性火山岩的锆石较高εHf(t)值(+11.5~+17.6)和较高εNd(t)值(5.24~5.77)[60],依克特闪长岩所表现的地壳混染特征可能与来自俯冲板片的流体/熔体交代作用有关。

4.3 地质意义

东北地区主要由众多微陆块组成,自西向东依次包括额尔古纳、兴安、松嫩、佳木斯地块[67]。研究表明,额尔古纳和兴安地块已于早古生代完成拼贴[26-29]。然而,关于额尔古纳兴安地块与松嫩地块之间洋盆(嫩江-黑河洋)的直接证据(如蛇绿岩、构造混杂岩)缺乏,进而导致该洋盆建立及其两地块的拼贴仍存在争论[67-71]。近年来,众多学者从古生代火成岩角度研究来解释嫩江-黑河洋的演化。

关于嫩江-黑河洋洋壳俯冲,则是依据嫩江县多宝山斑岩Cu-Mo矿床成矿年龄(~480 Ma/Re-Os)和其地球化学特征,提出大兴安北段嫩江地区早古生代早期岩浆作用及斑岩性Cu-Mo矿床的形成与嫩江-黑河洋洋壳俯冲有关,形成于活动大陆边缘环境[31-36]。该俯冲作用可能一直持续到石炭纪[43-47],而早石炭世晚期兴安地块与松嫩地块拼贴,导致小兴安岭西北部(嫩江-黑河)地区晚古生代(290~260 Ma)造山后A型花岗岩的出现[72-73],大体反映了嫩江-黑河洋的发展与消亡过程。

嫩江依克特地区早古生代闪长岩((435.3±1.1) Ma)及同时代基性火山岩地球化学特征[60],正好添补了该洋盆在晚奥陶世至早志留世的岩浆作用,且该时期的闪长岩形成可能与来自俯冲板片的流体/熔体交代作用有关。因此,依克特闪长岩代表岛弧岩浆作用的侵入相,同时也进一步说明兴安与松嫩地块拼贴要晚于早志留世。

5 结论

1)嫩江依克特地区闪长岩形成于于早志留世(435.3±1.1) Ma,而非前人认为的早石炭世。

2)嫩江依克特地区闪长岩岩浆来源受俯冲板片流体交代的地幔楔部分熔融控制。

3)嫩江依克特地区早志留世闪长岩形成于活动大陆边缘环境,与嫩江-黑河洋板片俯冲相关。

参考文献
[1] Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364 : 299-307. DOI:10.1038/364299a0
[2] Wu Fuyuan, Sun Deyou, Ge Wenchun, et al. Geoch-ronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41 : 1-30. DOI:10.1016/j.jseaes.2010.11.014
[3] Jahn B M. The Central Asian Orogenic Belt and Gro-wth of the Continental Crust in the Phanerozoic[J]. Journal of the Geological Society London, 2004, 226 : 73-100. DOI:10.1144/GSL.SP.2004.226.01.05
[4] Windley B F, Alexelev D, Xiao Wenjiao, et al. Tecto-nic Models for Accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society London, 2007, 164 : 31-47. DOI:10.1144/0016-76492006-022
[5] Xiao Wenjiao, Windley B F, Hao Jie, et al. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22 : 1069-1089.
[6] Xiao Wenjiao, Windley B F, Badarch G, et al. Pala-eozoic Accretionary and Convergent Tectonics of the Southern Altaids:Implications for the Lateral Growth of Central Asia[J]. Journal of the Geological Society London, 2004, 161 : 339-342. DOI:10.1144/0016-764903-165
[7] Xiao Wenjiao, Zhang Lianchang, Qin Kezhang, et al. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China):Implications for the Continental Growth of Central Asia[J]. American Journal of Science, 2004, 304 : 370-395. DOI:10.2475/ajs.304.4.370
[8] Xiao Wenjiao, Windley B F, Huang Baochun, et al. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids:Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia[J]. International Journal of Earth Science, 2009, 98 : 1189-1217. DOI:10.1007/s00531-008-0407-z
[9] Xiao Wenjiao, Huang Baochun, Han Chunming, et al. A Review of the Western Part of the Altaids:A Key to Understanding the Architecture of Accretionary Orogeny[J]. Gondwana Research, 2010, 18 : 253-273. DOI:10.1016/j.gr.2010.01.007
[10] Li Jinyi. Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26 : 207-224. DOI:10.1016/j.jseaes.2005.09.001
[11] Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364 : 299-307. DOI:10.1038/364299a0
[12] Kröner A, Kovach V, Belousova E, et al. Reas-sessment of Continental Growth During the Accretionary History of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25 : 103-125. DOI:10.1016/j.gr.2012.12.023
[13] Kröner A, LehmannJ, Schulmann K, et al. Litho-stratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia:Early Paleozoic Rifting Followed by Late Paleozoic Accretion[J]. American Journal of Science, 2010, 310 : 523-574. DOI:10.2475/07.2010.01
[14] Zheng Yongfei, Xiao Wenjiao, Zhao Guochun. Intro-duction to Tectonic of China[J]. Gondwana Research, 2013, 23 : 1189-1206. DOI:10.1016/j.gr.2012.10.001
[15] Wang Hongzhen, Mo Xuanxue. An Outline of the Tectonic Evolution of China[J]. Episodes, 1996, 18 : 6-16.
[16] 张兴洲, 杨宝俊, 吴福元, 等. 中国兴蒙-吉黑地区岩石圈结构基本特征[J]. 中国地质, 2006, 33 (4) : 816-823. Zhang Xingzhou, Yang Baojun, Wu Fuyuan, et al. The Lithosphere Structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) Region, No-rtheastern China[J]. Geology in China, 2006, 33 (4) : 816-823.
[17] 李春昱. 中国板块构造的轮廓[J]. 中国地质科学院学报, 1980, 2 (1) : 11-22. Li Chunyu. A Preliminary Study of Plate Tectonics of China[J]. Bulletin chinese Acad.Geol.Sci., Series I, 1980, 2 (1) : 11-22.
[18] 任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999, 6 (3) : 85-93. Ren Jishun, Niu Baogui, Liu Zhigang. Soft Collision, Superposition Orogeny and Polycyclic Suturing[J]. Earth Science Frontiers, 1999, 6 (3) : 85-93.
[19] 刘永江, 刘宾强, 冯志强, 等. 大兴安岭中北段老道口闪长岩锆石U-Pb年龄、地球化学特征及构造意义[J]. 吉林大学学报(地球科学版), 2016, 46 (2) : 482-498. Liu Yongjiang, Liu Binqiang, Feng Zhiqiang, et al. SIMS Zircon U-Pb Age, Petrogeochemistry and Its Tectonic Implication of Laodaokou Diorite in the Mid-North Part of Great Xing'an Range[J]. Journal of Jinlin University (Earth Science Edition), 2016, 46 (2) : 482-498.
[20] 周建波, 石爱国, 景妍. 东北地块群:构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016, 46 (4) : 1042-1055. Zhou Jianbo, Shi Aiguo, Jing Yan. The Combined NE China Blocks:Tectonic Evolution and Supercontinent Reconstructions[J]. Journal of Jinlin University (Earth Science Edition), 2016, 46 (4) : 1042-1055.
[21] 张兴洲, 周建波, 迟效国, 等. 东北地区晚古生代构造-沉积特征与油气资源[J]. 吉林大学学报(地球科学版), 2008, 38 (5) : 719-725. Zhang Xingzhou, Zhou Jianbo, Chi Xiaoguo, et al. Late Paleozoic Tectonic-Sedimentation and Petroleum Resources in Northeastern China[J]. Journal of Jilin University (Earth Science Edition), 2008, 38 (5) : 719-725.
[22] 张丽, 刘永江, 李伟民, 等. 关于额尔古纳地块基地性质和东界的讨论[J]. 地质科学, 2013, 48 (1) : 227-244. Zhang Li, Liu Yongjiang, Li Weimin, et al. Discussion on the Basement Properties and East Boundary of the Erguna Massif[J]. Chinese Journal of Geology, 2013, 48 (1) : 227-244.
[23] 郑常青, 周建波, 金巍, 等. 大兴安岭地区得尔布干断裂北段构造年代学研究[J]. 岩石学报, 2009, 25 (8) : 1989-2000. Zheng Changqing, Zhou Jianbo, Jin Wei, et al. Geochronology in the North Segment of the Deerbugan Fault Zone, Great Xing'an Range, NE China[J]. Acta Petrologica Sinica, 2009, 25 (8) : 1989-2000.
[24] 孙晓猛, 刘财, 朱德丰, 等. 大兴安岭西坡德尔布干断裂地球物理特征与构造属性[J]. 地球物理学报, 2011, 54 (2) : 433-440. Sun Xiaomeng, Liu Cai, Zhu Defeng, et al. Geophysical Features and Tectonic Attribute of the Derbugan Fault in the Western Slope of Da Hinggan Ling Mountains[J]. Chinese Journal of Geophysics, 2011, 54 (2) : 433-440.
[25] 李瑞山. 新林蛇绿岩[J]. 黑龙江地质, 1991, 2 (1) : 19-31. Li Ruishan. Xinlin Ophiolite[J]. Heilongjiang Geology, 1991, 2 (1) : 19-31.
[26] 佘宏全, 李进文, 向安平, 等. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 2012, 28 (2) : 571-594. She Hongquan, Li Jinwen, Xiang Anping, et al. U-Pb Ages of the Zircons from Primary Rocks in the Middle-Northern Daxing'anling and Its Implications to Geotectonic Evolution[J]. Acta Petrologica Sinica, 2012, 28 (2) : 571-594.
[27] Feng Zhiqiang, Liu Yongjiang, Liu Binqiang, et al. Timing and Nature of the Xinlin-Xiguitu Ocean:Constraints from Ophiolitic Gabbros in the Northern Great Xing'an Range, Eastern Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2016, 105 : 491-505. DOI:10.1007/s00531-015-1185-z
[28] Zhou Jianbo, Wang Bin, Simon A Wilde, et al. Geochemistry and U-Pb Zircon Dating of the Toudaoqiao Blueschists in the Great Xing' an Range, Northeast China, and Tectonic Implications[J]. Journal of Asian Earth Sciences, 2015, 97 : 197-210. DOI:10.1016/j.jseaes.2014.07.011
[29] Miao Laicheng, Zhang Fochin, Jiao Shujuan, et al. Age, Protoliths and Tectonic Implications of the Toudaoqiao Blueschist Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2015, 105 : 360-373. DOI:10.1016/j.jseaes.2015.01.028
[30] 葛文春, 吴福元, 周长勇, 等. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 2005, 50 (12) : 1239-1247. Ge Wenchun, Wu Fuyuan, Zhou Changyong, et al. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Erguna Block in the Northern Part of the Daxing'anling Mts[J]. Chinese Science Bulletin, 2005, 50 (12) : 1239-1247.
[31] Hao Yujie, Ren Yunsheng, Duan Minxin, et al. Metallogenic Events and Tectonic Setting of the Duobaoshan Ore Field in Heilongjiang Province, NE China[J]. Journal of Asian Earth Sciences, 2015, 97 : 442-458. DOI:10.1016/j.jseaes.2014.08.007
[32] Zeng Qingdong, Liu Jianming, Chu Shaoxiong, et al. Re-Os and U-Pb Geochronology of the Duobaoshan Porphyry Cu-Mo-(Au) Deposit, Northeast China, and Its Geological Significance[J]. Journal of Asian Earth Sciences, 2014, 79 : 895-909. DOI:10.1016/j.jseaes.2013.02.007
[33] 白令安, 孙景贵, 张勇, 等. 大兴安岭地区内生铜矿床的成因类型、成矿时代与成矿动力学背景[J]. 岩石学报, 2012, 28 (2) : 468-482. Bai Ling'an, Sun Jinggui, Zhang Yong, et al. Genetic Type, Mineralization Epoch and Geodynamical Setting of Endogenous Copper Deposits in the Greater Xing'an Mountains[J]. Acta Petrologica Sinica, 2012, 28 (2) : 468-482.
[34] 赵一鸣, 毕承思, 邹晓秋, 等. 黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-锇同位素年龄[J]. 地球学报, 1997, 18 (1) : 61-67. Zhao Yiming, Bi Chengsi, Zou Xiaoqiu, et al. The Re-Os Isotope Age of Molybdenite from Duobaoshan and Tongshan Porphyry Copper (Molybdenum) Deposits[J]. Acta Geoscientica Sinica, 1997, 18 (1) : 61-67.
[35] 向安平, 杨郧城, 李贵涛, 等. 黑龙江多宝山斑岩Cu-Mo矿床成岩成矿时代研究[J]. 矿床地质, 2012, 31 (6) : 1237-1248. Xiang Anping, Yang Yuncheng, Li Guitao, et al. Diagenetic and Metallogenic Ages of Duobaoshan Porphyry Cu-Mo Deposit in Heilongjiang Province[J]. Mineral Deposits, 2012, 31 (6) : 1237-1248.
[36] 葛文春, 吴福元, 周长勇, 等. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J]. 科学通报, 2007, 52 (20) : 2406-2417. Ge Wenchun, Wu Fuyuan, Zhou Changyong, et al. Porphyry Cu-Mo Deposits in the Eastern Xing'an-Mongolian Orogenic Belt:Mineralization Ages and Their Geodynamic Implications[J]. Chinese Science Bulletin, 2007, 52 (20) : 2406-2417.
[37] 任战利, 崔军平, 史政, 等. 中国东北地区晚古生代构造演化及后期改造[J]. 石油与天然气地质, 2010, 31 (6) : 734-742. Ren Zhanli, Cui Junping, Shi Zheng, et al. The Late Paleozoic Tectonic Evolution and Later Transformation in Northeast China[J]. Oil & Gas Geology, 2010, 31 (6) : 734-742.
[38] 徐备, JacquesCharvet, 张福勤. 内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究[J]. 地质科学, 2001, 36 (4) : 424-434. Xu Bei, Jacques Charvet, Zhang Fuqin. Primary Study on Petrology and Geochrononology of Blueschists in Sunitezuoqi, Northern Inner Mongolia[J]. Chinese Journal of Geology, 2001, 36 (4) : 424-434.
[39] 徐备, 赵盼, 鲍庆中, 等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 2014, 30 (7) : 1841-1857. Xu Bei, Zhao Pan, Bao Qingzhong. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica, 2014, 30 (7) : 1841-1857.
[40] Wang Chengwen, Jin Wei, Zhang Xingzhou, et al. Jiameng Block-New Conception of the Late Paleozoic Tectonics in Northeastern China and Adjacent Areas:In Abstracts of 16th International Congress on the Carboniferous and Permian[J]. J Stratigr, 2007, 31 (Sup.Ⅰ) : 140.
[41] 王成文, 金巍, 张兴洲, 等. 东北及邻区晚古生代大地构造属性新认识[J]. 地层学杂志, 2008, 32 (2) : 119-136. Wang Chengwen, Jin Wei, Zhang Xingzhou, et al. New Understanding of the Late Paleozoic Tectonics in Northeastern China and Adjacent Areas[J]. Journal of Stratigraphy, 2008, 32 (2) : 119-136.
[42] 王成文, 孙跃武, 李宁, 等. 中国东北及邻区晚古生代地层分布规律的大地构造意义[J]. 中国科学:D辑:地球科学, 2009, 39 (10) : 1429-1477. Wang Chengwen, Sun Yuewu, Li Ning, et al. Tectonic Implications of Late Paleozoic Stratigraphic Distribution in Northeast China and Adjacent Region[J]. Science China:Series D:Earth Science, 2009, 39 (10) : 1429-1477.
[43] 赵芝, 迟效国, 潘世语, 等. 小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J]. 岩石学报, 2010, 26 (8) : 2452-2464. Zhao Zhi, Chi Xiaoguo, Pan Shiyu, et al. Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing'an Range[J]. Acta Petrologica Sinica, 2010, 26 (8) : 2452-2464.
[44] 赵芝, 迟效国, 刘建峰, 等. 内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J]. 岩石学报, 2010, 26 (11) : 3245-3258. Zhao Zhi, Chi Xiaoguo, Liu Jianfeng, et al. Late Paleozoic Arc-Related Magmatism in Yakeshi Region, Inner Mongolia:Chronological and Geochemical Evidence[J]. Acta Petrologica Sinica, 2010, 26 (11) : 3245-3258.
[45] 崔芳华, 郑常青, 徐学纯, 等. 大兴安岭全胜林场地区晚石炭世岩浆活动研究:对兴安地块与松嫩地块拼贴时间的限定[J]. 地质学报, 2013, 87 (9) : 1247-1263. Cui Fanghua, Zheng Changqing, Xu Xuechun, et al. Late Carboniferous Magmatic Activities in the Quansheng Linchang Area, Great Xing'an Range:Constrains on the Timing of Amalgamation Between Xing'an and Songnen Massifs[J]. Acta Geological Sinica, 2013, 87 (9) : 1247-1263.
[46] Li Yu, Xu Wenliang, Wang Feng, et al. Geochro-nology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China:Implications for the Amalgamation History of the Xing'an and Songnen-Zhangguangcai Range Massifs[J]. Lithos, 2015, 205 : 394-410.
[47] Feng Zhiqiang, Jia Jie, Liu Yongjiang, et al. Geochro-nology and Geochemistry of the Carboniferous Magmatism in the Northern Great Xing'an Range, NE China:Constraints on the Timing of Amalgamation of Xing'an and Songnen Blocks[J]. Journal of Asian Earth Sciences, 2015, 113 : 411-426. DOI:10.1016/j.jseaes.2014.12.017
[48] Chen Bin, Jahn B M, Wilde S, et al. Two Con-trasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China:Petrogenesis and Tectonic Implications[J]. Tectonophysics, 2000, 328 : 157-182. DOI:10.1016/S0040-1951(00)00182-7
[49] 苗来成, 范蔚茗, 张福勤, 等. 小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J]. 科学通报, 2004, 49 (22) : 201-209. Miao Laicheng, Fan Weiming, Zhang Fuqin, et al. Zircon SHRIMP Geochronology of the Xinkailing-Kele Complex in the Northwestern Lesser Xing'an Range, and Its Geological Implications[J]. Chinese Science Bulletin, 2004, 49 (22) : 201-209.
[50] 张彦龙, 葛文春, 高妍, 等. 龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J]. 岩石学报, 2010, 26 (4) : 1059-1073. Zhang Yanlong, Ge Wenchun, Gao Yan, et al. Zircon U-Pb Ages and Hf Isotopes of Granites in Longzhen Area and Their Geological Implications[J]. Acta Petrologica Sinca, 2010, 26 (4) : 1059-1073.
[51] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 1993 . Heilongjiang Bureau of Geological and Mineral. Regional Geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993.
[52] Xu Meijun, Xu Wenliang, Wang Feng. Age, Asso-ciation and Provenance of the "Neoproterozoic" Fengshuigouhe Group in the Northwestern Lesser Xing'an Range, NE China:Constraints from Zircon U-Pb Geochronology[J]. Journal of Earth Science, 2012, 23 (6) : 786-801. DOI:10.1007/s12583-012-0291-0
[53] 崔革.小兴安岭西北部奥陶纪大陆边缘岛弧的确定及其演化[C]//中国北方板块构造文集:第一辑.北京:地震出版社, 1994:293-314. Cui Ge. The Confirmation and Evolution of Ordovician Continental Margin Island Arc, Northwestern of Xiaoxing'anling[C]//Plate Tectonic Works of Northern China:Part 1. Beijing:Seismelogical Press, 1994:293-314.
[54] 余金杰, 徐志刚, 徐凤山. 小兴安岭西北部奥陶系火山岩形成环境[J]. 地球学报, 1996, 17 (1) : 54-64. Yu Jinjie, Xu Zhigang, Xu Fengshan. Tectonic Setting of Ordovician Volcanic Rocks in Northwestern Xiaoxing'anling, Heilongjiang Province[J]. Acta Geoscientia Sinica, 1996, 17 (1) : 54-64.
[55] 苏养正. 兴安地层区的古生代地层[J]. 吉林地质, 1996, 15 (3/4) : 23-34. Su Yangzheng. Paleozoic Stratigraphy of Hinggan Stratigraphical Province[J]. Jilin Geology, 1996, 15 (3/4) : 23-34.
[56] 黑龙江省地质矿产局.黑龙江省岩石地层[J].武汉:中国地质大学出版社, 1997. Heilongjiang Bureau of Geological and Mineral. Stratigraphy (Lithostratic) Heilongjiang Province[M]. Wuhan:China University of Geosciences Press, 1997.
[57] 柳小明, 高山, 第五春容, 等. 单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J]. 科学通报, 2007, 52 (2) : 228-235. Liu Xiaoming, Gao Shan, Diwu Chunrong, et al. Simultaneous In-Situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20μm Spot Size[J]. Chinese Science Bulletin, 2007, 52 (2) : 228-235.
[58] 袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48 (14) : 1511-1520. Yuan Honglin, Wu Fuyuan, Gao Shan, et al. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laster Ablation ICP-MS[J]. Chinese Science Bulletin, 2003, 48 (14) : 1511-1520.
[59] 李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)测定锆石U-Pb同位素年龄的研究[J]. 矿物岩石地球化学通报, 2009, 29 (增刊l) : 600-601. Li Huaikun, Geng Jianzhen, Hao Shuang, et al. The Study of Zircon U-Pb Dating by Means LA-MC-ICP-MS[J]. Acta Mineralogica Sinica, 2009, 29 (Sup.l) : 600-601.
[60] Wu Guang, Chen Yuchuan, Sun Fengyue, et al. Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of the Early Paleozoic Igneous Rocks in the Duobaoshan Area, NE China, and Their Geological Significance[J]. Journal of Asian Earth Sciences, 2015, 97 : 229-250. DOI:10.1016/j.jseaes.2014.07.031
[61] Boynton W V. Geochemistry of the Rare Earth Ele-ments:Meteorite Studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam:Elsevier, 1984:63-114.
[62] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Ocneanic Basalts:Implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Magmatism in Ocean Basins.[S.l.]:Geological Society of Special Publication, 1989:313-345.
[63] Zhang M, O Reilly S Y. Multiple Sources for Basaltic Rocks from Dubbo, Eastern Australia:Geochemical Evidence for Plumelithospheric Mantle Interaction[J]. Chemical Geology, 1997, 136 (1/2) : 33-54.
[64] Hoffmann A W. Chemical Differentiation of the Ear-th:The Relationship Between Mantle, Continental Crust, and Oceanic Crust[J]. Earth and Planet Science Letters, 1988, 90 : 297-314. DOI:10.1016/0012-821X(88)90132-X
[65] Taylor S R, McLennan S. The Geochemical Evolution of the Continental Crust[J]. Reviews of Geophysics, 1995, 33 (2) : 241-265. DOI:10.1029/95RG00262
[66] 徐夕生, 邱检生. 火成岩岩石学[M]. 北京: 科学出版社, 2010 : 1-322. Xu Xisheng, Qiu Jiansheng. Igneous Petrology[M]. Beijing: Science Press, 2010: 1-322.
[67] 刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 37 (4) : 943-951. Liu Yongjiang, Zhang Xingzhou, Jin Wei, et al. Late Paleozoic Tectonic in Northeast China[J]. Geology in China, 2010, 37 (4) : 943-951.
[68] 李双林, 欧阳自远. 兴蒙造山带及邻区的构造格局与构造演化[J]. 海洋地质与第四纪地质, 1998, 18 (3) : 45-54. Li Shuanglin, Ouyang Ziyuan. Tectonic Framework and Evolution of Xing' anling Mongolian Orogenic Belt (XMOB) and Its Adjacent Region[J]. Marine Geology and Quaternary Geology, 1998, 18 (3) : 45-54.
[69] 张兴洲, 马玉霞, 迟效国, 等. 东北及内蒙古东部地区显生宙构造演化的有关问题[J]. 吉林大学学报(地球科学版), 2012, 42 (5) : 1269-1285. Zhang Xingzhou, Ma Yuxia, Chi Xiaoguo, et al. Discussion on Phanerozoic Tectonic Evolution in Northeastern China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42 (5) : 1269-1285.
[70] 汪岩, 付俊彧, 杨帆, 等. 嫩江-黑河构造带收缩与伸展:源自晚古生代花岗岩类的地球化学证据[J]. 吉林大学学报(地球科学版), 2015, 45 (2) : 374-388. Wang Yan, Fu Junyu, Yang Fan, et al. Contraction and Extension in Nenjiang-Heihe Tectonic Belt:Evidence from the Late Paleozoic Granitoid Geochemistry[J]. Journal of Jinlin University (Earth Science Edition), 2015, 45 (2) : 374-388.
[71] 高福红, 王磊, 许文良, 等. 小兴安岭"晚古生代"地层的时代与物源:地质与碎屑锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2016, 46 (2) : 469-481. Gao Fuhong, Wang Lei, Xu Wenliang, et al. Age and Provenance of the Late Paleozoic Srata in Lesser Xing' an Range:Evidence from Field Geology and Detrital Zircon U-Pb Ages[J]. Journal of Jinlin University (Earth Science Edition), 2016, 46 (2) : 469-481.
[72] 孙德有, 吴福元, 李惠民, 等. 小兴安岭西北部后造山A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J]. 科学通报, 2000, 45 (20) : 2217-2222. Sun Deyou, Wu Fuyuan, Li Huimin, et al. Emplacement Age of the Post-Orogenic A-Type Granites in Northwestern Lesser Xing' an Range, and Its Relationship to the Eastward Extension of Suolunshan-Hegenshan-Zhalaite Collisional Suture Zone[J]. Chinese Science Bulletin, 2000, 45 (20) : 2217-2222.
[73] Wu Fuyuan, Sun Deyou, Li Huimin, et al. A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petro Genesis[J]. Chemical Geology, 2002, 187 : 143-173. DOI:10.1016/S0009-2541(02)00018-9
http://dx.doi.org/10.13278/j.cnki.jjuese.201701111
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

齐忠友, 冯志强, 温泉波, 张铁安, 刘宾强, 李小玉, 杜兵盈
Qi Zhongyou, Feng Zhiqiang, Wen Quanbo, Zhang Tiean, Liu Binqiang, Li Xiaoyu, Du Bingying
东北地区嫩江东北部早古生代闪长岩的成因探讨:锆石U-Pb年代学和地球化学证据
Petrogenesis of the Early Paleozoic Diorite in the Northeast Nenjiang Area: Evidence from Zircon U-Pb Chronology and Geochemistry
吉林大学学报(地球科学版), 2017, 47(1): 113-125
Journal of Jilin University(Earth Science Edition), 2017, 47(1): 113-125.
http://dx.doi.org/10.13278/j.cnki.jjuese.201701111

文章历史

收稿日期: 2015-12-23

相关文章

工作空间