文章快速检索  
  高级检索
铅同位素示踪在大气降尘重金属污染来源解析中的应用
胡恭任1,2, 于瑞莲1, 胡起超1, 温先华1, 刘贤荣1, 张希琳1     
1. 华侨大学环境科学与工程系, 福建 厦门 361021 ;
2. 东华理工大学核资源与环境教育部重点实验室, 南昌 330013
摘要: 为了分析大气降尘中铅的污染来源,解析各污染源对大气降尘铅的相对贡献值,在厦门市不同功能区采集了29个大气降尘样品。用热电质谱仪测定了大气降尘的总铅同位素组成,用ICP-MS测定样品酸可溶相铅同位素组成。结果表明,厦门市大气降尘铅同位素206Pb/207Pb值变化较大,为1.111 9~1.173 8;酸可溶相铅206Pb/207Pb值与福建土壤残渣相206Pb/207Pb值相差较大,表明厦门市大气降尘受人类活动来源铅的影响较大;酸可溶相铅206Pb/207Pb值明显小于总量铅206Pb/207Pb值。铅同位素示踪表明,厦门市大气降尘铅主要来源是燃煤,其次是自然来源和汽车尾气。三元混合模型分析表明,燃煤、自然来源、汽车尾气对厦门市大气降尘总量铅的贡献率分别为48.57%、20.29%、31.14%。
关键词: 大气降尘     铅同位素     来源分析     厦门市    
Tracing Heavy Metal Sources in the Atmospheric Dustfall Using Stable Lead Isotope
Hu Gongren1,2, Yu Ruilian1, Hu Qichao1, Wen Xianhua1, Liu Xianrong1, Zhang Xilin1     
1. Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China ;
2. Key Laboratory of Nuclear Resources and Environment, Ministry of Education, East China University of Technology, Nanchang 330013, China
Supported by Supported by National Natural Science Foundation of China(21377042,21477042),National Natural Science Foundation of Fujian Province(2014J01176) and Innovation and Entrepreneurship Training Program of National College Students, Huaqiao University (201410385018)
Abstract: In order to identify the sources of lead pollution in the atmospheric dustfall, as well as comfirm the contribution of each source to such pollution. We obtained 29 atmospheric dustfall samples in the different areas of Xiamen City. Total Pb isotopic composition of each sample was analyzed by thermal mass spectrometry and acid soluble Pb isotopic ratios were determined by ICP-MS. The results indicated that dustfall Pb isotope of 206Pb/207Pb in Xiamen City varied widely with the ranges of 1.111 9 to 1.173 8.Pb isotope of 206Pb/207Pb in acid solution was different from the ratios in residual form soil of Fujian, indicating the powerful impact of external lead sources. Pb isotopic composition of acid solution decreased significantly than total Pb isotopic composition. Lead isotope tracing techniques showed coal-fired was the main source of lead pollution in Xiamen City dustfall, followed by nature source and vehicle exhaust. Total and acid soluble Pb isotope composition of coal pile was closed to coal-fired, suggesting coal pile was a potential source. The results of ternary hybrid model were as follows: the contribution of coal-fired, nature source and vehicle exhaust to total lead in dustfall were 48.57%, 20.29% and 31.14%, respectively.
Key words: dustfall     lead isotopic     source apportionment     Xiamen City    

0 引言

近年来,大气降尘因与人类健康关系密切而倍受关注。大气重金属污染是困扰世界城市环境与发展的严重环境污染之一,而大气降尘是大气中重金属的主要载体。随着全球城市化水平的提高,人类活动影响加剧,城市大气污染日益严重。城市化过程所导致的大气重金属污染已成为影响居民健康的一个重要因素。查明大气中重金属污染来源,为重金属污染控制提供数据和科学依据,对实施重金属污染治理、改善城市大气环境质量具有重要意义[1]。以往的研究大多局限于污染程度方面,例如对大气降尘中重金属污染的研究局限于重金属的分布、赋存形态和生态环境危害等方面;而在污染源方面的研究主要用化学法和显微分析法,但因二者的局限性,不能从定量方面找出真正的污染源头,以进一步提出合理的治理措施[2]。大气降尘中污染来源非常复杂,对其识别是一个比较困难的过程。判别污染源常用的方法有三种:结合“受体模型”和各种多元统计分析方法的化学法[3]、显微分析法和同位素示踪法[4]。化学法需要大面积取样,工作量大,主要是对大气降尘中重金属元素全量及各化学形态进行统计学分析和质量评价;显微分析法存在着分析时间长、费用昂贵、对在颗粒物中占有很大比例的无定性有机成分不敏感、在观测粒子密度和体积时误差较大等缺点[5];铅同位素在地壳中能够稳定存在,若无人为影响,其各同位素比值基本不变,而受不同人为源的影响,铅同位素比值发生不同的变化。因此,可用铅同位素比值的不同判断污染物的来源。

基于研究对象的铅同位素组成只与源区的铅同位素组成特征有关,而与重金属的迁移行为和轨迹没有关系这一特点,铅同位素示踪技术在判别土壤、大气、水体中铅与相关重金属污染来源,区别汽车尾气铅污染和工业铅污染等方面已起到独特的作用[5-10]。特别是在研究Pb及其他亲硫元素(Hg、Ag、Tl、Sb、Zn、Cu等)的重金属污染来源方面,已成为一种强有力的手段[8]。利用铅同位素的“指纹”特征,只要测定出研究对象和各种可能源区的铅同位素组成,即可准确判定出污染源,为有效治理提供科学依据[9]。厦门市有关大气降尘的研究主要是测定大气颗粒物浓度和重金属浓度[11-15],对于大气降尘中重金属来源的研究很少报道。本文采用铅稳定同位素示踪技术,结合同位素三元混合模型分析厦门市大气降尘中重金属来源及其贡献率,评估新一轮经济建设引起的当地污染源对其贡献,以期为厦门市大气重金属污染防治提供科学依据。

1 材料与方法 1.1 样品采集和预处理

在详细调查了厦门市商业区、居住区、交通区、工业区、旅游区等分布状况后,于2012年11月—2013年1月选择晴朗静风天气,在厦门市不同功能区(X1—X5,X28为商业区;X6—X10为居住区;X11—X17为交通区;X18—X26为工业区;X29—X30为旅游区。见图 1)用毛刷扫集玻璃表面和无油漆脱落的木质及 塑料物件上的降尘于洁净信封中。采样注意事项:采样前几天无大风、雨雪;在距地面高度为 1.5~2.0 m的一定范围内(半径约 10 m范围内)采样;避开突发和偶然因素的影响;毛刷不能重复使用;样品采完立即封袋。所采集的样品在35 ℃下烘干,过150目的不锈钢网筛,筛下物用洁净自封袋保存并置于干燥器中待分析。端元物质XD1为象屿保税区堆煤场煤灰。

图 1 厦门市大气降尘采样点位分布图 Figure 1 Location of atmospheric dustfall sampling sites in Xiamen City
1.2 样品分析

样品总铅同位素比值在核工业北京地质研究院分析测试研究中心同位素超净实验室完成,具体方法和步骤见文献[16]。测定结果都具有较高的精密度,铅同位素比值均在误差允许的范围内,测定结果的2σ在0.001~0.007范围(大多为0.002~0.004),符合铅同位素测试精度要求。

酸可溶相样品铅同位素比值在中国科学院城市环境与健康重点实验室完成,具体测定方法和步骤见文献[17]。每测定7个样品后测定1次NBS981标准物质。准确度分析: 不同次数铅同位素标准物质的测定结果见表 1,铅同位素组成208Pb/206Pb、207Pb/206Pb和207Pb/204Pb的测定值均在给定值(分别为2.168 1±0.000 8,0.914 620±0.000 037和15.491 000±0.000 064)附近较小的范围内变化,误差<0.096 9%,相对标准偏差值<0.064 6%。

表 1 铅同位素标准物质NBS981的分析测定结果 Table 1 Determination of Pb isotope standard material (NBS981)
编号208Pb/206Pb207Pb/206Pb207Pb/204Pb
12.168 10.914 615.489
22.167 90.914 715.491
32.167 60.914 715.488
42.167 40.914 615.482
平均值2.167 80.914 6515.485
相对标准偏差/%0.023 10.035 00.064 6
误差/%0.034 60.051 90.096 9
2 结果与讨论 2.1 厦门市大气降尘铅同位素组成

厦门市不同功能区大气降尘样品铅同位素组成分析测定结果见表 2。由表 2可知:大气降尘208Pb/204Pb值为37.863~38.583,平均为38.414;207Pb/204Pb为15.350~15.715,平均为15.633;206Pb/204Pb分布为17.862~18.377,平均为18.231;206Pb/207Pb为1.149 5~1.173 8,平均为1.166 5;206Pb/208Pb分布在0.471 8~0.476 6,平均为0.474 7;208Pb/207+206Pb分布在1.131 5~1.141 2,平均为1.134 2。206Pb/204Pb变异系数最大为1.150%。厦门市大气降尘铅同位素组成变化范围较大,表明大气降尘铅来源较复杂。

表 2 厦门市不同功能区大气降尘铅同位素组成 Table 2 Pb isotopic ratios in dustfall of Xiamen City
功能区样号208Pb/204Pb207Pb/204Pb206Pb/204Pb206Pb/207Pb206Pb/208Pb208Pb/207+206Pbω(Pb)/(mg/kg)
商业区X138.38415.63718.2011.164 00.474 21.134 3170.0
X238.45715.66018.2361.164 50.474 21.134 6136.0
X338.44615.64018.2531.167 10.474 81.134 3162.0
X438.36715.63418.2181.165 30.474 81.133 4120.0
X538.40315.62718.2371.167 00.474 91.134 0157.0
X2838.38215.64018.2061.164 10.474 31.134 0202.0
居住区X638.52015.66018.2781.167 20.474 51.135 0204.0
X738.46115.63918.3221.171 60.476 41.132 5143.0
X838.45415.63918.2921.169 60.475 71.133 3124.0
X938.54715.66418.3301.170 20.475 51.133 9136.0
X1038.46015.63718.2891.169 60.475 51.133 6113.0
交通区X1138.49315.64118.3221.171 40.476 01.133 4151.0
X1238.43315.63918.2201.165 00.474 11.135 1114.0
X1338.42715.63318.2421.166 90.474 71.134 4140.0
X1438.58315.65618.3771.173 80.476 31.133 7124.0
X1538.39715.63018.1901.163 80.473 71.135 3143.0
X1638.53115.64718.3641.173 60.476 61.132 9144.0
X1738.44415.65418.2341.164 80.474 31.134 4327.0
工业区X1838.30815.61318.2421.168 40.476 21.131 5218.0
X1938.41815.64218.2461.166 50.474 91.133 7241.0
X2038.42915.64218.2561.167 10.475 11.133 7203.0
X2138.40515.65018.1931.162 50.473 71.134 8262.0
X2238.50315.71518.1711.156 30.471 91.136 31540
X2338.43315.64618.2621.167 20.475 21.133 4324.0
X2438.47815.64618.3211.171 00.476 11.132 8370.0
X2538.40215.64618.1891.162 50.473 61.135 0349.0
X2638.42315.64318.2291.165 30.474 41.134 4204.0
旅游区X2938.55715.67118.3371.170 10.475 61.133 8193.0
X3038.01015.35017.9571.169 80.472 41.141 2267.9
堆煤场XD137.86315.53917.8621.149 5 0.471 8 1.133 6 57.9
2.2 厦门市大气降尘可溶相铅同位素组成

特定环境下,不同形态铅具有的活性和移动性均不同。已知重金属可溶态活性最大,在自然环境发生变化时最容易释放出来,因此,可以利用酸可溶相铅同位素组成分析污染来源。厦门市不同功能区大气降尘酸可溶相铅同位素组成见表 3。由表 3可知:降尘中可溶相铅208Pb/204Pb值为35.180~38.300,平均为37.905;207Pb/204Pb分布范围为14.360~15.940,平均为15.642;206Pb/204Pb分布在16.600~18.262,平均为18.043;206Pb/207Pb为1.143 9~1.159 7,平均为1.153 5;206Pb/208Pb分布在0.470 8~0.483 6,平均为0.476 0;208Pb/206+207Pb分布在1.104 9~1.136 3,平均为1.125 3。不同功能区酸可溶相铅206Pb/207Pb值与福建土壤残渣相比值(1.203 0)[17]相差较大,表明受到人类活动来源铅的影响较大。酸可溶相铅208Pb/204Pb比值总体上相对总量有明显的变小趋势。206Pb/207Pb和208Pb/206+207Pb变化不大。

表 3 厦门市不同功能区大气降尘酸可溶相铅同位素组成 Table 3 Pb isotopic ratios of acid soluble in dustfall from different areas of Xiamen City
功能区样号208Pb/204Pb207Pb/204Pb206Pb/204Pb206Pb/207Pb206Pb/208Pb208Pb/207+206Pbω(Pb)/(mg/kg)
商业区X138.03015.53017.9761.157 50.472 61.135 091.67
X237.87015.58018.0411.157 90.476 41.126 450.24
X338.09015.63018.0731.156 30.474 61.130 298.12
X437.78015.65018.0381.152 60.477 61.121 567.62
X537.90015.69018.1161.154 60.478 01.121 193.60
X2838.14015.59018.0801.159 70.474 21.132 887.67
居民区X637.94015.77018.1751.152 50.479 21.117 7125.80
X737.33015.57017.9501.152 90.480 81.113 768.07
X838.03015.84018.2281.150 80.479 41.116 347.32
X937.92015.94018.2621.145 60.481 71.108 763.66
X1037.74015.89018.2251.146 90.482 91.106 349.02
交通区X1137.75015.91018.2551.147 40.483 61.104 949.50
X1235.18014.36016.6001.156 00.471 91.136 327.18
X1338.02015.57017.9311.151 60.471 51.134 948.48
X1437.82015.55018.0251.159 10.476 61.126 434.28
X1538.11015.62018.0571.156 00.473 71.131 642.81
X1638.04015.72018.1461.154 30.476 91.123 359.21
X1738.02015.71018.0961.151 90.476 01.124 6181.90
工业区X1838.01015.72018.1161.152 40.476 41.123 464.69
X1937.93015.75018.0541.146 30.476 01.122 1100.80
X2038.20015.75018.1791.154 20.475 71.125 949.30
X2137.98015.73018.0901.150 00.476 21.123 0121.10
X2238.19015.67018.0211.150 00.471 91.133 5304.90
X2338.18015.64018.1291.159 10.474 81.130 6159.50
X2438.30015.63018.1031.158 20.472 61.135 4146.70
X2538.23015.67018.1231.156 50.473 91.131 3116.20
X2638.24015.67018.1651.159 20.475 11.130 250.59
旅游区X2938.22015.67018.1521.158 40.475 11.130 069.47
X3038.10015.66018.0641.153 50.474 21.129 8191.90
堆煤场XD137.85015.58017.8221.143 90.470 81.133 238.39
2.3 厦门市大气降尘铅来源分析 2.3.1 总量Pb和Pb同位素组成的关系

厦门市大气降尘铅质量分数为57.90~1 540.00 mg/kg,平均234.70 mg/kg,超过了福建和厦门C层土壤背景值(分别为47.5和56.8 mg/kg)[18]。降尘铅质量分数变异系数为72.72%,表明厦门市大气降尘中的铅来源较复杂。

为了解不同采样点降尘铅同位素组成之间及其与1/Pb之间的关系,对6个同位素比值和1/Pb进行相关性分析(表 4)。结果表明:1/Pb和 208Pb/204Pb、207Pb/204Pb、206Pb/204Pb都呈负相关,与其余铅同位素组成的相关性不明显;208Pb/204Pb、207Pb/204Pb、206Pb/204Pb、206Pb/207Pb、206Pb/208Pb两两之间呈显著正相关。

表 4 厦门市大气降尘中铅同位素组成与1/Pb的相关性分析表 Table 4 Correlation coefficient matrix between lead isotopic rations and 1/Pb in dustfall of Xiamen City
铅同位素208Pb/204Pb207Pb/204Pb206Pb/204Pb206Pb/207Pb206Pb/208Pb208Pb/207+206Pb
208Pb/204Pb1.000
207Pb/204Pb0.949**1.000
206Pb/204Pb0.984**0.888**1.000
206Pb/207Pb0.952**0.817**0.991**1.000
206Pb/208Pb0.888**0.726**0.956**0.984**1.000
208Pb/207+206Pb0.1520.335-0.021-0.125-0.3011.000
1/Pb-0.484**-0.609**-0.416*-0.341-0.277-0.294
注:样品数N=29;**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。同位素组成的相关性不明显;208Pb/204Pb、207Pb/204Pb、206Pb/204Pb、206Pb/207Pb、206Pb/208Pb两两之间呈显著正相关。
2.3.2 大气降尘中Pb来源分析

端元组分汽车尾气、燃煤尘和母质层的部分数据来自文献[16],这些端元物质之间铅同位素比值206Pb/207Pb、206Pb/208Pb、208Pb/207+206Pb相差较大,分别为(1.111 1~1.157 1,0.462 9~0.492 4,1.086 0~1.150 8)、 (1.143 0~1.156 3,0.467 3~0.471 7,1.132 5~1.143 1)、 (1.191 3~1.214 2,0.478 8~0.491 7,1.105 7~1.136 2);其可以有效示踪和鉴别厦门市大气降尘铅污染来源。结合相关性分析结果可知,206Pb/207Pb和206Pb/208Pb呈显著正相关。在206Pb/207Pb-206Pb/208Pb图(图 2)上:厦门市大气降尘总量铅同位素比值位于燃煤尘和母质层(自然源)之间,靠近燃煤尘,与汽车尾气尘相差较远。对于不同功能区大气降尘酸可溶态铅同位素组成(图 2),商业区、交通区、工业区和旅游区都靠近燃煤尘范围,与母质层铅同位素组成差别相对较大;而居住区落在汽车尾气尘和燃煤尘之间,表明居民区降尘铅污染主要受燃煤尘与汽车尾气排放影响。堆煤场的铅总量同位素组成和可溶相铅同位素组成均落在燃煤范围。综上可知,厦门市大气降尘铅主要来自燃煤尘,其次是自然源和汽车尾气排放。

图 2 厦门市大气降尘中206Pb/207Pb和206Pb/208Pb的分布图 Figure 2 Plots of 206Pb/207Pb v.s. 206Pb/208Pb in dustfall of Xiamen City
2.3.3 大气降尘中Pb来源贡献率计算

为了得到不同铅污染源对大气降尘污染的贡献,根据大气降尘铅同位素组成在206Pb/207Pb-206Pb/208Pb图中的分布,利用三元模型[1920]计算汽车尾气尘、燃煤尘和自然源对厦门市大气降尘铅的贡献值。计算式如下:

RS=f1R1+ f2R2 +f3R3;

NS=f1N1+ f2N2 +f3N3;

f1+ f2 +f3=1。

式中:RS为样品铅206Pb/207Pb值;NS为样品铅208Pb/206Pb值;R1R2R3分别为汽车尾气尘、燃煤尘和自然源3个主要来源的铅206Pb/207Pb 值;N1N2N3分别为3个主要来源的铅208Pb/206Pb 值;f1f2f33个主要来源铅的贡献率。计算时汽车尾气尘、燃煤尘和自然源的同位素比值采用平均值,计算结果如表 5所示。

表 5 不同铅来源相对贡献率计算结果 Table 5 Analysis result of relative contribution of different lead sources%
来源商业区居住区交通区工业区旅游区平均
燃煤尘54.3215.2551.9962.6258.6448.57
自然源22.2222.3119.0314.1323.7820.29
汽车尾气尘23.4662.4528.9823.2417.5831.14

大气降尘中的铅主要来源于燃煤(贡献率为48.57%(变化范围为15.25%~62.62%);其次是汽车尾气排放,为31.14%(17.58%~62.45%);贡献值最小的是自然源,贡献率为20.29%(14.13%~23.78%)。燃煤对商业区和工业区的贡献远大于其他来源,对居住区的贡献最小。三元混合模型计算结果和铅同位素组成分布图分析结果吻合,大气降尘中的主要铅污染来源是燃煤尘。

3 结论

1) 厦门市大气降尘总量铅同位素组成变化范围较大,表明大气降尘铅来源较复杂。不同功能区大气降尘酸可溶相铅206Pb/207Pb值与福建土壤残渣相比相差较大,表明受到人类活动来源铅的影响较大。酸可溶相206Pb/207Pb铅同位素组成明显小于总量铅同位素组成。

2) 厦门市大气降尘铅同位素组成与燃煤和母质层接近,主要铅来源是燃煤。除居住区外,其余功能区酸可溶相铅同位素组成也与燃煤较接近,与母质层相差较大。厦门市大气降尘铅主要来自燃煤尘,其次是汽车尾气排放和自然源。

3) 燃煤、汽车尾气、自然源对厦门市大气降尘铅的贡献分别是48.57%、31.14%、20.29%;三元混合模型计算结果和铅同位素组成分布图分析结果吻合,主要铅污染来源应该是燃煤尘。

参考文献
[1] Park E J, Kim D S, Park K. Monitoring of Ambient Particles and Heavy Metals in a Residential Area of Seoul, Korea[J]. Environmental Monitoring and Assessment , 2008, 137 .
[2] S'wietlik R, Molik A, Molenda M, et al. Chromium (Ⅲ/VI) Speciation in Urban Aerosol[J]. Atmospheric Environment , 2011, 45 (6) : 1364-1368. DOI:10.1016/j.atmosenv.2010.12.001
[3] Davies B E. Heavy Metals Contaminated Soils in an Old Industrial Area of Wales, Great Britain:Source Identification Through Statistical Data Interpretation[J]. Water, Air and Soil Pollution , 1996, 101 : 85-98.
[4] Blais J M. Using Isotopic Tracers in Lake Sediments to Assess Atmospheric Transport of Lead in Eastern Canada[J]. Water, Air and Soil Pollution , 1996, 92 (3/4) : 329-342.
[5] Belamri M, Benrachedi K. Evaluation of Air Pollution by Heavy Metals on Bab El Oued Zone of Algiers[J]. Asian Journal of Chemistry , 2010, 22 (4) : 2753-2760.
[6] Ashley T, Seen A J. Historcal Lead Isotope Record of a Sediment Core from the Derwent River(Tasmania,Australia):A Multiple Source Environment[J]. Science of the Total Environment , 2012, 424 : 153-161. DOI:10.1016/j.scitotenv.2012.02.011
[7] Ewing S A, Christensen J N, Brown S T, et al. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California[J]. Environmental Science and Technology , 2010, 44 (23) : 8911-8916. DOI:10.1021/es101450t
[8] 孙锐, 舒帆, 郝伟, 等. 典型Pb-Zn矿区土壤重金属污染特征与铅同位素源解析[J]. 环境科学 , 2011, 32 (4) : 1146-1153. Sun Rui, Shu Fan, Hao Wei, et al. Heavy Metal Contamination and Pb Isotopic Composition in Natural Soils Around a Pb/Zn Mining and Smelting Area[J]. Environmental Science , 2011, 32 (4) : 1146-1153.
[9] 董辰寅, 张卫国, 王冠, 等. 上海宝山区城市土壤铅污染来源的同位素判别[J]. 环境科学 , 2012, 33 (3) : 754-759. Dong Chenyin, Zhang Weiguo, Wang Guan, et al. Lead Isotope Signatures and Source Identification in Urban Soil of Baoshan District, Shanghai[J]. Environmental Science , 2012, 33 (3) : 754-759.
[10] 赵多勇, 魏益民, 魏帅, 等. 基于同位素解析技术的大气降尘铅污染来源研究[J]. 安全与环境学报 , 2013, 13 (4) : 107-110. Zhao Duoyong, Wei Yinmin, Wei Shuai, et al. Pb Pollution Source Identification and Apportionment in the Atmospheric Deposits Based on the Lead Isotope Analysis Technique[J]. Journal of Safety and Environment , 2013, 13 (4) : 107-110.
[11] Zhao J P, Zhang F W, Xu Y, et al. Chemical Charac-teristics of Particulate Matter During a Heavy Dust Episode in a Coastal City, Xiamen[J]. Aerosol and Air Quality Research , 2011, 11 (3) : 300-309.
[12] He Y, Chen F R, Zhuang Z X, et al. Study on Elemental Concentration in Air Particulate Matter by ICP-MS[J]. Environmental Chemistry , 2003, 22 (3) : 294-298.
[13] Lee B, Zhu L M, Tang J W, et al. Seasonal Variations in Elemental Composition of Aerosols in Xiamen, China[J]. Geochemical Journal , 2009, 43 (6) : 423-440. DOI:10.2343/geochemj.1.0039
[14] 张福旺, 赵金平, 陈进生, 等. 滨海城市气溶胶中颗粒态汞的分布特征[J]. 环境科学 , 2010, 31 (10) : 2273-2278. Zhang Fuwang, Zhao Jinping, Chen Jinsheng, et al. Distribution Characteristics of Particulate Mercury in Aerosol in Coastal City[J]. Environmental Science , 2010, 31 (10) : 2273-2278.
[15] Zhu L M, Tang J W, Lee B, et al. Lead Concentrations and Isotopes in Aerosols from Xiamen, China[J]. Marine Pollution Bulletin , 2010, 60 (11) : 1946-1955. DOI:10.1016/j.marpolbul.2010.07.035
[16] 胡恭任, 于瑞莲, 郑志敏. 铅稳定同位素在沉积物重金属污染溯源中的应用[J]. 环境科学学报 , 2013, 33 (5) : 1326-1331. Hu Gongren, Yu Ruilian, Zheng Zhimin. Application of Stable Lead Isotopes in Tracing Heavy-Metal Pollution Sources in the Sediments[J]. Acta Scientiae Circumstantiae , 2013, 33 (5) : 1326-1331.
[17] 于瑞莲, 胡恭任, 林燕萍, 等. 泉州市不同功能区土壤铅同位素组成及其来源分析[J]. 环境科学学报 , 2013, 33 (7) : 1996-2003. Yu Ruilian, Hu Gongren, Lin Yanping, et al. Lead Isotope Signatures and Source Identification in Urban Soils from Different Functional Areas of Quanzhou City[J]. Acta Scientiae Circumstantiae , 2013, 33 (7) : 1996-2003.
[18] 中国环境监测总站. 中国土壤元素背景值 [M]. 北京: 中国环境科学出版社, 1990 : 330 -483 . China National Environmental Monitoring Centre. Elements Background Value of Chinese Soil [M]. Beijing: China Environment Science Press, 1990 : 330 -483 .
[19] Cheng H F, Hu Y A. Lead (Pb) Isotopic Finger-printing and Its Applications in Lead Pollution Studies in China:A Review[J]. Environmental Pollution , 2010, 158 (5) : 1134-1146. DOI:10.1016/j.envpol.2009.12.028
[20] Monna F, Lancelot J, Croudace Ian W, et al. Pb Isotopic Composition of Airborne Particulate Material from France and the Sourthern United Kingdom:Implications for Pb Pollution Sources in Urban Areas[J]. Environmental Science Technology , 1997, 31 (8) : 2277-2286. DOI:10.1021/es960870+
http://dx.doi.org/10.13278/j.cnki.jjuese.201605208
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

胡恭任, 于瑞莲, 胡起超, 温先华, 刘贤荣, 张希琳
Hu Gongren, Yu Ruilian, Hu Qichao, Wen Xianhua, Liu Xianrong, Zhang Xilin
铅同位素示踪在大气降尘重金属污染来源解析中的应用
Tracing Heavy Metal Sources in the Atmospheric Dustfall Using Stable Lead Isotope
吉林大学学报(地球科学版), 2016, 46(5): 1520-1526
Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1520-1526.
http://dx.doi.org/10.13278/j.cnki.jjuese.201605208

文章历史

收稿日期: 2016-01-05

相关文章

工作空间