文章快速检索  
  高级检索
准噶尔盆地南缘古牧地背斜多期构造变形特征
马德龙1,2,3, 何登发1, 魏东涛2,3, 王彦君2, 魏彩茹2     
1. 中国地质大学(北京)能源学院, 北京 100083;
2. 中国石油勘探开发研究院西北分院, 兰州 730020;
3. 中国石油油藏描述重点实验室, 兰州 730020
摘要: 古牧地背斜位于博格达山前阜康断裂带的北缘。为探讨博格达山隆升在沉积盆地内的构造响应特征,作者结合野外地表露头观测、地震反射特征和磷灰石裂变径迹分析,认为古牧地背斜垂向上可划分为深浅两大构造层:深层侏罗系西山窑组(J2x)以下地层具有双重构造的特征,活动时间为150~130和100~80 Ma;浅层侏罗系西山窑组及以上地层具有断层突破型断层传播褶皱的特征,活动时间约为30 Ma。以上研究成果一方面反映出博格达山晚侏罗世以来多期构造活动的特点,另一方面反映古牧地背斜深层双重构造具有形成时间早、埋深相对浅的特点,是准噶尔盆地南缘有利的油气勘探领域。
关键词: 准噶尔盆地南缘     博格达山     古牧地背斜     多期变形     油气勘探    
Multiple Phase Deformation of Gumudi Anticline at South Margin of Junggar Basin
Ma Delong1,2,3, He Dengfa1, Wei Dongtao2,3, Wang Yanjun2, Wei Cairu2     
1. School of Energy Resources, China University of Geosciences, Beijing 100083, China;
2. Research Institute of Petroleum Exploration and Development-Northwest, PetroChina, Lanzhou 730020, China;
3. Key Laboratory of Reservoir Description, PetroChina, Lanzhou 730020, China
Supported by National Natural Science Foundation of China (40739906) and National Science and Technology Major Project (2016ZX05003002)
Abstract: The Gumudi anticline is located at the north border of Fukang thrust belt, north piedmont zone of Bogeda Mountains. Combining with the outcrops, seismic and apatite fission track, we discussed the tectonic response of the sedimentary basin during the uplift of Bogeda Mountains. Vertically, the Gumudi anticline has dual structures:the layers below the Jurassic (J2x) Xishanyao formation were formed in 150-130 Ma and 100-80 Ma; while Xishanyao formation (J2x) and the above were formed in 30 Ma, with the features of propagation folds under faults breaking through. The results reflect that the multiple uplifts of Bogeda Mountains occurred after Late Jurassic, and the dual structure formation was formed earlier with shallower burial depth. The Gumudi anticline is a favorable area for oil and gas exploration in future.
Key words: south margin of Junggar basin     Bogeda Mountains     Gumudi anticline     multiple phases of deformation     oil and gas exploration    

0 引言

阜康断裂带位于博格达山与准噶尔盆地的接合处,记录了博格达山隆升过程的构造、沉积响应特征,是研究博格达山演化历史的理想场所[1-7],也是准噶尔盆地油气勘探的重要领域[8-12]。虽然博格达山及其山前带引起了许多地质科研工作者和油气勘探家的广泛关注,并取得了一系列研究成果[1-6, 8-12],但对于博格达山隆升在准噶尔盆地内的构造响应特征并不清楚。本文的研究区古牧地背斜位于阜康断裂带的最北缘,紧邻准噶尔盆地阜康凹陷,通过对研究区地震反射特征和磷灰石裂变径迹的分析,结合野外地表露头,建立古牧地背斜构造模型并恢复其构造演化历史,对于探讨博格达山隆升过程和指导阜康断裂带油气勘探具有重要意义。

1 地质背景

博格达山位于天山造山带的东北部(图 1a),地表出露石炭系火山岩、火山碎屑岩,南北两侧为二叠系、中生界和新生界沉积岩变形区。阜康断裂带位于博格达山北麓山前带,发育三工河断裂、妖魔山断裂和阜康断裂等大型断裂带,以及与之相伴生的褶皱带(图 1b)。阜康断裂带发育下二叠统海相到上二叠统陆相的碎屑岩沉积并夹有火山岩,三叠系陆相砂泥岩互层,中下侏罗统以泥岩和煤层为主、上侏罗统为厚层状砂岩,白垩系底部发育底砾岩,向上是以泥岩为主的砂泥岩互层,新生界砂泥岩互层,顶部第四系西域组为巨厚的砾岩沉积(图 23)。

F1.冰草台断裂;F2.三工河断裂;F3.妖魔山断裂;F4.泉子街断裂;F5.阜康断裂。A1.苦坝沟背斜;A2.古牧地背斜;A3.阜康背斜;A4.南阜康背斜;A5.七道湾背斜;A6.北三台背斜;A7.孚远背斜。 图 1 阜康断裂带位置图(a)和阜康断裂带地质图(b) Figure 1 Location of Fukang thrust belt(a) and geological map of Fukang thrust belt(b)
图 2 阜康断裂带地层综合柱状图 Figure 2 Comprehensive stratigraphic column of Fukang thrust belt
AA′为地表实测剖面;BB′为地震剖面。 图 3 古牧地背斜地质图 Figure 3 The Geological map of Gumudi anticline

博格达地区古生代和中生代的构造属性有很大争议。有学者认为博格达地区石炭纪为火山弧环境[13];还有学者认为石炭纪—二叠纪为陆内裂谷环境[14];舒良树等[15-16]认为石炭纪为火山弧环境,早二叠世为裂谷环境;陈科等[17-18]通过对野外露头中不整合现象的分析,认为博格达地区中生代以来为继承性发育的古隆起;Yang等[19]对天山北麓山前带的锆石物源分析认为,准南在中三叠世—晚侏罗世为被动沉降盆地,早白垩世至今为前陆盆地;Greene等[20]对博格达山南麓吐哈盆地碎屑岩沉积研究,认为吐哈—博格达—准噶尔地区在二叠纪—三叠纪为统一的盆地,在早侏罗世博格达山隆升将其分开;Allen等[21]则认为博格达山和吐哈盆地是晚二叠世—三叠纪大型左旋走滑背景下张扭性旋转而形成的盆山构造。新生代以来,受欧亚大陆南缘与一系列块体的增生、碰撞的远程效应影响,博格达山再次发生构造复活[22-24]

2 古牧地背斜构造变形特征 2.1 野外地表露头特征

古牧地背斜南北两翼基本对称,地层倾角为60°~70°,靠近核部地层产状明显变缓(图 4)。北翼最前端发育阜康断层破碎带,断层上盘紫泥泉子组(E1-2z)发生明显倒转(图 5)。古牧地背斜形态单一,并不存在背斜、向斜相间的构造样式,因此用断层传播褶皱解释背斜前翼地层倒转较合理(图 6a),并且断层突破古牧地背斜前翼至地表(图 6b),形成我们在地表所见的阜康断层破裂带。

位置见图 3中AA′。 图 4 古牧地背斜野外地表实测剖面 Figure 4 Measured ground surface profile of Gumudi anticline
图 5 古牧地背斜北翼紫泥泉子组(E1-2z)地层倒转露头 Figure 5 Overturned outcrop (E1-2z Formation) of the northern limb of Gumudi anticline
a据文献[25]修改。 图 6 断层突破型断层传播褶皱模型(a)和古牧地背斜浅层构造模型(b) Figure 6 Model of fault propagation fold with for-limb breakthrough (a) and the structural model of shallow part of the Gumudi anticline (b)
2.2 地震反射特征及构造模型建立

在地震反射剖面中,古牧地背斜南翼地层地震反射成像清晰,且近地表处地震反射同相轴产状与地表地层产状测量结果一致(图 7a)。背斜核部和北翼由于地表起伏大、地层较陡以及断层对下盘地震成像的“屏蔽”作用等原因,核部和北翼地震反射成像很差(图 7a)。通过与地表地质建模相结合,我们建立了浅层断层突破型断层传播褶皱模型(图 7b)。在地震反射剖面双程旅行时3 500~5 000 ms处,清晰可见J2x煤层连续强反射特征,垂向上还有地层重复的现象。另外,J2x强反射之下,能够识别出较可靠的逆断层,与J2x煤系滑脱层构成了双重构造系统,内部还发育起到调节作用的反冲断层(图 7b)。

a.未解释的地震反射剖面;b.解释的地震反射剖面。位置见图 3中BB′。 图 7 古牧地背斜构造模型 Figure 7 Structural model of Gumudi anticline
2.3 构造演化分析

根据古牧地背斜侏罗系不同层位样品的磷灰石裂变径迹的测试结果(图 8)可见,年龄值均小于所在地层年龄,因此这些样品记录了侏罗系沉积后研究区经历的热演化过程。从模拟实验结果来看,研究区侏罗纪以来发生了150~130、100~80和约30 Ma 3期构造隆升事件。根据上述建立的构造模型,浅层构造变形卷入地层较新,说明变形时间较晚,应该对应约30 Ma构造变形事件;而深部变形仅从地震反射特征很难确定变形时间,磷灰石裂变径迹的结果恰好能反映深部构造变形活动时间较早的特点,为150~130和100~80 Ma。

数据引自文献[26]。 图 8 古牧地地区磷灰石裂变径迹测试结果 Figure 8 Aatite fission track features of Gumudi anticline

结合以上分析结果,利用平衡剖面技术,完成了古牧地背斜中侏罗世以来构造演化剖面(图 9)。表明:古牧地背斜晚侏罗世—白垩纪隆升,并发生剥蚀,形成下构造层的双重构造,地层缩短量达到5 km;古近纪以来J2x塑性层发生大规模滑脱并向浅层突破,地层缩短量达到3.8 km,导致古牧地背斜上构造层继续活动,并冲出地表。

图 9 古牧地背斜构造演化特征 Figure 9 Sructural evolutions of Gumudi anticline
3 讨论

Wartes等[27]和陈科等[18]在博格达山南麓分别发现二叠系褶皱地层上覆盖有近水平的三叠系和侏罗系形成的角度不整合,认为这是博格达山三叠纪初始隆升的证据;而Greene等[20]分析吐哈盆地三叠系物源来自南部中天山陆壳而不是北部北天山洋壳,因此得出博格达山在早侏罗世初始隆升;Tang等[28]对博格达山北麓二叠—侏罗系样品物源分析也认为博格达山在早侏罗世隆升,隆升幅度很低,在晚侏罗世大幅度隆升;Yang等[19]对整个准噶尔盆地南缘二叠纪以来的构造属性分析认为,二叠纪—晚侏罗世南缘整体处在伸展环境中,在早白垩世以来才进入前陆盆地演化阶段。而我们此次通过对古牧地背斜侏罗系样品分析得到最早的变形时间是150~130 Ma,说明古牧地地区可能受博格达山隆升的影响,在晚侏罗世—早白垩世确实发生了隆升,并且在研究区白垩系底部可以看到砾石沉积(图 4),以及在区域地震大剖面中可以看到白垩系底部与下伏地层不整合接触[29],这些都反映出古牧地地区晚侏罗世—早白垩世确实发生了构造隆升。至于该区域在早侏罗世甚至更早的三叠纪是否发生隆升,还要继续做相关研究工作才能确定。

晚白垩世以来的构造活动(100~80 Ma,约30 Ma)主要与欧亚大陆南缘发生的多期地体增生、碰撞远程效应造成的博格达山复活有关[22-24]。朱文斌等[30]和沈传波等[31]通过博格达山及北麓的磷灰石裂变径迹分析,均获得了晚白垩世—新生代的多期冷却剥蚀。在新生代的冷却剥蚀过程中可以看到5 Ma以来的隆升加速过程(图 8b),这可能和欧亚大陆与印度板块碰撞有关。

古牧地背斜下构造层双重构造变形时间主要为晚侏罗世—早白垩世和晚白垩世,而上构造层断层突破型断层传播褶皱的形成主要受新生代博格达山复活影响,J2x煤系塑性层产生长距离的滑脱位移量并在古牧地冲出地表。现今古牧地背斜油气勘探主要集中在上构造层断层传播褶皱上,已获得了良好的油气显示,并且证实油气来源主要为下伏的侏罗系西山窑组和八道湾组(J1b)煤系烃源岩[32-33]。而下构造层双重构造形成时间更早、后期改造作用弱、距离烃源岩更近、埋深相对较浅,具有非常重要的勘探价值。

4 结论

1) 古牧地背斜下构造层为双重构造,活动时间为晚侏罗世—早白垩世、晚白垩世,上构造层为断层突破型断层传播褶皱,活动时间为古近纪末至今。古牧地背斜的多期构造变形与博格达山隆升有密切关系。

2) 古牧地背斜下构造层圈闭形成时间早、晚期破坏作用弱、距油源近、埋深适中,是非常现实的重要油气勘探领域。

致谢: 感谢在野外地质考察过程中给予指导和帮助的南京大学王胜利教授。
参考文献
[1] 吴孔友, 查明, 曲江秀, 等. 博格达山隆升对北三台地区构造形成与演化的控制作用[J]. 石油大学学报(自然科学版), 2004, 28(2): 1-5.
Wu Kongyou, Zha Ming, Qu Jiangxiu, et al. Control of Bogeda Mountain Uplift on the Structural Formation and Evolution in Beisantai Region[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2004, 28(2): 1-5.
[2] 柳永清, 王宗秀, 金小赤, 等. 天山东段晚中生代-新生代隆升沉积响应、年代学与演化研究[J]. 地质学报, 2004, 78(3): 319-331.
Liu Yongqing, Wang Zongxiu, Jin Xiaochi, et al. Evolution, Chronology and Depositional Effect of Uplifting in the Eastern Sector of the Tianshan Mountains[J]. Acta Geologica Sinica, 2004, 78(3): 319-331.
[3] 方世虎, 宋岩, 贾承造, 等. 新疆博格达地区中新生代碎屑岩成分特征与盆山分异过程[J]. 地质学报, 2007, 81(9): 1229-1237.
Fang Shihu, Song Yan, Jia Chengzao, et al. The Mesozoic-Cenozoic Clastic Composition of Bogeda Area, Xinjiang:Implications on the Evolution of Basin-Range Pattern[J]. Acta Geologica Sinica, 2007, 81(9): 1229-1237.
[4] 孙国智, 柳益群. 新疆博格达山隆升时间初步分析[J]. 沉积学报, 2009, 27(3): 487-493.
Sun Guozhi, Liu Yiqun. The Preliminary Analysis of the Uplift Time of Bogeda Mountain, Xinjiang, Northwest China[J]. Acta Sedimentologica Sinica, 2009, 27(3): 487-493.
[5] 李涛, 张进, 卢苗安. 准噶尔盆地南缘东段、东北缘盆山耦合研究[J]. 新疆石油地质, 2008, 29(6): 68-72.
Li Tao, Zhang Jin, Lu Miaoan. Study on Basin-Mountain Coupling in East Segment of Southern Margin and Northeastern Margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(6): 68-72.
[6] 陈正乐, 周永贵, 韩凤彬, 等. 天山山脉剥露程度与矿产保存关系初探[J]. 地球科学:中国地质大学学报, 2012, 37(5): 903-916.
Chen Zhengle, Zhou Yonggui, Han Fengbin, et al. Exhumation Degree of the Tianshan Range and Its Implications for Ore Preservation[J]. Earth Science:Journal of China University of Geosciences, 2012, 37(5): 903-916.
[7] Chen K, Lin W, Wang Q C. The Bogeda Shan Up-lifting:Evidence from Multiple Phases of Deformation[J]. Journal of Asian Earth Sciences, 2015, 99: 1-12. DOI:10.1016/j.jseaes.2014.12.006
[8] 罗晓容, 肖立新, 李学义, 等. 准噶尔盆地南缘中段异常压力分布及影响因素[J]. 地球科学:中国地质大学学报, 2004, 29(4): 404-412.
Luo Xiaorong, Xiao Lixin, Li Xueyi, et al. Overpressure Distribution and Affecting Factors in Southern Margin of Junggar Basin[J]. Earth Science:Journal of China University of Geosciences, 2004, 29(4): 404-412.
[9] 旷理雄, 郭建华, 梅廉夫, 等. 从油气勘探的角度论博格达山的隆升[J]. 吉林大学学报(地球科学版), 2005, 35(3): 346-350.
Kuang Lixiong, Guo Jianhua, Mei Lianfu, et al. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(3): 346-350.
[10] 汪新伟, 汪新文, 马永生. 新疆博格达山的构造演化及其与油气的关系[J]. 现代地质, 2007, 21(1): 116-124.
Wang Xinwei, Wang Xinwen, Ma Yongsheng. The Tectonic Evolution of Bogeda Mountain, Xinjiang Northwest China and Its Relationship to Oil and Gas Accumulation[J]. Geoscience, 2007, 21(1): 116-124.
[11] 高崇龙, 纪友亮, 靳军, 等. 准噶尔盆地莫索湾地区清水河组深层优质储层特征及其物性控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 990-1006.
Gao Chonglong, Ji Youliang, Jin Jun, et al. Characteristics and Controlling Factors on Physical Properties of Deep Buried Favorable Reservoirs of the Qingshuihe Formation in Muosuowan Area, Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(4): 990-1006.
[12] 孙靖, 宋永, 王仕莉, 等. 准噶尔盆地深层致密油储层特征及密化成因:以莫索湾-莫北地区侏罗系八道湾组为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 25-33.
Sun Jing, Song Yong, Wang Shili, et al. Deep Tight Oil Reservoir Characteristics and Densification Causes of Junggar Basin:A Case from Jurassic Badaowan Formation in Mosuowan-Mobei Area[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1): 25-33.
[13] Lauren-Charvet S, Charvet J, Monié P, et al. Late Plaeozoic Strike-Slip Shear Zones in Eastern Central Asia (NW China):New Structural and Geochronological Data[J]. Tectonics, 2003, 22(2): 237-241.
[14] 顾连兴, 胡受溪, 于春水, 等. 东天山博格达造山带石炭纪火山岩及其成因地质环境[J]. 岩石学报, 2000, 16(3): 305-316.
Gu Lianxing, Hu Shouxi, Yu Chunshui, et al. Carboniferous Volcanites in the Bogeda Orogenic Belt of Eastern Tianshan:Their Tectonic Implications[J]. Acta Petrologica Sinica, 2000, 16(3): 305-316.
[15] 舒良树, 朱文斌, 王博, 等. 新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造[J]. 岩石学报, 2005, 21(1): 25-36.
Shu Liangshu, Zhu Wenbin, Wang Bo, et al. The Post Collision Intracontinental Rifting and Olistotrome on the Southern Slope of Bogeda Mountains, Xinjiang[J]. Acta Petrologica Sinica, 2005, 21(1): 25-36.
[16] Shu L S, Wang B, Zhu W B, et al. Timing of Initiation of Extension in the Tianshan, Based on Structural, Geochemical and Geochronological Analyses of Bimodal Volcanism and Olistostrome in the Bogeda Shan (NW China)[J]. International Journal of Earth Sciences, 2011, 100: 1647-1663. DOI:10.1007/s00531-010-0575-5
[17] Chen K, Gumiaux C, Augier R, et al. The Mesozoic and Palaeorelief of the Northern Tian Shan (China)[J]. Terra Nova, 2011, 23: 195-205. DOI:10.1111/ter.2011.23.issue-3
[18] Chen K, Lin W, Wang Q C. The Bogeda Shan Uplifting:Evidence from Multiple Phases of Deformation[J]. Journal of Asian Earth Sciences, 2015, 99: 1-12. DOI:10.1016/j.jseaes.2014.12.006
[19] Yang W, Jolivet M, Dupont-Nivet G, et al. Source to Sink Relations Between the Tian Shan and Junggar Basin (Northwest China) from Late Palaeozoic to Quaternary:Evidence from Detrital U-Pb Zircon Geochronology[J]. Basin Research, 2013, 25: 219-240. DOI:10.1111/j.1365-2117.2012.00558.x
[20] Greene T J, Carroll A R, Wartes M, et al. Integrated Provenance Analysis of a Complex Orogenic Terrane:Mesozoic Uplift of the Bogeda Shan and Inception of the Turpan-Hami Basin, NW China[J]. Journal of Sediment Research, 2005, 75: 251-267. DOI:10.2110/jsr.2005.019
[21] Allen M B, Sengör A M C, Natal'in B A. Junggar, Turfan and Alakol Basins as Late Permian to Early TriassicExtensional Structures in a Sinistral Shear Zone in the Altaid Orogenic Collage, Central Asia[J]. Journal of the Geological Society, 1995, 152: 327-338. DOI:10.1144/gsjgs.152.2.0327
[22] Tapponnier P, Molnar P. Active Faulting and Tecto-nics in China[J]. Journal of Geophysical Research, 1977, 82: 2905-2932. DOI:10.1029/JB082i020p02905
[23] Avouac J P, Tapponnier P, Bai M, et al. Active Thrusting and Folding Along the Northern Tien-Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan[J]. Journal of Geophysical Research, 1993, 98: 6755-6804. DOI:10.1029/92JB01963
[24] Hendrix M S, Dumitru T A, Graham S A. Late Oligocene Early Miocene Unroofing in the Chinese Tien-Shanan Early Effect of the India-Asia Collision[J]. Geology, 1994, 22: 487-490. DOI:10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2
[25] Suppe J, Medwedeff D A. Geometry and Kinematics of Fault-Propagation Folding[J]. Eclogae Geologicae Helvetiae, 1990, 83(3): 409-454.
[26] 汪新伟, 汪新文, 马永生. 新疆博格达山晚中生代以来的差异剥露史[J]. 地质学报, 2007, 81(11): 1507-1517.
Wang Xinwei, Wang Xinwen, Ma Yongsheng. Differential Exhumation History of Bogda Mountain, Xinjiang, Northwestern China Since the Late Mesozoic[J]. Acta Geologica Sinica, 2007, 81(11): 1507-1517. DOI:10.3321/j.issn:0001-5717.2007.11.005
[27] Wartes M A, Carroll A R, Greene T J. Permian Sedimentary Record of the Turpan-Hami Basin and Adjacent Regions, Northwest China, Constraints on Postamalgamation Tectonic Evolution[J]. Geological Society of America Bulletin, 2002, 114: 131-152. DOI:10.1130/0016-7606(2002)114<0131:PSROTT>2.0.CO;2
[28] Tang W H, Zhang Z C, Li J F, et al. Late Paleozoic to Jurassic Tectonic Evolution of the Bogda Area (Northwest China):Evidence from Detrital Zircon U-Pb Geochronology[J]. Tectonophysics, 2014, 626: 144-156. DOI:10.1016/j.tecto.2014.04.005
[29] Yang X F, He D F, Wang Q C, et al. Tectonostra-tigraphic Evolution of the Carboniferous Arc-Related Basin in the East Junggar Basin, Northwest China:Insights into Its Link with the Subduction Process[J]. Gondwana Research, 2012, 22: 1030-1046. DOI:10.1016/j.gr.2012.02.009
[30] 朱文斌, 舒良树, 万景林, 等. 新疆博格达-哈尔里克山白垩纪以来剥露历史的裂变径迹证据[J]. 地质学报, 2006, 80(1): 16-22.
Zhu Wenbin, Shu Liangshu, Wan Jinglin, et al. Fission Track Evidence for the Exhumation History of Bogeda-Harlik Mountains, Xinjiang Since the Cretaceous[J]. Acta Geologica Sinica, 2006, 80(1): 16-22.
[31] 沈传波, 梅廉夫, 张士万, 等. 依连哈比尔尕山和博格达山中新生代隆升的时空分异:裂变径迹热年代学的证据[J]. 矿物岩石, 2008, 28(2): 63-70.
Shen Chuanbo, Mei Lianfu, Zhang Shiwan, et al. Fission Track Dating Evidence on Space-Time Difference of Mesozoic-Cenozoic Uplift of the Yilianhabierga Mountain and Bogeda Mountain[J]. Journal of Mineralogy and Petrology, 2008, 28(2): 63-70.
[32] 佟殿君, 任建业, 李亚哲. 准噶尔盆地侏罗系西山窑组沉降中心的分布及其构造控制[J]. 大地构造与成矿学, 2006, 30(2): 180-188.
Tong Dianjun, Ren Jianye, Li Yazhe. Distribution of the Quick Subsidence Centers and Tectonic Control on the Jurassic Xishanyao Formation in Junggar Basin[J]. Geotectonica et Metallogenia, 2006, 30(2): 180-188.
[33] Zhang M M, Liu Z J, Xu S C, et al. Element Response to the Ancient Lake Information and Its Evolution History of Argillaceous Source Rock in the Lucaogou Formation in Sangonghe Area of Southern Margin of Junggar Basin[J]. Journal of Earth Science, 2013, 24(6): 987-996. DOI:10.1007/s12583-013-0392-4
http://dx.doi.org/10.13278/j.cnki.jjuese.201706109
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

马德龙, 何登发, 魏东涛, 王彦君, 魏彩茹
Ma Delong, He Dengfa, Wei Dongtao, Wang Yanjun, Wei Cairu
准噶尔盆地南缘古牧地背斜多期构造变形特征
Multiple Phase Deformation of Gumudi Anticline at South Margin of Junggar Basin
吉林大学学报(地球科学版), 2017, 47(6): 1695-1704
Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1695-1704.
http://dx.doi.org/10.13278/j.cnki.jjuese.201706109

文章历史

收稿日期: 2017-03-24

相关文章

工作空间