文章快速检索  
  高级检索
全球早古生代造山带(Ⅱ):俯冲-增生型造山
李三忠1,2,3, 杨朝1,2, 赵淑娟1,2, 李玺瑶1,2, 索艳慧1,2, 郭玲莉1,2, 余珊1,2, 戴黎明1,2, 李少俊1,2, 牟墩玲1,2     
1. 中国海洋大学海洋地球科学学院, 山东 青岛 266100 ;
2. 海底科学与探测技术教育部重点实验室, 山东 青岛 266100 ;
3. 青岛海洋科学与技术国家实验室海洋地质功能实验室, 山东 青岛 266100
摘要: 全球早古生代增生造山带极其发育,主要分布在古亚洲洋南北两侧、Iaeptus洋南侧、Rheic洋北侧和环冈瓦纳大陆地带,其中原特提斯洋封闭的产物主要发育在中国境内,大量微陆块在早古生代可能都是冈瓦纳北缘的俯冲-增生带中的重要组成。增生造山带中组成复杂,具有沟-弧-盆体系、海山、洋壳等残存记录,尤以榴辉岩发育为特征,增生造山成为早古生代古亚洲洋和特提斯洋构造体系的显著独特特征。早古生代末中亚早古生代造山带多为微陆块增生造山阶段,沟-弧-盆体系发育,具有增生-软碰撞造山的特点,发生时限较晚,为早古生代末;原特提斯洋中的西昆仑、东昆仑、柴达木北缘、南阿尔金、北阿尔金与北祁连、北秦岭等围限或夹杂的微陆块在早古生代具有相同的增生造山过程,整体是向南俯冲线性增生到冈瓦纳大陆北缘,现今多次重复是早古生代弯山构造所致。400 Ma左右,南部古特提斯洋和北部勉略带的打开,导致其北漂,经复杂变形改造,它们现今为一巨型弯山构造横亘在中国中部,对中国构造格局影响最为重要。
关键词: 早古生代     俯冲增生造山带     微陆块     原特提斯洋     古亚洲洋     环冈瓦纳    
Global Early Paleozoic Orogens (Ⅱ): Subduction-Accretionary-Type Orogeny
Li Sanzhong1,2,3, Yang Zhao1,2, Zhao Shujuan1,2, Li Xiyao1,2, Suo Yanhui1,2, Guo Lingli1,2, Yu Shan1,2, Dai Liming1,2, Li Shaojun1,2, Mu Dunling1,2     
1. College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China ;
2. Key Lab of Submarine Geosciences and Prospecting Technique, Ministry of Education, Qingdao 266100, Shandong, China ;
3. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, Shandong, China
Supported by Key Project of NSFC (Grants 41190072, 41190070, U1606401); NSFC for Distinguished Young Scientists (41325009); Taishan Scholor Program and Aoshan Elite Scientist Plan to Prof. Sanzhong Li
Abstract: Global Early Paleozoic accretionary orogenic belts extremely developed and mainly distributed in the north and south sides of the Paleo-Asian Ocean, north of Rheic Ocean, south of Iapetus Ocean and peri-Gondwana continent, the accretion related to the proto-Tethyan closing mainly developed within the territory of China, a large amount of micro-continental blocks in the Early Paleozoic may be an important component of the northern margin of the Gondwana subduction-accretionary zone. Accretionary orogenic belt is complex in composition, including the trench-arc-basin system, seamounts, oceanic crust and other relic geological records. Especially eclogite is common. Accretionary orogenic belts are remarkable and unique characteristics of Early Paleozoic Paleo-Asian Ocean and Tethyan tectonic domains. In late Early Paleozoic, the central Asian Orogenic belt was under the accretion of the micro-continental blocks and the trench-arc-basin system developed with the characteristics of the accretionary-weak collisional orogenic processes at the end of the Early Paleozoic. The west and east Kunlun Mountains, north margin of the Qaidam basin, south Altyn Tagh Mountain, north Altyn Tagh, north Qilian and north Qinling, some involved micro-continental blocks in the Proto-Tethyan Ocean as one single linear island arc have the same accretionary orogenic processes in the Early Paleozoic. They overall subducted southward under and accreted to the northern margin of Gondwana. Their curved shape of these accretionary belts was reworked into one orocline by multiple-stage deformation. After 400 Ma, the paleo-Tethyan Ocean to the south and the Mianlue Ocean to the north opened, resulting in the drifting and complex deformation reworking as a giant orocline in Central China. It has very important influence on the tectonic outline in China.
Key words: Early Paleozoic     accretionary orogen     micro-continent     proto-Tethyan Ocean     Paleo-Asian Ocean     peri-Gondwana    

0 引言

早古生代全球微陆块和岛弧众多,主要围绕大陆块增生,使得板块范围不断扩大。前人对板块重建的研究使得全球大陆块之间的聚集过程已经基本达成共识。然而,微陆块的聚散过程是板块重建中最模糊、最具争议的关键环节。早古生代微陆块众多,因而,导致早古生代全球板块重建方案也最多。增生造山是板块聚散机制研究的关键科学问题,也是板块(特别是微陆块)碰撞、拼合、生长的一种重要方式。因此,本文基于全球新元古代晚期—早古生代增生型造山带演化过程分析及其对比研究,总体按照增生过程相关的洋盆分为三类:古亚洲洋南北两侧的增生、Rheic洋北侧的增生和环冈瓦纳大陆的增生。通过对它们的详细分析,来探讨全球的早古生代增生造山带的独特性、普遍性和重要性,揭示微陆块聚散机制,进而探索早古生代板块重建和超大陆重建遗留的关键核心问题。

1 古亚洲洋相关的早古生代造山带

古亚洲洋产生于罗迪尼亚超大陆裂解时期,长期存在于东欧—西伯利亚陆块与塔里木—华北陆块之间的一个东西向古大洋,现今记录在西伯利亚板块南缘、东欧地台东南缘以及中亚造山带内。古亚洲洋至少出现于650 Ma之前,洋内微陆块众多,早期认为是弥散性分布,近来一些板块重建模式揭示这些微陆块可能是几条岛链。西伯利亚板块南缘近东西向展布的大型高压变质带中蓝片岩代表的洋盆于650~520 Ma开始俯冲[1-2]。早寒武世古亚洲洋为一宽阔的大洋,东、西两侧分别连接泛大洋(Panthalassa)和Iapetus洋或Rheic洋,南侧为原特提斯洋。该区域的造山带在早古生代主要表现为洋-陆俯冲和弧-陆碰撞的增生造山过程,各增生造山带的发生时代也不尽相同:古亚洲洋的乌拉尔造山带发生在奥陶纪—晚泥盆世;中南天山俯冲记录从奥陶纪开始,早志留世在东段出现点碰撞。

1.1 乌拉尔造山带

乌拉尔造山带走向NNE(图 1A),北起北极地区,南达哈萨克斯坦板块的Aral海,是东欧地台(波罗的古陆)与西伯利亚板块、哈萨克斯坦地块之间高度斜向汇聚的产物[3-4]。主要构造运动发生在古生代—早中生代,早古生代—中古生代为典型的弧-陆增生型造山带。深部地震反射剖面揭示,乌拉尔造山带主要的深大断裂有东倾的主乌拉尔断裂(MUTF)、西倾的Trans-Uralian逆冲带(TUTZ)(图 1B)。以主乌拉尔断裂为界,以西的西乌拉尔地壳与东欧地台(波罗的地块)具有相似性,以东的东乌拉尔主要包括Tagil岛弧和Magnitogorsk岛弧以及部分西西伯利亚基底[4, 7]

A图据文献[4-5]改编;B图据文献[6]改编。 CUZ.Central Uralian Zone;EUZ.East Uralian Zone;MUTF. Main Uralian Thrust Fault;MUNF.Main Uralian Normal Fault;PSZ.Prianitchnikova Shear Zone;SMF.Serov Mauk Fault;TMZ.Tagil Magnitogorsk Zone;TUTZ.Trans-Uralian Thrust Zone。 图 1 乌拉尔造山带构造简图(A)和ESRU地震测线深部剖面图(B) Figure 1 Tectonic map of the Ural(A) and deep seismic profile from the Europrobe seismic reflection profiling in the Urals experiments(ESRU) (B)

主乌拉尔断裂晚古生代转变为冲断带,发育晚泥盆世—早石炭世的增生楔和蛇绿岩套[4, 6],南段的蓝片岩-榴辉岩年龄早于北段。南乌拉尔400~375 Ma期间经历了含微粒金刚石的榴辉岩相超高压变质作用,极地乌拉尔蛇绿岩年龄范围从元古宙、寒武纪到泥盆纪都有分布,新元古代晚期的蛇绿岩于中奥陶世发生变质[8],志留纪末—早泥盆世的~410 Ma的Ray-lz蛇绿岩形成于俯冲带环境,伴生418 Ma晚志留世岛弧岩浆岩[9-11]。因此,乌拉尔洋的俯冲闭合为剪刀式闭合,首先在南乌拉尔开始弧-陆碰撞增生,在极地乌拉尔以陆-陆碰撞结束。

1.2 中亚中南天山加里东期增生型造山带

中亚天山造山带位于中亚造山系(阿尔泰造山系)的西南缘,从甘肃、新疆交界处向西延至乌兹别克斯坦,为哈萨克斯坦板块、塔里木板块、准噶尔板块、东欧地台和图兰微陆块相互作用的产物[12],具有多期造山过程。中国境内的天山分为北天山晚古生代增生体、中天山复合增生弧地块和南天山古生代增生楔,分别以中天山北缘和南缘大断裂分隔[13]。南天山以南是塔里木陆块北缘库鲁克塔格隆起,分别以兴地走滑断裂和孔雀河逆冲断裂与南天山和塔里木板块分隔。其中,中南天山造山带内分布着众多的微陆块,这些离散微陆块的寒武系底部具有相似的冰成岩或冰碛岩,前寒武纪地层与塔里木陆块一致[14],在早寒武世以前是统一的塔里木陆块的组成部分,也是冈瓦纳大陆裂离的组成部分。早震旦世、晚震旦世、早寒武世的大陆裂谷型火山岩[15]表明,至晚从早寒武世,这些离散微陆块从塔里木陆块上裂离。造山带基底为前南华纪结晶基底,盖层为古生代盖层,早古生代地层主要分布在中天山和库鲁克塔格隆起,南天山主要出露晚志留—石炭纪的地层。

天山造山带早古生代火成岩主要形成于奥陶纪和志留纪(图 2表 1),分布在中天山南、北缘地区和西天山博罗科努地区、南天山巴音布鲁克地区,多形成于岛弧环境[34]。在中天山离散地体之上发育一条早古生代岛弧带,有钙碱系列火山岩和岛弧型花岗岩。但晚古生代早、中石炭世火山岩是分布最广泛的活动陆缘岛弧火山岩,在中天山地体北缘、南缘和地体内部都有分布,且年龄从中天山地块南、北缘向地体内部变小,自地体东部向西部变新[34],即晚古生代古天山洋盆应仍处于洋—陆俯冲阶段,洋盆闭合方式应该是自东向西的剪刀式、斜向俯冲闭合。

图 2 中亚天山造山带俯冲碰撞相关岩浆岩和变质岩分布 Figure 2 Distribution of magmatic and metamorphic rocks in the Tianshan orogen
表 1 天山早古生代蛇绿岩 Table 1 Early Paleozoic ophilites in the Tianshan orogen
采样点所属地体性质岩石年代/Ma测年方法参考文献
巴音沟北天山、西天山红海型N-MORB斜长花岗岩324.8±7.1SHRIMP[16-17]
(洋中脊有OIB) 堆晶辉长岩344.0±3.4 LA-ICP-MS
锆石U-Pb
[16-17]
贝勒克尔干果勒(巴音沟南带)红海N-MORB辉长岩385.7±3.6LA-ICP-MS[18]
博格达地区北、东天山类似OIB源基性熔岩早、中石炭世[19-20]
奎屯河北天山洋中脊斜长花岗岩343.1±2.7SIMS U-Pb[21]
冰达坂中天山北缘断裂带初始洋盆辉绿岩[22]
成熟洋盆玄武岩[22]
库米什—榆树沟中天山MORB型斜长花岗岩435.1±2.8锆石U-PB[23]
巴仑台中天山类似OIB源基性熔岩早、中石炭世[19-20]
阿奇克库都克断裂以北中、东天山N-MORB流纹岩320.5±1.2LA-ICP-MS[24]
阿奇克库都克断裂以南中、东天山IAT流纹岩295±0.7LA-ICP-MS[24]
康古尔塔格中、东天山SSZ辉长岩494±10SHRIMP[25]
红柳河南、东天山堆晶辉长岩516.2±7.1锆石U-Pb[26]
达布拉特398±10LA-ICP-MS
巴雷公南、西天山玄武岩399±4SHRIMP
吉根南、西天山P-MORB392±15[27]
那拉提—长阿吾子南、西天山T-MORB蚀变辉长岩43939Ar-40Ar[28]
达鲁巴依南天山北缘辉长岩590~600锆石Pb-Pb[29]
仓格洛马克约里和黑英山南西天山南缘斜长角闪岩420
库勒湖南天山N-MORB枕状熔岩425±8SHRIMP[30]
E-MORB辉长岩418±2.6LA-ICP-MS[30]
榆树沟南天山MORB440±18锆石U-Pb[31]
铜花山南天山MORB斜长花岗岩406.5±5.0LA-ICP-MS[32]
古洛沟中天山南缘断裂斜长花岗岩358±15Rb-Sr
乌瓦门中天山南缘断裂弧后盆地[22]
琼阿乌孜南、西天山弧后盆地或裂谷超基性岩体314±19Sr-Nd[33]

中南天山新元古代—早古生代有3期蛇绿岩:新元古代晚期达鲁巴依600~590 Ma;红柳河—唐古尔塔格516~494 Ma SSZ型;库米什—榆树沟—铜花山的南天山440~406 Ma MORB型蛇绿岩(表 1)。库米什南部发育早志留世岛弧火山岩,其邻近的干沟、天格尔—望峰地区发育早志留世碰撞S型花岗岩,马鞍桥地区发育下石炭统伸展型磨拉石建造,这说明在天山东段库米什、干沟、马鞍桥一带洋盆的闭合时限应为早志留世(表 2),早石炭世进入造山后期伸展阶段。而中南天山其余地区大量的早石炭世岛弧性火山岩,说明此时南天山洋还未闭合,并处于增生造山阶段。因此,古天山洋盆的闭合过程应该是自东向西剪刀式软碰撞过程,即早古生代中南天山处于增生造山过程,早志留世首先在东部马鞍山开始点碰撞。这与该区晚古生代的从西向东闭合方式不同。

表 2 天山古生代高压超高压榴辉岩分布 Table 2 Distribution of HP-UHP eclogites in the Tianshan orogen
所属构造带地点所属地体岩性年龄/Ma测年方法年龄意义参考文献
中天山AktyuzAktyuz杂岩榴辉岩474Lu-Hf榴辉岩相变质[35]
南缘断裂462Sm-Nd全岩[35]
749Rb-Sr原岩年龄[36]
ChimeMakbal含柯石英榴辉岩516~491SHRIMP榴辉岩相
超高压470Lu-Hf超高压变质
变质杂岩带482~480独居石[37]
509、482、480K-Ar云母[36]
1 446原岩
AnrakhaiAnrakhai
混杂岩带
榴辉岩490SHRIMP榴辉岩相
变质峰期
[38]
Kumdy-KolKokchetav
混杂岩带
含柯石英和
金刚石榴辉岩
537±9
530±7
Sr-Nd
SHRIMP
榴辉岩相
超高压变质
[39-40]
[39-40]
517Ar-Ar折返年龄[39-40]
Sulu Tyube465[39-40]
Aidaly含柯石英榴辉岩前寒武纪
南、西天山昭苏阿克
牙苏河上游
哈斯阿
特岩片
与蓝片岩
伴生榴辉岩
220~230(343~346?)
>310
SHRIMP U-Pb榴辉岩相
超高压变质
401Ar-Ar原岩
阿坦塔义河含柯石英榴辉岩320SIMS U-Pb超高压相变质
310SIMS U-Pb角闪岩相退变质[41]
345Sm-Nd
321ICP-MS U-Pb榴辉岩相[42]
454ICP-MS U-Pb原岩[42]
哈布腾苏榴辉岩305~310Sm-Nd榴辉岩相变质[43]
Atbashi RidgeAtbashi含柯石英327~324Ar-Ar折返[44]
Ridge杂岩假象榴辉岩320~300[45]
270Rb-Sr[46]
2 原特提斯洋相关的早古生代造山带

早古生代时期的特提斯洋称为原特提斯洋,古亚洲洋(早期或许应称为原亚洲洋)和原特提斯洋演化时限有重叠,但两者古生物特征却不一样,可以以西伯利亚生物区特有的图瓦贝动物群代表古亚洲洋环境(图 3)。原特提斯洋形成可能经历了3个步骤:初始形成于冈瓦纳大陆北缘的阿拉善、塔里木、柴达木、羌塘、华南等(微)陆块950~540 Ma从冈瓦纳大陆带状裂离,这些微陆块位于原亚洲洋的南侧,并向北漂移,之间打开的即为原特提斯洋西段(即昆仑洋和祁连洋);原本处于原亚洲洋北侧的华北板块,可能是由于650 Ma左右Rodinia裂解或者650~520 Ma原亚洲洋的向西伯利亚板块之下俯冲消减,进而导致其从西伯利亚古陆南缘裂离,并向南移动,进入原亚洲洋,此时华北北缘出现新的洋盆,即为传统称为的古亚洲洋,并与西侧的原亚洲洋相通,此时才是大家熟悉的统一的古亚洲洋形成了,而其南侧原亚洲洋在中奥陶世之前与原特提斯洋西段相通,华北陆块南部萎缩的原亚洲洋也就转变为原特提斯洋的东段(即宽坪洋);分别来自南、北大陆的微陆块群,于460~440 Ma在统一的古亚洲洋南侧或统一的原特提斯洋北侧中段,呈线性展布。其间为贺兰山转换型大陆边缘(当时可能为NE走向,与Rheic洋中的转换断层一致(Keppie等[48]),分割这条拼接[49]的微陆块群,该微陆块群称为Hunia(匈奴)地体群(但不是Stampfli等[50]划分的两条地体群)。这条地体群分割其北侧的后来成为中亚造山带的、大家公认的古亚洲洋,和南部为大家公认的原特提斯洋。因此,原特提斯洋北界为古洛南—栾川断裂带[51-52]及其西延(图 4),而南界为现今班公湖—怒江缝合线,后者也是古特提斯带,沿南界原特提斯洋和古特提斯洋具有继承性。因而,原特提斯洋消亡的遗迹覆盖的区域一般称为原特提斯构造域,原特提斯构造域内发育的沟-弧-盆体系、洋壳碎片并不是前人认识的复杂“多岛洋”,而是单一的岛链。其中分布众多的微陆块,复原后也是一条地体群,成带分布,并没有导致原特提斯洋发展为一个“多岛洋”,因而,原特提斯洋是个干净的小洋盆。一般认为原特提斯洋向西昆仑再往西难以延伸,不过帕米尔结,主要集中在中国境内。其中的秦岭—祁连—昆仑3条造山带在早古生代的交接转换关系复杂,导致早古生代就存在的商丹洋(带)西延也非常不明朗。最新研究表明,原特提斯构造域北秦岭段的北界为古洛南—栾川断裂带[51-52, 55],其西延至北祁连,增生造山过程发生开始于奥陶纪,至晚志留世—泥盆纪结束。西昆仑早奥陶世—中志留世表现为增生造山,传统上认为直至三叠纪发生陆-陆碰撞。东昆仑增生过程发生于晚奥陶世—志留纪末、早泥盆世。现今大量研究表明,原特提斯洋内的微陆块都是亲冈瓦纳陆块的[56-59]。原特提斯洋向西一般对应Rheic洋,因而,匈奴地体群一般对应Avalonia地体群。但两者增生演化历史大不相同;再往西对应Carolina带中的地体群,其演化与Avalonia地体群差别也很大。但它们三者(除其中的华北之外)总体都来自冈瓦纳大陆北缘,本文分别称为原特提斯域东段、中段和西段。

NZ.新西兰;AU.澳大利亚;IC.印支;SC.华南;NC.华北;TR.塔里木;AF.非洲;IR.伊朗;S.西伯利亚。 图 3 古亚洲洋与原特提斯洋古生物分界[47] Figure 3 Paleotological border between the paleo-Asian tectonic domain and the Proto-Tethyan tectonic domain[47]
据文献[53-54]修改。 图 4 原特提斯构造域主要蛇绿岩分布和弯山构造 Figure 4 Major ophiolites and oroclinal orogens in the proto-Tethyan tectonic domain
2.1 北祁连早古生代构造带

祁连造山带是阿拉善、祁连和柴达木微陆块在加里东期会聚、碰撞的产物,发育北祁连和柴北缘两条加里东期俯冲碰撞杂岩带,北祁连南缘和柴北缘皆具有右行韧性走滑剪切特征[60-63]。这里的祁连微板块包括中—南祁连微地块和欧龙布鲁克地块。两条早古生代俯冲碰撞杂岩带均形成于祁连洋闭合阶段,但北祁连加里东期俯冲碰撞杂岩带仅发育蛇绿岩和相伴的蓝片岩,以发育洋-陆俯冲有关的花岗岩、岛弧火山岩和高压变质岩石及弧前增生楔为特征;而柴北缘俯冲碰撞杂岩带以产出岛弧火山岩、俯冲成因的花岗岩和陆-陆深俯冲的柯石英相超高压变质岩为特征[63]。两条右行韧性剪切带现今分别为祁连微陆块的北界和南界,分别叠加在两条俯冲碰撞杂岩带之上,这种情况不可能是祁连微地块楔入所致(因为楔入模式必须是两侧的断裂同期且运动学方向相反),故完全可能是一个巨型弯山构造(将另文发表),但弯山构造的形态表明,其必须是早期左行斜向汇聚的产物,这个俯冲机制和欧洲Avalonia地体群的构造背景相似。变形特征和年代学研究结果表明,右行挤压转换型剪切带均为早—中泥盆世的,因而,弯山构造是加里东期造山作用晚期的产物,并被泥盆系角度不整合覆盖[61, 63]

新元古代晚期以来,北祁连构造带发育3期蛇绿岩(表 3)和1期板内裂解事件:玉石沟—川刺沟—扎麻什—边马沟带550~495 Ma的蛇绿岩,性质为MORB型洋中脊,代表了一个寒武纪的大洋扩张脊,与冈瓦纳北缘微陆块裂解事件相对应,可能后期形成了一个较广阔的扩张洋盆,属于原特提斯洋;东草河—大岔大坂—熬油沟—二只哈拉达坂—九个泉带蛇绿岩多为弧后盆地初始洋盆扩张中心的N-MORB性质,年龄集中在507~490 Ma,该带的大岔大坂和乌鞘岭发育早奥陶世俯冲带SSZ型蛇绿岩;而老虎山—白泉门的蛇绿岩明显较年轻,为470~450 Ma,老虎山和九个泉等蛇绿岩与洋壳俯冲阶段蓝片岩、低温榴辉岩伴生,说明该阶段洋盆开始俯冲。奥陶纪的蛇绿岩伴生蓝片岩等低级变质岩,暗示了该阶段为洋盆冷俯冲阶段,玉门昌马—青海水洞峡带发育493~480 Ma板内裂解事件。下志留统不整合于早期岩系之上[85],前陆盆地底部发育下志留统—泥盆系的陆相挤压型磨拉石建造[86]。北祁连褶皱带南部发育中、上奥陶统岛弧岩系,西段主要为基性—酸性的钙碱性系列,而北祁连山中段发育非常典型的俯冲杂岩带。这种大地构造单元的岩石组合表明了北祁连向南俯冲的特征[87]。宋述光[88]将北祁连山中段分为两带:南带为榴辉岩和蓝片岩组成的深层俯冲杂岩(主要出露北祁连中西段的昌马和祁连地区),北带为蛇绿混杂岩和低级蓝片岩(含硬柱石-绿纤石-蓝闪石-文石组合)组成的浅层俯冲杂岩(表 4),也指示向南俯冲的变质极性。北祁连可识别出古祁连洋板块俯冲、增生及随后与阿拉善板块碰撞相关的3期挤压变形,而局部地区保存了深部的韧性伸展构造和浅部的韧-脆性伸展构造,志留纪发育同碰撞的沉积增生楔[92]及碰撞期后泥盆纪伸展型磨拉石,代表挤压收缩造山阶段向后造山伸展阶段转变[86, 93]

表 3 北祁连蛇绿岩特征 Table 3 Features of ophilites in the north Qilian orogen
采样点所属造山带岩性性质年龄/Ma测年方法引用文献
玉石沟北祁连中段枕状玄武岩MORB型
堆晶辉长岩550±17SHRIMP[64]
基性熔岩522~495Sm-Nd
辉长岩515.4±3.2LA-ICP-MS[65]
川刺沟北祁连中东段基性火山熔岩洋脊拉班玄武岩、
洋岛玄武岩
495.11Sm-Nd[66]
三叶虫、笔石、
腕足类化石
早奥陶世
扎麻什地区东沟基性火山岩MORB499.3±6.2LA-ICP-MS[66]
边马沟北祁连中东段蛇绿岩MORB寒武—奥陶纪[67]
东草河北祁连中东段辉长岩N-MORB497±7SHRIMP[68]
大岔大坂北祁连中东段辉长岩N-MORB505±8SHRIMP[69]
枕状熔岩SSZ483SHRIMP[70-71]
二只哈拉达坂北祁连西段粒玄岩495±4SHRIMPⅡ[72]
熬油沟北祁连西段南部辉长岩初始小洋盆扩张脊503.7SHRIMP U-Pb[73]
辉长岩洋中脊环境522±12LA-ICP-MS[74]
细粒辉长岩501±4SHRIMPⅡ[72]
辉绿岩墙507±9(第二期变质年龄)SHRIMP U-Pb[75]
辉绿岩墙小洋盆扩张中心1 777SHRIMP[75]
辉绿岩墙小洋盆扩张中心1 840~1 783单颗锆石蒸发法[76]
辉绿岩墙第一期变质年龄1 466±26SHRIMP[75]
辉绿岩墙2 561±39SHRIMP[75]
九个泉玄武岩MORB
均质辉长岩典型N-MORB和
弱的俯冲带印记
490.0±5.1SHRIMPⅡ[72]
乌鞘岭铁镁质—
超铁镁质杂岩
SSZ型弧后洋盆环
境,扩张脊靠近岛弧
[77]
塔墩沟肃南N-MORB[78]
塔洞肃南N-MORB或SSZ
上的弧后盆地环境
[79]
老虎山北祁连东段火山岩
(辉石细碧玢岩)
N-MORB453.56±4.44Sm-Nd等时线[80]
白泉门北祁连西部辉石玄武岩468.80±4.63Sm-Nd
水洞峡北祁连东部玄武岩板内拉张环境N-MORB492.9±22.6Sm-Nd[81]
昌马庙玉沟北祁连西段超基性岩片板内裂谷480±9Sm-Nd[82]
昌马锅底坑山南坡北祁连西段玄武岩板内裂谷
(构造岩片侵位年代)
459±18U-Pb[82]
直河北祁连中段基性熔岩弧后盆地扩张环境956±26Sm-Nd[83-84]
表 4 北祁连早古生代榴辉岩 Table 4 Early Paleozoic eclogites in the north Qilian orogen
采样点年龄/Ma测年方法性质参考文献
尚香子沟463(477?)SHRIMP榴辉岩相[89-90]
489zircon U-Pb[89-90]
710~544zircon U-Pb原岩[89-90]
百经寺468(501、459?)SHRIMP[89, 91]
422SHRIMP退变质[89, 91]
446~362Ar-Ar[89, 91]
502SHRIMP[89, 91]
瓦窑沟477zircon U-Pb[89]
2.2 昆仑早古生代构造带

昆仑造山带以阿尔金断裂为界,分为东昆仑和西昆仑两部分。多数观点认为,西昆仑与东昆仑在早古生代应为同一条构造带,于中、新生代期间被活动的阿尔金左行走滑断裂错开了400多千米[94]。西昆仑造山带夹持于塔里木地块和羌塘地块之间,以康西瓦弧形断裂、乌伊塔格—库尔浪断裂为界分为北带、南带和喀喇昆仑3带,发育西昆北(奥伊塔格—库地—苏巴什)和喀喇昆仑两条俯冲带,以及西昆南板块缝合带(麻扎—康西瓦)。塔什库尔干南部发育一套高级副变质岩且发育逆冲推覆构造,与麻扎—康西瓦断裂以北的孔兹岩系一起受到445~425 Ma的高级变质作用,遭受250~210 Ma强烈剪切作用[95],上泥盆统具有磨拉石特征的奇自纳夫群不整合在孔兹岩系之上,因此,喀喇昆仑和西昆仑变质地体之间的麻扎—康西瓦缝合带经历了早古生代和中生代两期构造运动。

前人对西昆北俯冲带上的库地蛇绿岩的超镁铁岩和玄武岩测年结果多为早古生代,其中放射虫和共生石英辉长岩年龄显示为早、中寒武世的辉长岩,作为库地蛇绿岩形成年龄的上限[96],500~428 Ma的玄武岩年龄代表洋盆扩张到一定宽度的时期。而库地蛇绿岩中的地幔岩、堆晶岩的地化特征指示,库地蛇绿岩代表的洋盆应形成于俯冲带弧后或弧间盆地上,于早、中寒武世打开,在晚奥陶世—志留纪达到最大范围,成为大洋盆地[97]。西昆仑山北部分布早古生代俯冲、碰撞型侵入岩,早古生代末伸展型幔源花岗岩,年龄多集中在480~400 Ma,与蛇绿岩伴生[98],与俯冲有关的侵入岩主要分布在柯岗—库地—其曼于特以南,康西瓦—苏巴什以北,年龄向南变新,奥陶纪481~452 Ma发育俯冲型花岗岩,晚奥陶世发育同碰撞花岗岩碰撞型侵入岩局限在康西瓦断裂带以北,而志留纪花岗岩表现为伸展型幔源花岗岩,可能记录了原特提斯洋向南俯冲消亡到古特提斯洋裂开的过程[99-100]。这种区域构造背景和深部背景可能与西部Rheic洋打开具有连续性,但此时华北、华南等则已经增生拼合在冈瓦纳北缘(下文)。由此可以判断,西昆仑是原特提斯洋与Rheic洋之间的纽带或Rheic洋与古亚洲洋之间的一个陆桥。

塔里木板块南缘震旦—寒武系陆缘碎屑复理石建造,寒武—奥陶系的灰岩、板岩表明震旦—奥陶系塔里木板块南缘为被动陆缘,而西昆仑变质地体早古生代为活动大陆边缘,南部岛弧带发育为早古生代钙碱性岩浆岩带。

东昆仑发育昆中、昆南两条缝合带。昆中缝合带近地表向南倾斜,可能为早期构造记录,指示向南的俯冲极性;深部向北陡倾,可能为晚期青藏高原深部流动改造结果。昆中缝合带也表现为一明显的地球物理界面。以昆中缝合带分为南、北两个地体:北部昆仑北地体基底与华北地块基底相似,因而可能是塔里木地块(角度不整合和早古生代地层组成等特点也可能具有早古生代华北型基底)南东部的弧形弯曲东延[54],但南部昆仑南地体基底类似于扬子型活动基底[13]。昆中缝合带为一条古生代缝合带,南侧中、新元古界—下古生界变火山岩中断续出露蛇绿岩构造岩片和岩块,前人(表 5)得到中、新元古代1 331~816 Ma、早寒武世—早奥陶世555~442 Ma、泥盆纪末—晚石炭世368~308 Ma的3期蛇绿岩年龄,具有不同地点出现多期蛇绿岩,甚至同一地点出露多期蛇绿岩的特点。如,清水沟出露中、新元古代和早古生代两期蛇绿岩,陆松年等[53]得到与清水泉铁镁—超铁镁玄武岩伴生的中寒武世变质的麻粒岩具有海底高原玄武岩地化特征[53];冯建赟[114]根据地化特征指出清水沟早古生代铁镁—超铁镁蛇绿岩性质与T-MORB过渡型洋中脊玄武岩类似。而张克信等[124]在昆中混杂岩带发现寒武纪的疑源类组合,在昆南混杂岩带发现新元古代—早古生代疑源类组合,提出存在弧后扩张初始小洋盆,并认为昆仑洋在早古生代没有打开成大洋环境,但发现早石炭—二叠纪放射虫。因此,他们推断昆中和昆南缝合带在寒武—奥陶纪很可能为同一俯冲带,昆仑洋古生代的多次开合过程应与柴达木地块和巴颜喀拉山—松潘甘孜地块的震荡性运动有关。本文综合前人成果认识,从全球视野分析,昆南缝合线应当对应勉略带,昆中缝合带对应商丹缝合线,因而原特提斯主缝合带可能还在昆中缝合带更北侧的柴达木地块南缘断裂(祁漫塔格附近通过),因为昆中缝合带北侧发育一条大型早古生代钙碱性受后期明显改造的深部陆壳重熔成因的花岗岩带[53, 125],北侧的岛弧变质火山岩从南往北(?)变质程度从高绿片岩相增至绿帘角闪岩相,变质峰期为(448±4)Ma,同期发育高角度自南向北的逆冲变形,角闪石和白云母表现的Ar-Ar冷却年龄分别为(427±4)和408 Ma[126],指示该缝合带在奥陶纪末—早泥盆世发生过规模较大的向南俯冲,最终在泥盆纪发生碰撞并发育上泥盆统陆相磨拉石。昆中带云母片岩455~420 Ma的独居石与石榴子石同期生成[126],与451~428 Ma的榴辉岩相变质作用[127-129]共同记录了晚奥陶世—中志留世的高级变质事件(表 6)。综上所述,昆中缝合带和昆南带分别代表了中寒武世洋壳晚奥陶世—志留纪末、早石炭世启动的洋壳消减,并且北昆仑和南昆仑地体在早泥盆世沿昆中缝合带拼贴;昆南带晚泥盆世MORB型蛇绿岩可能代表了古特提斯洋的打开到增生,这与勉略带相似。

表 5 昆仑构造带早古生代蛇绿岩 Table 5 Early Paleozoic ophilites in the Kunlun tectonic zone
造山带采样点岩性性质年龄/Ma测年方法参考文献
东昆仑南带苦海辉长岩OIB555±9SHRIMP[101]
拉龙洼基性岩墙群辉石OIB/E-MORB393.540Ar/39Ar[101]
基性岩墙群斜长石361.4±4.2[101]
强烈剪切劈碎的泥沙质
基岩(蛇绿岩就位年龄)
(274.84±9.0)、
(269±11.8)
Rb-Sr等时线[102]
雪穷辉长岩辉石368.640Ar/39Ar[101]
德尔尼玄武岩N-MORB/
MORB
(345.3±7.9)、
(308.2±4.9)
40Ar/39Ar/
SHRIMP
[103-104]
布青山辉长岩锆石SSZ467.2±0.9U-Pb
玄武岩全岩MORB345.3±7.9
308.2±4.9
40Ar/39Ar/
SHRIMP U-Pb
布青山得辉长岩N-MORB516.4±6.3LA-ICP-MS[105]
利斯坦沟辉长岩467.2±0.9锆石U-Pb[105]
辉长辉绿岩495.32±80.6Rb-Sr等时线[105]
布青山
哈尔郭勒
辉长岩N-MORB/OIB(332.8±3.1)、
(340.8±2.8)
LA-ICP-MS[106-107]
[106-107]
下大武乡给酿玄武岩400.04±21.3锆石U-Pb[102]
错扎玛南部辉长岩SSZ318±2Ar-Ar坪年龄[102]
诺木洪郭勒河玄武岩大洋拉张的中脊环境(419±5)、(884.1±
376)、(667±21)
SHRIMP U-Pb/
Sm-Nd/Rb-Sr等时线
[108]
土木勒克地区玄武岩N-MORB466锆石U-Pb
祁漫塔格带祁漫塔格
十字沟
玄武岩N-MORB兼具
E-MORB
442±16
Sm-Nd等时线[109]
辉长岩基性岩墙与俯冲作用有关的
弧后盆地扩张中心
449±34
祁漫塔格山玄武岩大洋拉斑玄武岩
南缘黑山堆晶辉长岩816±10[110]
东昆仑昆
中断裂
阿其克库堆晶辉长岩SSZ型,湖前或弧后环境,
洋中脊-岛弧环境
955±91Sm-Nd全岩-
矿物等时线
[28111-112]
清水泉1 297Sm-Nd等时线[113]
都兰可可沙-
科科可特
镁铁—超镁铁质岩石SSZ型,T-morb509.4±6.8LA-ICP-MS
锆石U-Pb
[114]
清水泉以东
吉日迈地区
蚀变橄榄岩(1 331±78)、
(1 027±108)
Sm-Nd等时线[115]
辉长岩518±3锆石U-Pb
拉玛托洛湖辉长岩246±3K-Ar[115]
塔妥蛇绿岩N-MORB,
但也存在洋岛环境
木孜塔格畅流沟蛇绿岩P-MORB/SSZ950±82Sm-Nd等时线[116]
1 138±42
二叠纪放射虫
早石炭世放射虫[117]
昆南断裂带布表山—牧羊山辉长岩467±1锆石U-Pb[118]
牧羊山日什凤硅质岩中的放射虫早石炭世[118]
西昆仑北带于田县苏巴什超镁铁质岩石SSZ型[119]
其曼于特其曼于特蛇绿岩辉长岩526±1锆石U-Pb[120]
喀喇昆仑库地布孜完沟蛇绿岩超镁铁岩494.28±0.9LA-ICP-MS[121]
库地依歇克沟火山岩底部粒玄岩500.30±8.0LA-ICP-MS[121]
库地超镁铁岩体侵入橄榄岩中
的伟晶辉长岩
525±29SHRIMP[122]
库地一些克沟玄武岩428±19SHRIMP[122]
库地蛇绿岩石英辉长岩510±4SHRIMP II[123]
库地放射虫化石晚奥陶—志留纪[96]
表 6 东昆仑构造带早古生代榴辉岩 Table 6 Early Paleozoic eclogites in the east Kunlun tectonic zone
采样点岩性年龄/Ma测年方法参考文献
温泉地区榴辉岩(451±2)、(428)LA-ICP-MS/SHRIMP[127, 129]
西段夏日哈木—苏海图榴辉岩411. 1±1. 9LA-ICP-MS[130]
温泉地区榴辉岩原岩934SHRIMP[129]
2.3 北秦岭早古生代构造带

秦岭造山带的构造划分具有多种观点,基于商县—丹凤缝合带(简称商丹带)和勉县—略阳缝合带(简称勉略带)的确定,张国伟等[131]提出“两盆三块”的构造格局,即商丹和勉略两个洋盆,华北板块南缘、秦岭微陆块和扬子板块微陆块北缘3个块体。但是,现今大量事实确切表明,宽坪群等代表秦岭造山带的第三条缝合线,称为古洛南—栾川缝合带[51-52, 55, 132-133],与商丹带之间为北秦岭构造带或地体。北秦岭构造带主要分布有北部的宽坪群、二郎坪群、秦岭杂岩和南部的丹凤群4套岩石地层,刘岭群、原信阳群的南湾组等泥盆系位于该构造带南部,与下伏地层呈角度不整合接触[134],西段秦祁交接处的上泥盆统大草滩群(D3Dc)为典型磨拉石建造[134-135],构造变形历经俯冲-碰撞-陆内调整阶段[136-137], 曾以为这套岩石全部与商丹带演化关系密切[133]。但是,北秦岭构造带或地体构造变形变质年代绝大部分厘定为早古生代,如晚志留世二郎坪绿片岩相变质的枕状玄武岩和丹凤群角闪岩代表的退变质折返仅在北秦岭和华北南缘发育[138],南秦岭主要是晚古生代由北向南增强的晚古生代变质变形[139]。构造运动学研究揭示,早古生代宽坪—祁连—昆仑洋向南俯冲,但代表古特提斯洋北部分支的商丹洋、勉略洋则印支期向北俯冲[140-141]

晋宁期秦岭地区强烈的构造运动,现今确定具有扬子地块基底的北秦岭和南秦岭在晋宁期均遭受相似的强烈地质作用[142],表明当时南、北秦岭具有相同或相近的地质环境,也就是说当时北秦岭和扬子地块是相关联的,虽然不能断定两者可能紧邻,但可能都靠近冈瓦纳大陆北缘,而南、北秦岭震旦系不能进行对比,表明两者在晋宁期末800~600 Ma之后又经历了分离等复杂演化[139]

新元古代和早古生代北秦岭发育3期蛇绿岩(表 7):新元古代早期的蛇绿岩有宽坪、二郎坪、武山和松树沟蛇绿岩,为洋盆环境,早古生代534~517 Ma和499~440 Ma两期蛇绿岩形成于俯冲带上,前人认为代表弧后盆地扩张阶段,但后期研究表明宽坪群可能为N-MORB型玄武岩,代表洋壳;二郎坪群可能形成于弧前或弧后盆地背景。这两期早古生代的蛇绿岩刚好与以往划归商丹带的514~501 Ma和448~375 Ma两期岛弧火山岩对应。因此,前人多数认为是商丹带俯冲的弧后盆地。但是,从全球板块重建结果分析,它们应当是宽坪洋向南消减产生的弧后或弧前盆地的可能性更大[52]

表 7 北秦岭早古生代蛇绿岩特征 Table 7 Features of Early Paleozoic ophilites in the north Qinling orogen
所属构造带采样点岩性性质年龄/Ma测年方法参考文献
商单缝合带天水关子镇辉长岩N-MORB/古洋中脊499.7±1. 8LA-ICP-MS[143-146]
辉长岩471±1.4
辉长岩534±9SHRIMP
闪长岩517±8
变辉长岩古岛弧489±10
武山鸳鸯镇辉长岩E-MORB457±3SHRIMP[146-147]
武山桦林沟辉长岩岛弧环境440±5SHRIMP[146]
武山、岩湾变玄武岩大陆裂谷至初始洋盆环境1 570Sm-Nd[148]
1 000
415
眉县辉长岩518±2.9LA-ICP-MS[149-150]
玄武岩(483±13)、(523±26)SHRIMP/TIMS[151-152]
鹦哥嘴南部玄武岩E-MORB/SSZ[153]
LTI型辉长岩(523.8±1.3)、(474.3±1.4)LA-ICP-MS[154]
变玄武岩N-MORB483±13SHRIMP[151]
辉长岩E-MORB517.8±2.8锆石U-Pb[155]
凤县罗汉寺变流纹岩524±1.5SHRIMP[156]
天水清水—张家川变质基性火山岩板内裂陷小洋盆(463±38)、(484±38)Sm-Nd[157]
丹凤群丹凤县郭家沟层状硅质岩放射虫化石奥陶纪—志留纪[158]
丹凤群丹凤县紫峪岭隧道南粉砂岩微体孢子化石泥盆纪[159]
二郎坪群谢玉关玄武岩弧后盆地472±11SHRIMP[149-150]
西峡绿片岩相枕状熔岩岛弧蛇绿岩467±7SHRIMP[149-150]
北秦岭群商南松树沟蛇绿岩T-MORB为主,兼具
OIB特征小洋盆环境
1 250~1 000(形成年龄)
983(构造侵位年龄)
[160]

北秦岭早古生代岩浆活动是在洋-陆转换背景的增生造山阶段产生的,主要为岛弧型和俯冲型花岗岩,主要分布于宽坪群以南,少量A型花岗岩,S型花岗岩仅有漂池、丹凤、二郎坪等岩体,主要形成于512~400 Ma,峰期分别为500、450和420 Ma,并分别与区域内高压—超高压变质作用、中压麻粒岩相变质作用和角闪岩相变质作用相对应,分别暗示了陆壳深俯冲阶段及碰撞后抬升过程中两期退变质过程。且结合西部阿尔金、北祁连构造带变质年代[161],该带变质-岩浆热事件年龄分布有西部早的特点,暗示从西部开始剪刀式斜向深俯冲,这也必然导致华北地块应当是左行斜向俯冲。

2.4 柴北缘加里东期构造带

柴北缘加里东期构造带位于中祁连微陆块与柴达木—东昆仑地块之间(图 5),其北侧自北往南为南祁连褶皱带和欧龙布鲁克地块,其南侧为柴达木地块。乌兰以北的震旦—奥陶系的盖层遭受加里东期褶皱和逆冲作用,褶皱自北向南由轴面北倾的同劈理同斜褶皱转变为平卧褶皱,韧性逆冲剪切带向南倾,指示向北的俯冲,并被晚加里东期花岗岩侵入。结合柴北缘与北祁连具有相同的同期右行走滑运动学特征,因此柴北缘与北祁连完全可能是围绕中阿尔金—中祁连微地块的一个弯山构造,导致构造带的倾向相反。其东侧为达肯大坂弧后盆地,向东到西秦岭不再出现早古生代岛弧型侵入体,也展现为另一个往回向西弯曲的早古生代弯山构造(也有人称为山弯构造),这也正好解释了商丹带西延时,难以越过现今的阿尔金断裂的原因,南祁连可能对应南秦岭。南侧洋壳俯冲增生的柴北缘岛弧火山岩带和陆壳深俯冲超高压变质带一起构成柴北缘加里东期构造带,各部分之间以走滑断裂分隔[61]。因此,早古生代柴达木微板块北缘为活动大陆边缘,这个活动大陆边缘围绕柴达木地块转而向南西与祁漫塔格北缘(或柴达木南缘)断裂或昆中缝合线相连。

据文献[162]修改。 图 5 柴北缘榴辉岩分布图 Figure 5 Distribution of eclogites in the north Qaidam block

柴北缘高压—超高压变质带变质程度达到柯石英相,其中的榴辉岩原岩有540~500 Ma(700~600 Ma的年龄未确定)洋壳(蛇绿岩)和850~820 Ma陆壳(大陆溢流玄武岩)两种环境[163-164],而高压—超高压榴辉岩亦伴生蓝片岩和柯石英等不同温压条件下的矿物,说明其形成出现过洋壳的浅俯冲和温压条件达到100 km之下的陆壳深俯冲两个过程。柴北缘早古生代发生过两期高压—超高压变质事件,晚寒武—晚奥陶世497~457 Ma,晚奥陶世—早、中志留世446~423 Ma。而高压—超高压变质带北侧的达肯达坂群发育475~460 Ma岛弧或活动大陆边缘的I型、450~425 Ma同碰撞S型、410~395 Ma碰撞后I型的3种类型早古生代花岗岩[165-166],前两期的花岗岩浆活动与高压—超高压变质作用的2个阶段相一致。据此分析,柴北缘经历了南祁连洋至少~40 Myr(百万年)的缓慢浅俯冲和柴达木—东昆仑地块相对短暂快速的深俯冲,本文推测这期深俯冲与弯山构造形成过程的深俯冲有关,这一点不同于北秦岭和北祁连等。高压—超高压榴辉岩的Ar-Ar退变质年龄反映的折返过程也明显分为两阶段:早中奥陶世477~466 Ma; 早泥盆世407~403 Ma期间。较早的折返事件在陆壳俯冲之前就已经发生,较晚一期的折返事件则是在洋壳俯冲结束之后才发生,高压—超高压岩石的折返过程一般都是快速的,因此,这两期年龄很有可能不是连续的,那么,柴北缘榴辉岩的折返机制在不同时期是否也会不一样呢?许志琴等[61]对柴北缘超高压变质体糜棱岩早泥盆世的走滑特征进行了详细的分析,认为在早泥盆世祁连微陆块和柴达木—东昆仑地块之间由正向陆内俯冲转变为斜向陆内俯冲,这种俯冲方式的转变在郭进京[167]对滩间山群变质火山岩系早古生代垂直与平行造山带两种变形行迹的分离中也有体现。这种陆壳俯冲方式的转变也导致了榴辉岩较晚一期的折返。斜向挤出机制也很好地解释了柴北缘较晚一期的折返过程,而较早期折返事件几乎与后期洋壳俯冲同时进行,这种边俯冲边折返过程的机制可能与洋壳俯冲到一定深度发生熔融导致洋壳断离并顺俯冲隧道垂向挤出有关。

高压—超高压变质带北侧并行发育一条早古生代岛弧火山岩带,也指示柴北缘的向北俯冲极性,普遍遭受绿片岩相蚀变。象征洋壳开始俯冲的具有成熟岛弧特征的岛弧拉斑玄武岩和高铝玄武岩的锆石LA-ICP-MS U-Pb年龄为(514.0±8.5)Ma,而弧间盆地火山岩形成年龄为496 Ma[64],与洋壳俯冲形成的最早榴辉岩497 Ma年龄相一致(表 8)。晚泥盆世在山间盆地牦牛山组下部堆积了以粗碎屑为主的磨拉石建造,标志造山作用结束。

表 8 柴北缘早古生代榴辉岩 Table 8 Eclogites along the northern margin of the Qaidam block
采样点年龄/Ma测年方法性质参考文献
大柴旦495TIMS U-Pb含柯石英[168]
467Ar-Ar
都兰—罗凤坡494.6±6.5U-Pb含柯石英[169-171]
465.9±5.4Ar-Ar退变质
497~458Sm-Nd超高压变质
鱼卡495~488TIMS超高压变质[169, 172-173]
434±2LA-ICP-MS
477~466Ar-Ar退变质
800~750原岩
野马滩457超高压变质[89]
449~422[169]
440、418
锡铁山488~486TIMS/SHRIMP[174]
407Ar-Ar
433SIMS U-Th-Pb[175]
461、439SHRIMP U-Pb[172]
沙柳河484±3EPMA U-Pb榴辉岩相[176]

因此,柴北缘为一早古生带增生-碰撞造山带(图 5),蛇绿岩特征说明柴达木—东昆仑地块在780~540 Ma期间为扩张脊环境;岛弧火山作用、高压—超高压变质作用、岩浆作用、变形特征说明中寒武世柴北缘转变为活动大陆边缘,洋壳俯冲作用持续~40 Myr,发育岛弧火山岩、I型花岗岩和榴辉岩相变质、早期榴辉岩折返;晚奥陶世洋壳消失,柴达木地块开始向欧龙布鲁克地块之下俯冲(沿柴达木盆地北缘断裂向北俯冲,图 5),发育S型花岗岩、柯石英相超高压变质,早泥盆世陆壳俯冲方式转变为斜向碰撞,发育大型走滑断裂带、糜棱岩和火山岩系的剪切变形、榴辉岩的晚期折返、后造山岩浆活动;晚泥盆世造山结束,发育磨拉石建造。

3 环冈瓦纳大陆的早古生代造山带

早古生代原特提斯洋北部分支向西昆仑延伸后,迄今认为很难再西延,为什么突然消失?有无可能再次发生弯山构造,回转到青藏高原南缘的早古生代俯冲-增生带?Zhu等[177]提出青藏高原南部南羌塘地块为向南朝冈瓦纳大陆俯冲的早古生代活动陆缘,这是否意味着宽坪洋、北祁连洋、南祁连洋、昆中洋、西昆仑洋都是向南朝冈瓦纳大陆之下俯冲的?因此,有必要追踪青藏高原的早古生代地质记录。当然,也可能就是在帕米尔结中断,其西延属于Rheic洋部分。近5年来,大量地质事实表明,滇缅马苏地块早古生代的造山运动发生时间要早,于晚寒武世—奥陶纪开始向南俯冲和随后的微陆块碰撞,而代表古特提斯洋盆的昌宁—孟连缝合带于早泥盆世才开始向北俯冲。

3.1 青藏高原—滇缅马苏地块(Sibumasu)早古生代构造带

青藏高原早古生代与板块俯冲碰撞相关的岩浆-变质记录多集中在龙木措—双湖地区(图 6)。近来,发现拉萨地块发育较多的早、中寒武世岛弧火山岩[177]。羌塘中部的龙木措—双湖—昌宁—孟连一带发育多期蛇绿岩:中奥陶世的蛇绿岩,性质多为MORB/E-MORB/N-MORB;晚奥陶世443~431 Ma的MORB-E-MORB-SSZ性质蛇绿岩;晚古生代石炭—二叠纪的SSZ型蛇绿岩或弧后裂谷。另外,在晚寒武世之前仍存在一期蛇绿岩。而龙木措—双湖—昌宁—孟连一带火山岩可分为晚寒武世和晚泥盆世两期广泛的岛弧火山岩,代表了洋壳的俯冲环境。晚寒武世—早奥陶世和中志留世两期陆-陆碰撞记录:松本错地区发育晚寒武世—早奥陶世496~481 Ma的碰撞型花岗岩[178];中志留世427~422 Ma的高压麻粒岩相变质[179]。因此,南、北羌塘地块之间的龙木措—双湖—昌宁—孟连缝合带在早古生代经历了多期的洋盆演化过程(表 9),在晚寒武世之前为一宽阔的大洋,早、中寒武世洋盆开始俯冲,晚寒武世—早奥陶世南北羌塘发生碰撞增生。而后,于中、晚奥陶世发生弧后裂谷,新发展为初始洋盆环境,这个弧后初始洋盆于中志留世427~422 Ma闭合。而拉萨地块北部的班公湖—怒江缝合带和中部狮泉河—申扎—嘉黎缝合带发育早、中寒武世与洋盆俯冲相关的岛弧火山岩和浅变质岩,表明早寒武世该带为一俯冲带。故有理由认为,龙木措—双湖缝合带为泛非运动波及的北界。根据板块重建分析,更有可能的构造过程是:原特提斯洋向南俯冲消亡,导致华北—塔里木—柴达木地块拼合于冈瓦纳大陆北缘。随后晚古生代,华北—塔里木—柴达木地块裂离冈瓦纳大陆北缘,早古生代岛弧或碰撞带分裂为二,一半残留弧保存在冈瓦纳北缘,即现在的西(或南)羌塘地块、北拉萨地块的早古生代岛弧记录,开启古特提斯洋的演化,这可能是Pangea超大陆开始聚合的起点和全球背景。

图 6 青藏高原早古生代构造图 Figure 6 Early Paleozoic tectonic map in the Qinghai-Tibet Plateau
表 9 青藏高原早古生代及部分晚古生代蛇绿岩、岩浆岩、变质岩分布特征 Table 9 Features of Paleozoic ophilites, magmatic rocks, metamorphic rocks in the Qinghai-Tibet Plateau
构造带采样点岩性性质年龄/Ma测年方法参考文献
龙木措—双湖,果干加年山堆晶辉长岩N-MORB438±11SHRIMP[180]
羌塘中部堆晶辉长岩MORB(461±73)、
(431.7±6.9)
SHRIMP[181]
变质堆晶辉长岩SSZ354.8±2.4LA-ICP-MS[182]
玄武岩SSZ,弧后盆地279±3.6SHRIMP[183]
辉长岩SSZ,弧后盆地274±3.9[183]
桃形湖斜长花岗岩近洋脊或准洋脊(460±8)、(467±4)SHRIMP[178, 184]
驼背岭斜长花岗岩略晚于蛇绿岩
形成年代
(504.8±4.2)、
(491.6±1.5)
SIMS/LA-ICP-MS[178]
香桃湖斜长花岗岩MORB-E-
MORB-OIB
早中奥陶世
SSZ晚二叠世
日湾茶卡堆晶辉长岩442.7±3.4LA-ICP-MS[185]
双湖地区变玄武岩463.3±4.7SHRIMP[186]
冈玛错岛弧火山岩360
都古尔—本松错S型花岗岩486~481[178]
497~496[186]
香桃湖高压麻粒岩427~422[179]
Sumdo榴辉岩260、220SHRIMP[187]
澜沧江缝合带Gicha镁铁—超镁铁杂岩弧后裂谷311~277[188]
澜沧江缝合带Banpo镁铁—超镁铁杂岩岛弧深成岩体288~284[188]
澜沧江缝合带八宿同卡弧火山岩507
羌塘MORB和
岛弧玄武岩特征
晚二叠—早石炭世SHRIMP/
LA-ICP-MS
昌宁—孟连
缝合带
南汀河堆晶辉长岩SSZ型蛇绿岩,
弧后裂谷
(473±3.8)、(443.6±
2.4)、(439±2.4)
LA-ICP-MS
锆石U-Pb
[179, 189]
辉长岩[179, 189]
干龙塘斜长角闪片岩大洋板内热点350~330锆石U-Pb[188, 190]
(变质玄武岩)SSZ270~264
角木日蛇绿岩准洋中脊环境中晚三叠世放射虫
总结
狮泉河—申扎—
嘉黎断裂
申扎岛弧火山岩
双峰火山岩
525~510
501~492
[178]
[1178]
纳木错麻粒岩相变质650[191]
角闪岩相退变质485
原岩900
凯蒙蛇绿岩橄长岩岛弧218.2±4.6SHRIMP
念珠蛇绿岩E-MORB758LA-ICP-MS[189]
班公湖—怒江怒江一带过铝质花岗岩487±11[162]
缝合带那曲辉长岩成熟弧后盆地183.7±1锆石U-Pb
金沙江缝合带金沙江角闪岩捕掳体
(蛇绿混杂岩)
大陆裂谷443~401[188]
哀牢山蛇绿岩N-MORB(382.9±3.9)、
(375.9±4.2)
[188]
金沙江蛇绿岩E-MORB346~341
拉萨—羌塘安第斯型岩浆作用360
3.2 澳大利亚Tasman早古生代增生造山带

Lachlan(拉克兰)造山带与东缘的新英格兰造山带、Thomson造山带一起组成澳大利亚东部南北向展布的古生代Tasman(塔斯曼)增生造山带,属古太平洋板块向澳大利亚大陆板块俯冲造成的环冈瓦纳南部东段的增生造山带的一部分(图 7)。

图 7 A东、西冈瓦纳边缘的Terra澳大利亚造山带(黄色)[192-193];B澳大利亚地质单元简图:(a)Tasman褶皱带和主要的前寒武纪克拉通;(b)Tasman褶皱带中的超级地体;(c)Tasman褶皱带内地体划分[194] Figure 7 A. Distribution of Terra Australis orogen (in yellow) along the margin of east and west Gondwana showing location of East Australian, Antarctic and South American segments[192]. East African and Pinjarra orogens (in green) are part of the Neoproterozoic Pan-African orogenic tracts responsible for assembly of Gondwana (pink). Extension of Pinjarra orogen across Antarctica through Lake Vostok to Pensacola and Queen Maud Mountains based on[193]. Red line depicts approximate limit of Gondwanan cratonic basement beneath the Terra Australis orogen. B. Outline of the geology of Australia. (a) Main Precambrian cratons and the Tasman fold belt. (b) Superterranes of the Tasman fold belt. (c) Subdivision of the Tasman fold belt into terranes[194]

宽阔的Lachlan造山带位于澳大利亚东南部,发育大量变形的寒武纪—泥盆纪浊积岩、硅质岩和铁镁质火山岩的增生造山带,并发育早志留世—早石炭世的区域性和局部的角度不整合,早寒武世—早石炭世的构造变形复杂[195-199]。前人根据岩石类型、变质程度、构造演化特征不同可将Lachlan造山带分为东、中、西3个二级单元[199]。中部和西部单元沿主要断裂带发育被肢解的蛇绿混杂岩以及蓝片岩,为大洋板块俯冲形成[200]。构造变形总体上西老东新,发育尖棱褶皱和高角度逆冲断层:西部单元构造变形发生在450~395 Ma,发育东倾逆冲断层、紧密褶劈理和尖棱褶皱;东部单元除了Narooma增生杂岩变形年龄为445 Ma,大部的变形发生在400~380 Ma,同时发育西倾和东倾的逆断层,和轴面东倾的较宽缓褶皱,劈理向东增强;而中部单元于早志留世发育南北向伸展盆地,后受东部单元向东逆冲断裂影响发生构造反转,受控于NW向断层,发育倾向SW的逆冲带,并伴生NNW向绿片岩-角闪岩相Wagga变质带,奥陶纪的变沉积岩发生早、中志留世变形,被晚志留世—泥盆纪花岗岩侵入[200]。Lachlan造山带发育3期岩浆作用,花岗岩体走向NNE,多为S型和I型花岗岩,主要分布在中部绿片岩-角闪岩相变质的Wagga变质带和东部单元[200-201]

新英格兰造山带位于澳大利亚最东缘,从Bowen (20°S)延伸到Newcastle (33°S)。绝大部分的模式认为,新英格兰造山带经历了长期的演化历史,自西向东由岛弧、弧前盆地(Tamworth)和增生楔组成,志留—泥盆纪地块受断层围限,表现出弯山构造特征,在南段Peel-Manning缝合带将弧前盆地和增生楔分隔[202]。沿Peel-Manning缝合带发育了530 Ma的蛇绿混杂岩、中寒武世的弧碎屑岩,代表了澳大利亚东部最早的俯冲作用[203-205],在该缝合带附近以及造山带北段昆士兰地区分布早古生代高压—超高压的早古生代蓝片岩和榴辉岩[203],其折返年龄从奥陶纪开始直到二叠纪终止[206]

3.3 与Rheic洋演化相关的早古生代增生造山带

Rheic洋(图 8)是和原特提斯同时代的洋盆,它的前身(530~500 Ma期间)为亚特提斯洋(Iapetus)(图 8),也有人直接就称为原特提斯洋(图 8),是原特提斯洋内向南俯冲增生到冈瓦纳北缘的过程。本文认为图 8中推测的原特提斯洋与Iapetus洋之间的大型转换断层可能存在,同时,Xu等[49]提出的贺兰构造带也可能是同样规模的相同走向的转换断层的残存,这非常类似现今印度大陆两侧的欧文和东经90°海岭这两条转换断层,这有利于波罗的地块的南移,值得在早古生代的全球板块重建中采纳。随后500~420 Ma期间,这个增生的冈瓦纳北缘西段一系列地体群发生分离北飘,与冈瓦纳大陆主体之间出现一个小洋盆,这才是常称的Rheic洋。伴随这个洋盆的形成,北漂的地体群向该洋北侧拼贴到了劳俄古陆南缘,不仅封闭了Tornquist洋,而且封闭了Iapetus洋南段,形成了近东西走向的增生造山带。

大陆地块或地体:BAL.Baltica;CA.Carolina;COA.Coahuila;EAV.Eastern Avalonia;GRN.Greenland;MA.Maya;NAM.North America;OAX.Oaxaca;SIB.Siberia;SU.Suwanne;WAV.Western Avalonia。 图 8 中奥陶世(约470 Ma)古地理重建[207] Figure 8 Paleogeographic model during the Middle Ordovician (c. 470 Ma)[207]

这条增生造山带从西往东可分成3段:西段本文称为Carolina带(图 8)、向东的中段称为Avalonia带(分欧洲和中美洲两部分,图 9)、再向东应当接Hunic地体群(就是包括中国在内的亚洲陆块群,也称为匈奴地体群)。Carolina带形成于400 Ma北方大陆与南方大陆的拼合,变质变形记录自450 Ma,连续延到330 Ma,期间没有任何双峰式火山岩等裂谷记录,表明其一直是南、北大陆拼合地带。Avalonia带的主要变质变形发生在330~280 Ma之间,所以大多数Pangea超大陆重建方案,将其作为南、北大陆最终拼合地带,实际Rheic洋相关的增生造山带西段的Carolina带拼合早在400 Ma既已完成。而且Hunic地体群是400 Ma后才随古特提斯洋开启,开始向北漂移并最终于220 Ma沿着中亚造山带的某带、勉略带、澜沧江带3条带同时聚合到了劳俄大陆,最终形成现今看到的劳亚大陆(Laurasia)。因而,可以看出,Pangea超大陆的形成是内侧洋从西向东剪刀式拼合的结果。

AM.Armorican地块;A-A.Afif-Abas地体;ANS.阿拉伯努比亚地盾;Az.阿扎尼亚;BS: Betsimisaraka缝合带;Cr.卡罗莱纳;e.榴辉岩;Fl.佛罗里达;FMC.法国地块中心;gp.石榴子石橄榄岩;HP-g.高压麻粒岩; IB.伊比利亚地块;MB.莫桑比克带;Om.阿曼; PCS.Palghat-Cauvery缝合带;IZ.伊斯坦布尔带;SZ.萨卡里亚带;R Plata.Rio de la Plata;S Fran.Sao Francisco;SXZ.Saxothuringian Zone;TBU.Tepla-Barrandian Unit;ws.白片岩。 AM: Armorican Massif; A-A: Afif-Abas Terrane; ANS: Arabian-Nubian Shield; Az: Azania; BS: Betsimisaraka Suture; Cr: Carolina; e: Eclogite; Fl: Florida; FMC: French Massif Centrals; gp: Garnet peridtites; HP-g: High-Pressure granulite; IB: Iberian Massif; MB: Mozambique Belt; Om: Oman; PCS: Palghat-Cauvery Suture; IZ: Istanbul Zone; SZ: Sakarya Zone; R Plata: Rio de la Plata; S Fran: Sao Francisco; SXZ: Saxothuringian Zone; TBU: Tepla-Barrandian Unit; ws: Whiteschist. 图 9 A约530 Ma的冈瓦纳板块和Cadomian-Avalonian及冈瓦纳周缘相关地体的古地理重建;B冈瓦纳古陆最终拼合的造山带延伸简图[208] Figure 9 A) Paleogeography of the Gondwanan plates and Cadomian-Avalonian active margin and related peri-Gondwanian terranes at ca. 530 Ma[208]. B) Simplified map illustrating the extensions of the orogenic belts causing the final amalgamation of the Gondwana[208]
4 早古生代增生造山带特征及全球意义

新元古代晚期—早古生代期间全球增生造山带普遍发育,且总体围绕一些大陆块分布,早古生代末期的增生造山事件具有全球普遍性和同时性。这些增生造山带按照地域或相关洋盆划分,主要分布在:1)北半球的古亚洲洋南、北两侧,北侧与古亚洲洋向北俯冲增生密切相关,南侧与古亚洲洋向南部的华北-塔里木等陆块群(Hunic)俯冲相关;2)赤道低纬度地区存在一个东西向构造带(可统称为Carolina-Avalonia-原特提斯带),东段主要分布在中国境内,称为原特提斯带,北部增生发育亚洲的匈奴地体群(Asiatic Hunic Terranes),与西侧的欧洲匈奴地体群(European Hunic Terranes,包括中欧的Armorica和Iberia)之间被认为是一条巨大的转换断层分割。其南部发育南羌塘、北拉萨地块,都表现为与原特提斯洋向南的消减相关,是原特提斯洋封闭的产物。多学科资料揭示,其中的大量微陆块(除华北复杂外)在早古生代可能都是源自冈瓦纳大陆北缘,又在冈瓦纳北缘的俯冲-增生过程中重新聚合;向西先后与早古生代早期Iapetus洋(图 8)或原特提斯洋向南俯冲(图 9)、Rheic洋晚期向北俯冲关闭有关,发育Avalonia-Cadomian等地体群,它们都可以归属到冈瓦纳北缘大陆增生带;3)环冈瓦纳东缘增生带,主要是与泛大洋(古太平洋)向西的俯冲增生相关。

增生造山带中组成复杂,每条增生造山带内部都具有复杂的沟-弧-盆体系残存记录,还有大量的新生地壳物质、外来的微陆块或再造的古地壳以及海山、海台、深海沉积岩等俯冲-增生杂岩,因此其内部微陆块的亲缘性判别就成为增生造山历史分析的关键。传统认为典型增生造山带不发育榴辉岩等超高压岩石,但大量变质记录表明,榴辉岩发育应为其重要特征。构造上俯冲极性复杂,弯山构造独特,构造格局复原和恢复难度大。如,早古生代末中亚早古生代造山带多为微陆块增生造山阶段,沟-弧-盆体系发育,具有增生-软碰撞造山的特点,发生时限较晚;原特提斯洋中的西昆仑、东昆仑、柴达木北缘、南阿尔金、北阿尔金、北祁连与北秦岭等围限或夹杂的微陆块在早古生代具有相同的增生造山过程,整体是向南俯冲增生到冈瓦纳大陆北缘,经复杂变形改造,它们现今为一巨型弯山构造横亘在中国中部(细节另文发表),对中国构造格局影响最为重要。特别是,增生造山带中的弯山构造成为早古生代(或原始)古亚洲洋、原特提斯洋构造体系、环冈瓦纳增生体系东缘的显著独特特征,弯山构造通常与斜向俯冲密切相关。

总体上,从全球格局分析,东亚原特提斯洋先于Rheic洋形成,但形成方式不同,前者由北方大陆裂离而来的华北板块介入,而其余的微陆块则和Rheic洋中的Avalonia等陆块群一样呈丝带状分离自冈瓦纳大陆北缘。但是,增生阶段从西向东,原特提斯洋内微陆块群向南增生到冈瓦纳大陆;而Rheic洋中的不同,主要向北漂移,增生到劳伦古陆南缘。Carolina地体群可能在400 Ma链接了北方劳俄大陆(此时可能劳伦古陆(Larentia),西伯利亚古陆也通过Ural造山带连为了一体,故称劳俄大陆,Larussia)和南方冈瓦纳大陆,直到250 Ma也没分离。因此,可能400 Ma以来就出现了一个超大陆,本文称为Carolina超大陆。这个超大陆最终是通过一系列增生造山过程完成的,而不是大陆块之间轰轰烈烈的碰撞造山所致。对比大型陆块之间拼合形成的巨型中亚增生造山带,这些小陆块增生拼贴形成的增生造山带规模也较小。因此,从这个角度分析,Rheic洋和原特提斯洋都不应当是一个大洋。而前人认为原特提斯洋是550~330 Ma时期的一个大洋,由大概集结于600 Ma的Pannotia超大陆的离散过程中打开的,即原始劳亚大陆(Proto-Laurasia, 包括劳伦、波罗的、西伯利亚三个古陆)裂离成未来称为冈瓦纳大陆时形成的。本文观点不同在于:原特提斯洋始于华北等陆块在原古亚洲洋中部的成带隔离,导致原亚洲洋的缩小,即古亚洲洋继承了原亚洲洋西段,而被隔离出来的南部大洋为原特提斯洋,因此,原特提斯洋内部的洋壳可以老于550 Ma,甚至老到中、新元古代。

400 Ma左右,中国境内的古特提斯洋打开,在中国境内主要体现在勉略洋、龙木措—双湖—昌宁—孟连洋的形成,其中后者可能是原特提斯洋未完全消失的部分继承而来,也就是说这部分原特提斯洋就是古特提斯洋的前身。古特提斯洋不断加宽,导致中国北方陆块(华北—阿拉善—塔里木)和南方陆块(佳木斯—华南—印支)同时北漂,两者空间关系上在250 Ma左右逐渐转变为现今看到的南、北关系,并最终拼合到劳俄大陆上,称为北方的劳亚大陆(Laurasia)。至此,形成大家熟悉的Pangea超大陆。由此可见,Pangea超大陆可能只是Carolina超大陆的一种延续存在形式,是Carolina超大陆从点碰撞(幼年期)到海西期全面碰撞(成年期)的一种局部形态调整,而不是一个新生的超大陆,这一点本文改变了106年来的Wegener模式或认识[209]。Pangea超大陆于180 Ma开始裂解,新特提斯洋打开,是Amasia超大陆聚合的起点。

新特提斯洋沿着阿尔卑斯—喜马拉雅地带消亡,早期的增生造山历史转变进入经典的碰撞造山演化。但是,现今东南亚一带依然保存着俯冲-增生造山过程,新特提斯洋也并没有彻底消亡,而是部分保存在现今的印度洋内。这种新特提斯洋和印度洋洋壳同时并存的现象,可能也是原特提斯洋与古特提斯洋并存的现代对照,值得板块重建中开展细致分析。

Torsvik和Cocks[210]讨论了这种增生造山的全球深部背景,认为与700 Ma以来就存在的下地幔低速带相关。板块重建结果表明,这些增生造山过程围绕核部大陆块聚集是深部地幔下降流汇聚结果,后期该古大陆周边丝带状裂离,则与地幔流反转相关。实际上,这种复杂分离与聚集很难用超大陆聚集的内侧洋机制、外侧洋机制和正交洋机制[211]中的单独一种来解释,可能是复合机制,总体可能是内侧洋封闭机制占主导。

5 结论

本文通过对全球早古生代造山带的系统集成分析,得出以下几点新认识:

1)新元古代晚期—早古生代期间发生的增生造山带具有全球普遍性和同时性,主要分布在大陆块周围或古亚洲洋南北两侧、Rheic洋北侧和环冈瓦纳大陆地带,分别与古亚洲洋、Rheic洋、原特提斯洋俯冲密切相关。

2)增生造山带以广泛的弧岩浆杂岩、新生地壳物质、俯冲-增生杂岩为特征,且发育弯山构造,这和碰撞型造山带也非常不同;多数发育冷榴辉岩或低温榴辉岩和蓝片岩,这一点和陆-陆碰撞型造山带中的榴辉岩不同;而且增生造山带中具有大量复杂来源的微陆块或陆块碎片、大洋高原台地、海山、洋内弧等洋壳碎片。

3)中亚早古生代造山带多为微陆块相互作用,在古亚洲洋南北两侧皆发育沟-弧-盆体系,具有软碰撞-增生造山的特点,发生时限较晚为早古生代末;而中国中央造山带中的北秦岭、北阿尔金与北祁连、南阿尔金与柴达木北缘、西昆仑与东昆仑在早古生代具有相同的演化过程,它们分别代表宽坪洋、北祁连洋、南祁连洋、昆中洋、西昆仑洋,且均发育于早古生代,是一个统一洋盆,称为原特提斯洋,可能是冈瓦纳北缘的一个中、小洋盆(但可能会有原亚洲洋这个大洋盆的残存记录),而不是大洋盆地,且它们早期的俯冲极性都是向南,这三点与前人观点完全相反。

参考文献
[1] 张兴洲, SklyarovE V. 中国东北及邻区蓝片岩带的构造意义[J]. 长春地质学院学报 , 1992 (99) : 106. Zhang Xingzhou, Sklyarov E V. The Tectonic Significance of the Blueschist Belt in the Northeast China and Its Adjacent Regions[J]. Journal of Changchun College of Geology , 1992 (99) : 106.
[2] 徐公愉. 东北亚地区古亚洲洋的构造演化特点[J]. 吉林地质 , 1993 (3) : 1-8. Xu Gongyu. The Tectonic Evolution of Paleo-Asiatic Ocean in the Northeast Asia Area[J]. Jilin Geology , 1993 (3) : 1-8.
[3] Northrup C J, Snyder-Walter S. Transpressional and Transtensional Tectonics of the Southern Ural Orogen[C]//AAPG International Conference and Exhibition 15-18 October, Bali. Tulsa : AAPG, 2000: 107-108.
[4] Ivanov K S, Puchkov V N, Yu N F, et al. Tectonics of the Urals and Adjacent Part of the West-Siberian Platform Basement: Main Features of Geology and Development[J]. Journal of Asian Earth Sciences , 2013, 31 (4) : 12-24.
[5] Brown D, Spadea P. Processes of Forearc and Accretionary Complex Formation During Arc-Continent Collision in the Southern Ural Mountains[J]. Geology , 1999, 27 (7) : 649-652. DOI:10.1130/0091-7613(1999)027<0649:POFAAC>2.3.CO;2
[6] Juhlin C, Friberg M, Echtler H P, et al. Crustal Structure of the Middle Urals: Results from the (ESRU) Europrobe Seismic Reflection Profiling in the Urals Experiments[J]. Tectonics , 1998, 17 (5) : 710-725. DOI:10.1029/98TC02762
[7] Steer D N, Knapp J H, Brown L D, et al. Deep Structure of the Continental Lithosphere in an Unextended Orogen: An Explosive-Source Seismic Reflection Profile in the Urals (Urals Seismic Experiment and Integrated Studies (URSEIS 1995)[J]. Tectonics , 1998, 17 (2) : 143-157. DOI:10.1029/97TC03056
[8] Khain E V, Bibikova E V, Salnikova E B, et al. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions[J]. Precambrian Research , 2003, 122 (1) : 329-358.
[9] Yang J, Meng F, Xu X, et al. Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals[J]. Gondwana Research , 2015, 27 (2) : 459-485. DOI:10.1016/j.gr.2014.07.004
[10] Shmelev V R, Meng F C. The Nature and Age of Basic Rocks of the Rai-Iz Ophiolite Massif (Polar Urals)[C]//Doklady Earth Sciences. New York: Springer Science & Business Media, 2013, 451(1): 758.
[11] Gurskaya L I, Smelova L V. PGE Mineral Formation and the Structure of the Syum-Keu Massif (Polar Urals)[J]. Geology of Ore Deposits C/C of Geologiia Rudnykh Mestorozhdenii , 2003, 45 (4) : 309-325.
[12] Alexeiev D V, Cook H E, Buvtyshkin V M, et al. Structural Evolution of the Ural-Tian Shan Junction: A View from Karatau Ridge, South Kazakhstan[J]. Comptes Rendus Geoscience , 2009, 341 (2) : 287-297.
[13] 车自成, 罗金海, 刘良, 等. 中国及其邻区区域大地构造学 [M]. 北京: 科学出版社, 2011 : 1 -466 . Che Zicheng, Luo Jinhai, Liu Liang, et al. Tectonics of China and Its Adjecent Areas [M]. Beijing: Science Press, 2011 : 1 -466 .
[14] 郭召杰, 张志诚. 中天山早古生代岛弧构造带研究[J]. 河北地质学院学报 , 1993, 16 (2) : 132-139. Guo Zhaojie, Zhang Zhicheng. On the Early Paleozoic Island Arc Belt of Mid-Tianshan[J]. Journal of Hebei College of Geology , 1993, 16 (2) : 132-139.
[15] 李向民, 夏林圻, 夏祖春, 等. 天山地区新元古代—早寒武世火山岩地球化学和岩石成因[J]. 岩石矿物学杂志 , 2006, 25 (5) : 412-422. Li Xiangmin, Xia Linqi, Xia Zuchun, et al. Geochemical Characteristics and Petrogenesis of Neoproterozoic-Early Cambrian Volcanic Rocks in Tianshan Area[J]. Acta Petrologica et Mineralogica , 2006, 25 (5) : 412-422.
[16] 徐学义, 李向民, 马中平, 等. 北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J]. 地球科学与环境学报 , 2005, 27 (2) : 17-20. Xu Xueyi, Li Xiangmin, Ma Zhongping, et al. LA-ICPMS Zircon U-Pb Dating of Gabbro from the Bayingou Ophiolite in the Northern Tianshan Mountains[J]. Journal of Earth Sciences and Environment , 2005, 27 (2) : 17-20.
[17] 徐学义, 夏林圻, 马中平, 等. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报 , 2006, 22 (1) : 83-94. Xu Xueyi, Xia Linqi, Ma Zhongping, et al. SHRIMP Zircon U-Pb Geochronology of the Plagiogranites from Bayingou Ophiolite in North Tianshan Mountains and the Petrogenesis of the Ophiolite[J]. Acta Petrologica Sinica , 2006, 22 (1) : 83-94.
[18] 苏会平, 司国辉, 张超. 新疆北天山巴音沟南侧发育早泥盆纪蛇绿岩及其构造意义[J]. 陕西地质 , 2014, 32 (1) : 33-38. Su Huiping, Si Guohui, Zhang Chao. The Early Devonian Ophiolite Developed in the South Side of Bayingou in North Tianshan of Xinjiang and Its Tectonic Significance[J]. Geology of Shaanxi , 2014, 32 (1) : 33-38.
[19] 夏林圻, 夏祖春, 徐学义, 等. 天山古生代洋陆转化特点的几点思考[J]. 西北地质 , 2002, 35 (4) : 9-20. Xia Linqi, Xia Zuchun, Xu Xueyi, et al. Some Thoughts on the Characteristics of Paleozoic Ocean-Continent Transition from Tianshan Mountains[J]. Northwestern Geology , 2002, 35 (4) : 9-20.
[20] 夏林圻, 张国伟, 夏祖春, 等. 天山古生代洋盆开启, 闭合时限的岩石学约束:来自震旦纪、石炭纪火山岩的证据[J]. 地质通报 , 2002, 21 (2) : 55-62. Xia Linqi, Zhang Guowei, Xia Zuchun, et al. Constraints on the Timing of Opening and Closing of the Tianshan Paleozoic Oceanic Basin: Evidence from Sinian and Carboniferous Volcanic Rocks[J]. Geological Bulletin of China , 2002, 21 (2) : 55-62.
[21] 李超, 肖文交, 韩春明, 等. 新疆北天山奎屯河蛇绿岩斜长花岗岩锆石SIMSU-Pb年龄及其构造意义[J]. 地质科学 , 2013, 48 (3) : 815-826. Li Chao, Xiao Wenjiao, Han Chunming, et al. SIMS Zircon U-Pb Age of the Plagiogranites from Kuitun River Ophiplite and Its Tectonic Implications[J]. Chinese Journal of Geology , 2013, 48 (3) : 815-826.
[22] 董云鹏, 张国伟, 周鼎武, 等. 中天山北缘冰达坂蛇绿混杂岩的厘定及其构造意义[J]. 中国科学: D辑:地球科学 , 2005, 35 (6) : 552-560. Dong Yunpeng, Zhang Guowei, Zhou Dingwu, et al. Determination Tectonic Implications of Bingdaban Ophiolitic Melange on the Northern Margin of Central Tianshan[J]. Science in China:Series D: Earth Sciences , 2005, 35 (6) : 552-560.
[23] 杨经绥, 徐向珍, 李天福, 等. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年:早古生代洋盆的证据[J]. 岩石学报 , 2011, 27 (1) : 77-95. Yang Jingsui, Xu Xiangzhen, Li Tianfu, et al. U-Pb Ages of Zircons from Ophiplite and Related Rocks in the Kumishi Region at the Southern Margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic Oceanic Basin[J]. Acta Petrologica Sinica , 2011, 27 (1) : 77-95.
[24] 李源, 杨经绥, 张健, 等. 新疆东天山石炭纪火山岩及其构造意义[J]. 岩石学报 , 2011, 27 (1) : 193-209. Li Yuan, Yang Jingsui, Zhang Jian, et al. Tectonical Significance of the Carboniferous Volcanic Rocks in Eastern Tianshan[J]. Acta Petrologica Sinica , 2011, 27 (1) : 193-209.
[25] 李文铅, 马华东, 王冉, 等. 东天山康古尔塔格蛇绿岩SHRIMP年龄, Nd-Sr同位素特征及构造意义[J]. 岩石学报 , 2008, 24 (4) : 773-780. Li Wenqian, Ma Huadong, Wang Ran, et al. SHRIMP Dating and Nd-Sr Isotopic Tracing of Kangguertage Ophiplite in Eastern Tianshan, Xinjiang[J]. Acta Petrologica Sinica , 2008, 24 (4) : 773-780.
[26] 于福生, 李金宝, 王涛. 东天山红柳河地区蛇绿岩U-Pb同位素年龄[J]. 地球学报 , 2006 (3) : 213-216. Yu Fusheng, Li Jinbao, Wang Tao. The U-Pb Isotopic Age of Zircon from Hongliuhe Ophiolites in East Tianshan Mountains, Northwest China[J]. Acta Geoscientica Sinica , 2006 (3) : 213-216.
[27] 徐学义, 马中平, 李向民, 等. 西南天山吉根地区P-MORB残片的发现及其构造意义[J]. 岩石矿物学杂志 , 2003, 22 (3) : 245-253. Xu Xueyi, Ma Zhongping, Li Xiangmin, et al. The Discovery of P-MORB in Jigen Area of Southwest Tianshan Mountains and Its Tectonic Implications[J]. Acta Petrologica et Mineralogica , 2003, 22 (3) : 245-253.
[28] 郝杰, 刘小汉, 王二七, 等. 新疆东昆仑阿其克湖蛇绿岩的确定:来自岩石地球化学研究的证据[J]. 自然科学进展 , 2005, 15 (9) : 1070-1079. Hao Jie, Liu Xiaohan, Wang Erqi, et al. Identification of Lake Aqike Ophiolite in East Kunlun, Xinjiang:Evidence from Petrology and Geochemistry[J]. Progress in Natural Science , 2005, 15 (9) : 1070-1079.
[29] 杨海波, 高鹏, 李兵, 等. 新疆西天山达鲁巴依蛇绿岩地质特征[J]. 新疆地质 , 2005, 23 (2) : 123-126. Yang Haibo, Gao Peng, Li Bing, et al. The Geological Character of the Sinian Dalubayi Ophiolite in the West Tianshan, Xinjiang[J]. Xinjiang Geology , 2005, 23 (2) : 123-126.
[30] 龙灵利, 高俊, 熊贤明, 等. 南天山库勒湖蛇绿岩地球化学特征及其年龄[J]. 岩石学报 , 2006, 22 (1) : 65-73. Long Lingli, Gao Jun, Xiong Xianming, et al. The Geochemical Characteristics and the Age of the Kule Lake Ophiplite in the Southern Tianshan[J]. Acta Petrologica Sinica , 2006, 22 (1) : 65-73.
[31] 王润三, 李惠民. 南天山榆树沟高压麻粒岩地体锆石U-Pb定年及其地质意义[J]. 地球化学 , 1998, 27 (6) : 517-522. Wang Runsan, Li Huimin. Zircon U-Pb Age and Its Geological Significance of High-Pressure Terrane of Granulite Facies in Yushugou Area, Southern Tianshan Mountain[J]. Geochimica , 1998, 27 (6) : 517-522.
[32] 黄岗, 张占武, 董志辉, 等. 南天山铜花山蛇绿混杂岩中斜长花岗岩锆石LA-ICP-MS微区U-Pb定年及其地质意义[J]. 中国地质 , 2011, 38 (1) : 94-102. Huang Gang, Zhang Zhanwu, Dong Zhihui, et al. Zircon LA-ICP-MS U-Pb Age of Plagiogranite from Tonghuashan Ophiolite in Southern Tianshan Mountains and Its Geological Implications[J]. Geology in China , 2011, 38 (1) : 94-102.
[33] 倪守斌, 满发胜, 陈江峰. 西天山琼阿乌孜超基性岩体的稀土元素和Sr, Nd同位素研究[J]. 岩石学报 , 1995, 11 (1) : 65-70. Ni Shoubin, Man Fasheng, Chen Jiangfeng. REE and Sr-Nd Isotopic Study of Qiongawuzi Ultramafic Intrusion, West Tianshan[J]. Acta Petrologica Sinica , 1995, 11 (1) : 65-70.
[34] 徐学义, 何世平, 王洪亮, 等. 中国西北部地质概论:秦岭, 祁连, 天山地区 [M]. 北京: 科学出版社, 2008 : 1 -338 . Xu Xueyi, He Shiping, Wang Hongliang, et al. An Introduction of Geology in Northwestern China: Qinling, Qilian and Tianshan [M]. Beijing: Science Press, 2008 : 1 -338 .
[35] Rojas-Agramonte Y, Herwartz D, García-Casco A, et al. Early Palaeozoic Deep Subduction of Continental Crust in the Kyrgyz North Tianshan: Evidence from Lu-Hf Garnet Geochronology and Petrology of Mafic Dikes[J]. Contributions to Mineralogy and Petrology , 2013, 166 (2) : 525-543. DOI:10.1007/s00410-013-0889-y
[36] Klemd R, Hegner E, Bergmann H, et al. Eclogitization of Transient Crust of the Aktyuz Complex During Late Palaeozoic Plate Collisions in the Northern Tianshan of Kyrgyzstan[J]. Gondwana Research , 2014, 26 (3) : 925-941.
[37] Konopelko D, Kullerud K, Apayarov F, et al. SHRIMP Zircon Chronology of HP-UHP Rocks of the Makbal Metamorphic Complex in the Northern Tienshan, Kyrgyzstan[J]. Gondwana Research , 2012, 22 (1) : 300-309. DOI:10.1016/j.gr.2011.09.002
[38] Alexeiev D V, Ryazantsev A V, Kröner A, et al. Early Ordovician High-Pressure Belt in the Chu-Yili Mountains: Implications for the Earliest Stages of Accretion in Kazakhstan and the Tianshan[J]. Journal of Asian Earth Sciences , 2011 (42) : 805-820.
[39] Dobretsov N L, Shatsky V S. Exhumation of High-Pressure Rocks of the Kokchetav Massif: Facts and Models[J]. Lithos , 2004, 78 (3) : 307-318. DOI:10.1016/j.lithos.2004.05.003
[40] Schertl H P, Sobolev N V. The Kokchetav Massif, Kazakhstan:"Type Locality"of Diamond-Bearing UHP Metamorphic Rocks[J]. Journal of Asian Earth Sciences , 2013 (63) : 5-38.
[41] 陈振宇, 张立飞, 杜瑾雪, 等.西天山榴辉岩的进变质和退变质时:脉体中锆石的U-Pb年龄制约[C]//中国矿物岩石地球化学学会第13届学术年会论文集.广州:中国矿物岩石地球化学学会, 2011:27-42. Chen Zhenyu, Zhang Lifei, Du Jinxue, et al. Timing on Prograde and Retrograde Metamorphism of Eclogite in West Tianshan:Constraints on Zircon U-Pb Ages in Veins[C]//The Conference Volume of the 13th Annual Seminar of Chinese Society for Mineralogy Petrology and Geochemistry. Guangzhou: Chinese Society for Mineralogy Petrology and Geochemistry, 2011:27-42.
[42] Liu X, Su W, Gao J, et al. Paleozoic Subduction Erosion Involving Accretionary Wedge Sediments in the South Tianshan Orogen: Evidence from Geochronological and Geochemical Studies on Eclogites and Their Host Metasediments[J]. Lithos , 2014 (210) : 89-110.
[43] Du J X, Zhang L F, Shen X J, et al. A New PTt Path of Eclogites from Chinese Southwestern Tianshan: Constraints from PT Pseudosections and Sm-Nd Isochron Dating[J]. Lithos , 2014 (200) : 258-272.
[44] Simonov V A, Sakiev K S, Volkova N I, et al. Conditions of Formation of the Atbashi Ridge Eclogites (South Tien Shan)[J]. Russian Geology and Geophysics , 2008, 49 (11) : 803-815. DOI:10.1016/j.rgg.2008.04.001
[45] Hegner E, Klemd R, Kröner A, et al. Mineral Ages and PT Conditions of Late Paleozoic High-Pressure Eclogite and Provenance of Mélange Sediments from Atbashi in the South Tianshan Orogen of Kyrgyzstan[J]. American Journal of Science , 2010, 310 (9) : 916-950. DOI:10.2475/09.2010.07
[46] Tagiri M, Yano T, Bakirov A, et al. Mineral Parageneses and Metamorphic P-T Paths of Ultrahigh-Pressure Eclogites from Kyrghyzstan Tianshan[J]. Island Arc , 1995, 4 (4) : 280-292. DOI:10.1111/iar.1995.4.issue-4
[47] Rong J Y, Boucot B J, Su Y Z, et al. Biogeographical Analysis of Late Silurian Brachiopod Faunas, Chiefly from Asia and Australia[J]. Lethaia , 1995, 28 (1) : 39-60. DOI:10.1111/let.1995.28.issue-1
[48] Keppie J D, Nance R D, Murphy J B, et al. The High-Pressure Iberian-Czech Belt in the Variscan Orogen: Extrusion into the Upper (Gondwanan) Plate?[J]. Gondwana Research , 2010, 17 (Sup.2/3) : 306-316.
[49] Xu S M, Feng H W, Li S Z, et al. Early Paleozoic Ocean-Continent Configuration in the Helanshan and Its Adjacent Regions and the Closure Time in the Eastern Qilian Ocean, NW China[J]. Journal of Asian Earth Sciences , 2015, 113 (2) : 575-588.
[50] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics , 2013, 593 : 1-19. DOI:10.1016/j.tecto.2013.02.037
[51] Zhao S J, Li S Z, Liu X, et al. Subduction Polarity Along the Northern Boundary of the Prototethys Ocean: Constraints from the Structural Analyses of the North Qinling Orogen[J]. Journal of Asian Earth Sciences , 2015, 113 (2) : 560-574.
[52] Yu S, Li S Z, Zhao S J, et al. Long History of a Grenville Orogen Relic the North Qinling Terrane: Evolution of the Qinling Orogenic Belt from Rodinia to Gondwana[J]. Precambrian Research , 2015, 271 : 98-117. DOI:10.1016/j.precamres.2015.09.020
[53] 陆松年, 于海峰, 李怀坤, 等. "中央造山带"早古生代缝合带及构造分区概述[J]. 地质通报 , 2006, 25 (12) : 1368-1380. Lu Songnian, Yu Haifeng, Li Huaikun, et al. Early Paleozoic Suture Zones and Tectonic Divisions in the "Central China Orogen"[J]. Geological Bulletin of China , 2006, 25 (12) : 1368-1380.
[54] 许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报 , 2011, 27 (1) : 1-22. Xu Zhiqin, Li Sitian, Zhang Jianxin, et al. Paleo-Asian and Tethyan Tectonic Systems with Docking the Tarim Block[J]. Acta Petrologica Sinica , 2011, 27 (1) : 1-22.
[55] Sun W J, Li S Z, Liu X, et al. Deep Structures and Surface Boundaries Among Proto-Tethyan Micro-Blocks: Constraints from Seismic Tomography and Aeromagnetic Anomalies in the Central China Orogen[J]. Tectonophysics , 2015, 659 : 109-121. DOI:10.1016/j.tecto.2015.07.033
[56] Cao H H, Li S Z, Zhao S J, et al. Detrital-Zircon Geochronology of Early Paleozoic Sedimentary Rocks in the North Qinling Orogen: Implications for the Tectonic Evolution of the Eastern Segment of Northern Boundary of Proto-Tethys Ocean[J]. Precambrian Research, 2016, in press.
[57] Wu Y B, Zheng Y F. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China[J]. Gondwana Research , 2013, 23 (4) : 1402-1428. DOI:10.1016/j.gr.2012.09.007
[58] Liu X, Su W, Gao J, et al. Paleozoic Subduction Erosion Involving Accretionary Wedge Sediments in the South Tianshan Orogen: Evidence from Geochronological and Geochemical Studies on Eclogites and Their Host Metasediments[J]. Lithos , 2014 (210/211) : 89-110.
[59] Liu X C, Li S Z, Jahn Bor-Ming. Tectonic Evolution of the Tongbai-Hong'an Orogen in Central China: From Oceanic Subduction/Accretion to Continen-Continent Collision[J]. Science China (Earth Sciences) , 2015, 58 (9) : 1477-1496. DOI:10.1007/s11430-015-5145-z
[60] 许志琴, 李海兵, 杨经绥, 等. 东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J]. 地质学报 , 2001, 75 (2) : 156-164. Xu Zhiqin, Li Haibing, Yang Jingsui, et al. A Large Transpression Zone at the South Margin of the East Kunlun Mountains and Oblique Subduction[J]. Acta Geological Sinica , 2001, 75 (2) : 156-164.
[61] 许志琴, 杨经缓, 吴才来, 等. 柴达木北缘超高压变质带形成与折返的时限及机制[J]. 地质学报 , 2003, 77 (2) : 163-176. Xu Zhiqin, Yang Jingsui, Wu Cailai, et al. Timing and Machanism of Formation and Exhumation of the Qaidam Ultra-Pressure Metamorphic Belt[J]. Acta Geological Sinica , 2003, 77 (2) : 163-176.
[62] 杨经绥, 许志琴, 裴先治, 等. 秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别[J]. 地质学报 , 2002, 76 (4) : 484-495. Yang Jingsui, Xu Zhiqin, Pei Xianzhi, et al. Discovery of Diamond in North Qinling: Evidence for a Giant UHPM Belt Across Central China and Recognition of Paleozoic and Mesozoic Dual Deep Subduction Between North China and Yangtze Plates[J]. Acta Geological Sinica , 2002, 76 (4) : 484-495.
[63] 戚学祥.大型韧性走滑作用与祁连加里东造山带的形成[D].北京:中国地质科学院, 2003. Qi Xuexiang. Large Size Ductile Strike-Slip Shearing and the Formation of Qilian Caledonian Orogen[D]. Beijing :Chinese Academy of Geological Sciences, 2003. http://cdmd.cnki.com.cn/article/cdmd-82501-2007213485.htm
[64] 史仁灯, 杨经绥, 吴才来. 柴达木北缘超高压变质带中的岛弧火山岩[J]. 地质学报 , 2004, 78 (1) : 52-64. Shi Rengdeng, Yang Jingsui, Wu Cailai. Island Arc Volcanic Rocks in the North Qaidam UHP Metamorphic Belt[J]. Acta Geological Sinica , 2004, 78 (1) : 52-64.
[65] 剡晓旭.青海省玉石沟蛇绿岩套岩石学年代学特征及其构造意义[D].北京:中国地质大学, 2014. Shan Xiaoxu. The Petrological Characteristics, Chronology and Tectonic Implications of the Yushigou Ophiolite Suite, Qinghai Province[D]. Beijing : China University of Geosciences, 2014. http://cdmd.cnki.com.cn/article/cdmd-11415-1014233976.htm
[66] 武鹏, 李向民, 徐学义, 等. 北祁连山扎麻什地区东沟蛇绿岩LA-ICP-MS错石U-Pb测年及其地球化学特征[J]. 地质通报 , 2012, 31 (6) : 896-906. Wu Peng, Li Xiangmin, Xu Xueyi, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Donggou Ophiolites in Zamashi Area of Northern Qilian Mountain[J]. Geological Bulletin of China , 2012, 31 (6) : 896-906.
[67] 张旗, 周国庆, 王焰. 中国蛇绿岩的分布, 时代及其形成环境[J]. 岩石学报 , 2003, 19 (1) : 1-8. Zhang Qi, Zhou Guoqing, Wang Yan. The Distribution of Time and Space of Chinese Ophiolites, and Their Tectonic Settings[J]. Acta Petrologica Sinica , 2003, 19 (1) : 1-8.
[68] 曾建元, 杨怀仁, 杨宏仪, 等. 北祁连东草河蛇绿岩:一个早古生代的洋壳残片[J]. 科学通报 , 2007, 52 (7) : 825-835. Zeng Jianyuan, Yang Huairen, Yang Hongyi, et al. Dongcaohe Ophiolite in North Qilian: An Early Palaeozoic Oceanic Crustal Fragement[J]. Chinese Science Bulletin , 2007, 52 (7) : 825-835.
[69] 孟繁聪, 张建新, 郭春满, 等. 大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约[J]. 岩石矿物学杂志 , 2010, 29 (5) : 453-466. Meng Fancong, Zhang Jianxin, Guo Chunman, et al. Constraints on the Evolution of the North Qilian Ocean Basin: MOR-Type and SSZ-Type Ophiolites from Dachadaban[J]. Acta Petrologica et Mineralogica , 2010, 29 (5) : 453-466.
[70] 陈雨, 周德进, 王二七, 等. 北祁连肃南县大岔大坂蛇绿岩中玻安岩系岩石的发现及其地球化学特征[J]. 岩石学报 , 1995 (Sup.11) : 147-153. Chen Yu, Zhou Dejin, Wang Erqi, et al. Geochemical Characteristics of Boninite Series Rocks Found in Dachadaban Ophiolite (DDO) Sunan County, North Qilian Mountain[J]. Acta Petrologica Sinica , 1995 (Sup.11) : 147-153.
[71] 张旗, ChenY, 周德进, 等. 北祁连大岔大坂蛇绿岩的地球化学特征及其成因[J]. 中国科学: D辑 , 1998, 28 (1) : 30-34. Zhang Qi, Chen Y, Zhou Dejin, et al. Geochemical Characteristics and Petrogenesis of the Dchadaban Ophiolite in North Qilian[J]. Science in China:Series D , 1998, 28 (1) : 30-34.
[72] 夏小洪, 孙楠, 宋述光, 等. 北祁连西段熬油沟—二只哈拉达坂蛇绿岩的形成环境和时代[J]. 北京大学学报(自然科学版) , 2012, 48 (5) : 757-769. Xia Xiaohong, Sun Nan, Song Shuguang, et al. Age and Tectonic Setting of the Aoyougou-Erzhihaladaban Ophiolite in the Western North Qilian Mountains, NW China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis , 2012, 48 (5) : 757-769.
[73] 相振群, 陆松年, 李怀坤, 等. 北祁连西段熬油沟辉长岩的锆石SHRIMP U-Pb年龄及地质意义[J]. 地质通报 , 2007, 26 (12) : 1686-1691. Xiang Zhenqun, Lu Songnian, Li Huaikun, et al. SHRIMP U-Pb Zircon Age of Gabbro in Aoyougou in the Western Segment of the North Qilian Mountains, China and Its Geological Implications[J]. Geological Bulletin of China , 2007, 26 (12) : 1686-1691.
[74] 闫巧娟. 北祁连山西段熬油沟蛇绿岩地质特征及其研究进展[J]. 西北地质 , 2013, 45 (B12) : 105-108. Yan Qiaojuan. Tectonic Significance and Research Progress of the Aoyougou Ophiolite in the Western Segment of North Qilian[J]. Northwestern Geology , 2013, 45 (B12) : 105-108.
[75] 张招崇, 周美付, RobinsonP T, 等. 北祁连山西段熬油沟蛇绿岩SHRIMP分析结果及其地质意义[J]. 岩石学报 , 2001, 17 (2) : 222-226. Zhang Zhaochong, Zhou Meifu, Robinson P T, et al. SHRIMP Dating of the Aoyougou Ophiolite in the West Sector of the North Qilian Mountains and Its Geological Significance[J]. Acta Petrologica Sinica , 2001, 17 (2) : 222-226.
[76] 毛景文, 杨建民, 张招崇, 等. 北祁连山西段前寒武纪地层单颗粒锆石测年及其地质意义[J]. 科学通报 , 1997, 42 (13) : 1414-1417. Mao Jingwen, Yang Jianmin, Zhang Zhaochong, et al. Single-Grain Zircon Dating of Precambrian Strata in North Qilian and Its Geological Significance[J]. Chinese Science Bulletin , 1997, 42 (13) : 1414-1417.
[77] 汪双双.北祁连乌鞘岭蛇绿岩地球化学特征及其构造意义[D].兰州:兰州大学, 2009. Wang Shuangshuang. Geochemical Characteristics of Wushaoling Ophiolites in North Qilian and Their Tectonic Significance[D]. Lanzhou : Lanzhou University, 2009. http://cdmd.cnki.com.cn/article/cdmd-10730-2009190699.htm
[78] 张旗, 孙晓猛, 周德进, 等. 北祁连蛇绿岩的特征、形成环境及其构造意义[J]. 地球科学进展 , 1997, 12 (4) : 64-91. Zhang Qi, Sun Xiaomeng, Zhou Dejin, et al. The Geological Characteristics, Tectonic Setting and Their Significance of Ophiolites in North Qilian[J]. Advance in Earth Sciences , 1997, 12 (4) : 64-91.
[79] 龚全胜. 肃南塔洞沟早奥陶世蛇绿岩的成因和侵位[J]. 甘肃地质学报 , 1997, 6 (1) : 25-36. Gong Quansheng. Genesis and Emplacement of Early Ordovician Pohiolites of Tadonggou, Sunan[J]. Acta Geologica Gansu , 1997, 6 (1) : 25-36.
[80] 冯益民, 何世平. 北祁连蛇绿岩的地质地球化学研究[J]. 岩石学报 , 1995 (Sup.11) : 125-140. Feng Yimin, He Shiping. Research for Geology and Geoehemistry of Several OPhiolites in the North Qilian Mountains, China[J]. Acta Petrologica Sinica , 1995 (Sup.11) : 125-140.
[81] 黄增保, 张有奎, 吕菊蕊, 等. 北祁连水洞峡蛇绿岩地球化学特征及构造环境[J]. 甘肃地质 , 2010, 19 (2) : 1-7. Huang Zengbao, Zhang Youkui, Lü Jurui, et al. Geochemical Features and Tectonic Setting of the Shuidongxia Ophiolite in North Qilian[J]. Gansu Geology , 2010, 19 (2) : 1-7.
[82] 黄增保, 金霞. 甘肃昌马地区寒武纪构造演化探讨[J]. 西北地质 , 2004, 37 (1) : 51-57. Huang Zengbao, Jin Xia. Structural Evolution of Cambrian Tectonic Belt in Changma Area, Gansu[J]. Northwestern Geology , 2004, 37 (1) : 51-57.
[83] 杨文敏. 对北祁连中段皇城一带蛇绿岩的初步认识[J]. 甘肃科技 , 2008, 24 (8) : 42-43. Yang Wenmin. The Preliminary Understanding About Ophiolite from Huangcheng in the Middle of North Qilian[J]. Gansu Science and Technology , 2008, 24 (8) : 42-43.
[84] 张翔, 张本旗, 芦青山, 等. 北祁连直河蛇绿岩的地质和地球化学特征[J]. 兰州大学学报(自然科学版) , 2007, 43 (3) : 8-12. Zhang Xiang, Zhang Benqi, Lu Qingshan, et al. Discovery of Ophiolites Belts and Tectonic Implication Around Zhihe in the North Qilian[J]. Journal of Lanzhou University (Natural Sciences) , 2007, 43 (3) : 8-12.
[85] 宋述光. 冀东太平寨地区变质岩脉群研究[J]. 长春地质学院学报 , 1990, 20 (4) : 421-428. Song Shuguang. Metamorphosed Basic and Ultrabasic Dyke Swarms in Taipingzhai Region, East Hebei[J]. Journal of Changchun University of Earth Science , 1990, 20 (4) : 421-428.
[86] 冯益民, 吴汉泉. 北祁连山及其邻区古生代以来的大地构造演化初探[J]. 西北地质科学 , 1992, 13 (2) : 61-74. Feng Yimin, Wu Hanquan. Tectonic Evolution of North Qilan Mountains and Its Neighbourhood Since Paleozoic[J]. Northwest Geoscience , 1992, 13 (2) : 61-74.
[87] Xiao W J, Windley B F, Han C M, et al. End Permian to Mid-Triassic Termination of the Southern Central Asian Orogenic Belt[J]. International Journal of Earth Sciences , 2009, 98 (6) : 1189-1217. DOI:10.1007/s00531-008-0407-z
[88] 宋述光. 北祁连山俯冲杂岩带的构造演化[J]. 地球科学进展 , 1997, 12 (4) : 49-63. Song Shuguang. Tectonic Evolution of Subductive Complex Belts in the North Qilan Mountains[J]. Advance in Earth Sciences , 1997, 12 (4) : 49-63.
[89] Zhang J X, Yang J S, Mattinson C G, et al. Two Contrasting Eclogite Cooling Histories, North Qai-dam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints[J]. Lithos , 2005, 84 (1) : 51-76.
[90] 宋述光, 张立飞, 宋彪, 等. 北祁连山榴辉岩锆石SHRIMP定年及其构造意义[J]. 科学通报 , 2004, 49 (6) : 592-595. Song Shuguang, Zhang Lifei, Song Biao, et al. SHRIMP Zircon Dating of Eclogite in North Qilian and Its Tectonic Significance[J]. Chinese Science Bulletin , 2004, 49 (6) : 592-595.
[91] 林宜慧, 张立飞. 北祁连山清水沟蓝片岩带中含硬柱石蓝片岩和榴辉岩的岩石学, 40Ar/39Ar年代学及其意义[J]. 地质学报 , 2012, 86 (9) : 1503-1524. Lin Yihui, Zhang Lifei. Petrology and 40Ar/39Ar Geochronology of the Lawsonite-Bearing Blueschist and Eclogite from the Qingshuigou Blueschist Belt in North Qilian Mountains in NW China and Their Tectonic Implication[J]. Acta Geological Sinica , 2012, 86 (9) : 1503-1524.
[92] Yan Z, Wang Z, Chen J, et al. Detrital Record of Neoproterozoic Arc-Magmatism Along the NW Margin of the Yangtze Block, China:U-Pb Geochronology and Petrography of Sandstones[J]. Journal of Asian Earth Sciences , 2010, 37 (4) : 322-334. DOI:10.1016/j.jseaes.2009.09.001
[93] 张建新, 许志琴, 李海兵, 等. 北祁连加里东造山带从挤压到伸展造山机制的转换[J]. 长春地质学院学报 , 1997, 27 (3) : 277-283. Zhang Jianxin, Xu Zhiqin, Li Haibing, et al. The Transition of Orogenic Mechanism from Compression to Extension in Northern Qilian Orogenic Belt[J]. Journal of Changchun University of Earth Sciences , 1997, 27 (3) : 277-283.
[94] 董顺利, 李忠, 高剑, 等. 阿尔金—祁连—昆仑造山带早古生代构造格架及结晶岩年代学研究进展[J]. 地质论评 , 2013, 59 (4) : 731-746. Dong Shunli, Li Zhong, Gao Jian, et al. Progress of Studies on Early Paleozoic Tectonic Framework and Crystalline Rock Geochronology in Altun-Qilian-Kunlun Orogen[J]. Geological Review , 2013, 59 (4) : 731-746.
[95] 许志琴, 戚学祥, 刘福来, 等. 西昆仑康西瓦加里东期孔兹岩系及地质意义[J]. 地质学报 , 2004, 78 (6) : 733-743. Xu Zhiqin, Qi Xuexiang, Liu Fulai, et al. The Kangxiwar Caledonian Khondalite Series in West Kunlun, China, and Its Geological Significance[J]. Acta Geological Sinica , 2004, 78 (6) : 733-743.
[96] 周辉, 李继亮. 西昆仑库地蛇绿混杂带中早古生代放射虫的发现及其意义[J]. 科学通报 , 1998, 43 (22) : 2448-2451. Zhou Hui, Li Jiliang. The Discovery of Early Paleozoic Radiolarian in Kudi Ophiolite Melange of Wset Kunlun and Its Tectonic Implication[J]. Chinese Science Bulletin , 1998, 43 (22) : 2448-2451.
[97] 王志洪, 李继亮, 侯泉林, 等. 西昆仑库地蛇绿岩地质, 地球化学及其成因研究[J]. 地质科学 , 2000, 35 (2) : 151-160. Wang Zhihong, Li Jiliang, Hou Quanlin, et al. Geology, Geochemical and Genesis of the Kuda Ophiolitem, Western Kunlun, China[J]. Scientia Geologica Sinica , 2000, 35 (2) : 151-160.
[98] 许荣华. 西昆仑山北部早古生代构造-岩浆带的发现[J]. 地质科学 , 1994, 29 (4) : 313-328. Xu Ronghua. A Discovery of an Early Paleozoic Tectono-Magmatic Belt in the Northern Part of West Kunlun Mountains[J]. Scientia Geologica Sinica , 1994, 29 (4) : 313-328.
[99] 韩芳林.西昆仑增生造山带演化及成矿背景[D].北京:中国地质大学, 2006. Han Fanglin. Tectonic Evolution and Mineralization of the Western Kunlun Accretion-Type Orogen[D]. Beijing: China University of Geosciences, 2006. http://cdmd.cnki.com.cn/article/cdmd-11415-2006065295.htm
[100] Mattern F, Schneider W. Suturing of the Proto-and Paleo-Tethys Oceans in the Western Kunlun (Xinjiang, China)[J]. Journal of Asian Earth Sciences , 2000, 18 (6) : 637-650. DOI:10.1016/S1367-9120(00)00011-0
[101] 李王晔, 李曙光, 裴先治, 等. 西秦岭关子镇蛇绿混杂岩的地球化学和锆石SHRIMP U-Pb年龄[J]. 岩石学报 , 2007 (11) : 2836-2844. Li Wangye, Li Shuguang, Pei Xianzhi, et al. Geochemistry and Zircon SHRIMP U-Pb Ages of the Guanzizhen Ophiolite Complex, the Western Qinling Orogeny, China[J]. Acta Petrologica Sinica , 2007 (11) : 2836-2844.
[102] 王秉璋, 索有贤, 古凤宝, 等.昆秦接合部造山带蛇绿岩的特征及地质意义[C]//陈毓川. "九五"全国地质科技重要成果论文集.北京:地质出版社, 2000: 112-115. Wang Bingzhang, Suo Youxian, Gu Fengbao, et al. The Characteristics and Their Geological Significance of Ophiolites from the Orogenic Belt Between Kunlun-Qinling Mountains[C]//Chen Yuchuan. The Nine Five Important Achievements in Geological Science and Technology Symposium.Beiing:Geological Publishing House, 2000: 112-115.
[103] 陈亮, 孙勇, 柳小明, 等. 青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J]. 岩石学报 , 2000, 16 (1) : 106-110. Chen Liang, Sun Yong, Liu Xiaoming, et al. Geochemistry of Derni Ophiolite and Its Tectonic Significance[J]. Acta Petrologica Sinica , 2000, 16 (1) : 106-110.
[104] 杨经绥, 史仁灯, 吴才来, 等. 柴达木盆地北缘新元古代蛇绿岩的厘定:罗迪尼亚大陆裂解的证据?[J]. 地质通报 , 2004, 23 (9/10) : 892-898. Yang Jingsui, Shi Rendeng, Wu Cailai, et al. Recognition of Neoproterozoic Ophiolite on the Northern Margin of the Qaidam Basin: Evidence of the Breakup of Rodinia?[J]. Geological Bulletin of China , 2004, 23 (9/10) : 892-898.
[105] 孙雨.东昆仑南缘布青山得力斯坦蛇绿岩地质特征, 形成时代及构造环境研究[D].西安:长安大学, 2010. Sun Yu. The Geological Characteristics, Age and Tectonic Environment Studies About Delishitan Ophiolites in Buqingshan, South of East Kunlun Mountains[D]. Xi'an: Chang'an University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11941-2010220537.htm
[106] 刘战庆.东昆仑南缘布青山构造混杂岩带地质特征及区域构造研究[D].西安:长安大学, 2011. Liu Zhanqing. Study on the Geological Characteristics and Tectonic of Buqingshan Melanges Belt, the South Margin of East Kunlun Mountains[D]. Xi'an: Chang'an University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10710-1012142432.htm
[107] 杨杰.东昆仑南缘布青山地区晚古生代洋壳型构造岩块地质特征及其构造属性研究[D].西安:长安大学, 2014. Yang Jie. Study on the Geological Characteristics and Tectonic Attribute of Late Paleozoic Oceanic Crust Type Rocks in Buqingshan Area, the South Margin of East Kunlun Mountains[D]. Xi'an: Chang'an University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014071002.htm
[108] 朱云海, 林启祥, 贾春兴, 等. 东昆仑造山带早古生代火山岩锆石SHRIMP年龄及其地质意义[J]. 中国科学: D辑 , 2005, 35 (12) : 1112-1119. Zhu Yunhai, Lin Qixiang, Jia Chunxing, et al. SHRIMP Age of Zircons in the Early Paleozoic Volcanic Rocks from the East Kunlun Orogenic Belt and Its Geological Significance[J]. Science in China:Series D: Earth Sciences , 2005, 35 (12) : 1112-1119.
[109] 宋泰忠, 赵海霞, 张维宽, 等. 祁漫塔格地区十字沟蛇绿岩地质特征[J]. 西北地质 , 2010, 43 (4) : 124-133. Song Taizhong, Zhao Haixia, Zhang Weikuan, et al. The Geological Features of Shizigou Ophiolites in Qimantage Area[J]. Northwestern Geology , 2010, 43 (4) : 124-133.
[110] 陈隽璐, 黎敦朋, 李新林, 等. 东昆仑祁漫塔格山南缘黑山蛇绿岩的发现及其特征[J]. 陕西地质 , 2004, 22 (2) : 35-46. Chen Juanlu, Li Dunpeng, Li Xinlin, et al. The Discovery and the Features of the Heishan Ophiolite in the South Margin of Qimantage Mountain, Eastern Kunlun[J]. Geology of Shaanxi , 2004, 22 (2) : 35-46.
[111] 胡霭琴, 郝杰, 张国新, 等. 新疆东昆仑地区新元古代蛇绿岩Sm-Nd全岩-矿物等时线定年及其地质意义[J]. 岩石学报 , 2004, 20 (3) : 457-462. Hu Aiqin, Hao Jie, Zhang Guoxin, et al. Whole-Rock and Minerals Sm-Nd Isochron Age of Early Neoproterozoic Ophiolites and Its Geological Significance in the Eastern Kunlun Area, Xinjiang, China[J]. Acta Petrologica Sinica , 2004, 20 (3) : 457-462.
[112] 兰朝利, 李继亮, 何顺利. 新疆东昆仑阿其克库勒湖西南缘蛇绿岩:铬铁矿证据及其构造环境探讨[J]. 地质与勘探 , 2005, 41 (1) : 38-42. Lan Zhaoli, Li Jiliang, He Shunli. Chromites Evidence for Ophiolite at the Southwestern Margin of Aqikekule Lake and Its Tectonic Environmental Discussions, Eastern Kunlun Mountain, Xinjiang[J]. Geology and Prospecting , 2005, 41 (1) : 38-42.
[113] 郑健康. 东昆仑区域构造的发展演化[J]. 青海地质 , 1992, 1 (1) : 15-25. Zheng Jiankang. Regional Tectonic Evolution of East Kunlun[J]. Qinghai Geology , 1992, 1 (1) : 15-25.
[114] 冯建赟.东昆仑都兰可可沙—科科可特镁铁—超镁铁质岩的地质特征, 形成时代及构造意义[D].西安:长安大学, 2010. Feng Jianyun. The Geological Characteristic, Age and Tectonic Significance of Kekesha-Kekekete Mafic-Ultramafic Rocks in Dulan County of the East Kunlun Region[D]. Xi'an: Chang'an University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11941-2010221172.htm
[115] 解玉月. 昆中断裂东段不同时代蛇绿岩特征及形成环境[J]. 青海地质 , 1998, 7 (1) : 27-36. Xie Yuyue. Features of Ophiolite with Different Period in the Eastern Sector of Middle Kunlun Fault and Its Original Environment[J]. Qinghai Geology , 1998, 7 (1) : 27-36.
[116] 李卫东, 彭湘萍, 康正文, 等. 东昆仑木孜塔格地区畅流沟蛇绿岩岩石地球化学特征及其构造意义[J]. 新疆地质 , 2003, 21 (3) : 263-268. Li Weidong, Peng Xiangping, Kang Zhengwen, et al. Petrographic Geochemical Features and Their Tectonic Significance of Ophiolite of Changliugou of Muzitage in East Kunlun[J]. Xinjiang Geology , 2003, 21 (3) : 263-268.
[117] 兰朝利, 吴峻, 李继亮, 等. 木孜塔格蛇绿岩时代的初步确定及其与邻区古特提斯(Paleotethys)关系探讨[J]. 自然科学进展:国家重点实验室通讯 , 2001, 11 (3) : 256-260. Lan Chaoli, Wu Jun, Li Jiliang, et al. Preliminary Timing of Muzitage Ophiolite and Its Relationship to Paleo-Tethys in the Adjacent Area[J]. Progress in Natural Science: State Key Laboratory of Communications , 2001, 11 (3) : 256-260.
[118] 边千韬, 罗小全, 李红生, 等. 阿尼玛卿山早古生代和早石炭—早二叠世蛇绿岩的发现[J]. 地质科学 , 1999, 34 (4) : 523-524. Bian Qiantao, Luo Xiaoquan, Li Hongsheng, et al. Discovery of Earth Paleozoic and Early Carboniferous-Early Permian Ophiolites in the A'nyemaquen, Qinghai Province, China[J]. Scientia Geologica Sinica , 1999, 34 (4) : 523-524.
[119] 计文化, 韩芳林, 王炬川, 等. 西昆仑于田南部苏巴什蛇绿混杂岩的组成、地球化学特征及地质意义[J]. 地质通报 , 2004, 23 (12) : 1196-1201. Ji Wenhua, Han Fanglin, Wang Juchuan, et al. Composition and Geochemistry of the Subashi Ophiplitic MÉ Lange in the West Kunlun and Its Geological Significance[J]. Geological Bulletin of China , 2004, 23 (12) : 1196-1201.
[120] 韩芳林.西昆仑其曼于特蛇绿混杂岩带及地质意义[D].北京:中国地质大学, 2003. Han Fanglin. Qimanyuter Ophiolite Melange and Its Tectonic Significance, Western Kunlun Mountain, NW China[D]. Beijing: China University of Geosciences, 2003. http://cdmd.cnki.com.cn/article/cdmd-11415-2003093147.htm
[121] 李天福, 张建新. 西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 岩石学报 , 2014 (8) : 2393-2401. Li Tianfu, Zhang Jianxin. Zircon LA-ICP-MS U-Pb Ages of Websterite and Basalt in Kudi Ophiplite and the Implication, West Kunlun[J]. Acta Petrologica Sinica , 2014 (8) : 2393-2401.
[122] 张传林, 于海锋, 沈家林, 等. 西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J]. 地质论评 , 2004, 50 (6) : 639-643. Zhang Chuanlin, Yu Haifeng, Shen Jialin, et al. Zircon SHRMP Age Detenmination of the Giant-Crystal Gabbro and Basalt in Kvda, Weat Kunlun: Dismembering of the Kvda Ophiolite[J]. Geological Review , 2004, 50 (6) : 639-643.
[123] 肖序常, 王军, 苏犁, 等. 再论西昆仑库地蛇绿岩及其构造意义[J]. 地质通报 , 2003, 22 (10) : 745-750. Xiao Xuchang, Wang Jun, Su Li, et al. A Further Discussion of the Kvda Ophiolite, West Kunlun, and Its Tectonic Significance[J]. Geological Bulletin of China , 2003, 22 (10) : 745-750.
[124] 张克信, 林启祥, 朱云海, 等. 东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义[J]. 中国科学: D辑:地球科学 , 2004, 34 (3) : 210-218. Zhang Kexin, Lin Qixiang, Zhu Yunhai, et al. New Paleontological Evidence About the Formation of Melange from the Eastern Segment of East Kunlun and Its Tectonic Significance[J]. Science in China:Series D:Earth Sciences , 2004, 34 (3) : 210-218.
[125] 姜春发, 朱松年. 构造迁移论概述[J]. 中国地质科学院院报 , 1992 (25) : 1-14. Jiang Chunfa, Zhu Songnian. Introduction to Tectonic Migration Theory[J]. Bulletin of the Ghinese Academy of Geological Sciences , 1992 (25) : 1-14.
[126] 陈能松, 孙敏, 王勤燕, 等. 东昆仑造山带昆中带的独居石电子探针化学年龄:多期构造变质事件记录[J]. 科学通报 , 2007, 52 (11) : 1297-1306. Cheng Nengsong, Sun Min, Wang Qinyan, et al. The Chemical Age of Monazite Electron Probe in Middle of East Kunlun Orogen: Records of Multi-Stage Tecto-Metamorphic Events[J]. Chinese Science Bulletin , 2007, 52 (11) : 1297-1306.
[127] 贾丽辉, 孟繁聪, 冯惠彬. 榴辉岩相峰期流体活动:来自东昆仑榴辉岩石英脉的证据[J]. 岩石学报 , 2014, 30 (8) : 2339-2350. Jia Lihui, Meng Fancong, Feng Huibin. Fluid Activity During Eclogite-Facies Peak Metamorphism: Evidence from a Quartz Vein in Eclogite in the East Kunlun, NW China[J]. Acta Petrologica Sinica , 2014, 30 (8) : 2339-2350.
[128] Meng F, Zhang J, Cui M. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance[J]. Gondwana Research , 2013, 23 (2) : 825-836. DOI:10.1016/j.gr.2012.06.007
[129] Meng F, Cui M, Wu X, et al. Heishan Mafic-Ultramafic Rocks in the Qimantag Area of Eastern Kunlun, NW China: Remnants of an Early Paleozoic Incipient Island Arc[J]. Gondwana Research , 2015, 27 (2) : 745-759. DOI:10.1016/j.gr.2013.09.023
[130] 祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报 , 2014, 30 (11) : 3345-3356. Qi Shengsheng, Song Shuguang, Shi Lianchang, et al. Discovery and Its Geological Significance of Early Paleozoic Eclogite in Xiarihamu-Suhaitu Area, Western Part of the East Kunlun[J]. Acta Petrologica Sinica , 2014, 30 (11) : 3345-3356.
[131] 张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报 , 1995 (2) : 101-114. Zhang Guowei, Zhang Zongqing, Dong Yunpeng. Nature of Main Tectono-Lithostratigraphic Units of the Qinling Orogen: Implications for the Tectonic Evolution[J]. Acta Petrologica Sinica , 1995 (2) : 101-114.
[132] Li Y, Yang J, Dilek Y, et al. Crustal Architecture of the Shangdan Suture Zone in the Early Paleozoic Qinling Orogenic Belt, China: Record of Subduction Initiation and Backarc Basin Development[J]. Gondwana Research , 2015, 27 (2) : 733-744. DOI:10.1016/j.gr.2014.03.006
[133] Dong Y P, Yang Z, Liu X M, et al. Neoproterozoic Amalgamation of the Northern Qinling Terrain to the North China Craton: Constraints from Geochronology and Geochemistry of the Kuanping Ophiolite[J]. Precambrian Research , 2014, 255 (1) : 77-95.
[134] 邓清禄, 杨巍然. 秦岭造山带早古生代"开""合"构造格局及加里东运动[J]. 地质科技情报 , 1996, 15 (2) : 45-50. Deng Qinglu, Yang Weiran. Early Palaeozoic Tectonics and Caledonian Movement in the Qinling Orogenic Belt[J]. Geological Science and Technology Information , 1996, 15 (2) : 45-50.
[135] 殷鸿福, 彭元桥. 秦岭显生宙古海洋演化[J]. 地球科学:中国地质大学学报 , 1995, 20 (6) : 605-611. Yin Hongfu, Peng Yuanqiao. Evolution of the Phanerozoic Paleo-Ocean of Qinling[J]. Earth Science: Jounal of China University of Geoscience , 1995, 20 (6) : 605-611.
[136] 李三忠, 赖绍聪, 张国伟, 等. 秦岭勉(县)略(阳)缝合带及南秦岭地块的变质动力学研究[J]. 地质科学 , 2003, 38 (2) : 137-154. Li Sanzhong, Lai Shaocong, Zhang Guowei, et al. Metamorphic Dynamics of the Mian-Lue Suture Zone of Qinling Orogenic Belt and the Southern Qinling Block[J]. Chinese Journal of Geology , 2003, 38 (2) : 137-154.
[137] 李三忠, 张国伟, 李亚林, 等. 秦岭造山带勉略缝合带构造变形与造山过程[J]. 地质学报 , 2002, 76 (4) : 469-483. Li Sanzhong, Zhang Guowei, Li Yalin, et al. Deformation and Orogeny of the Mian-Lue Suture Zone in the Qinling Orogenic Belt[J]. Acta Geological Sinica , 2002, 76 (4) : 469-483.
[138] Sun W D, Li S G, Sun Y, et al. Mid-Paleozoic Collision in the North Qinling: Sm-Nd, Rb-Sr and 40Ar/39Ar Ages and Their Tectonic Implications[J]. Journal of Asian Earth Sciences , 2002, 21 (1) : 69-76. DOI:10.1016/S1367-9120(02)00010-X
[139] 张宗清, 张国伟. 秦岭变质地层年龄及其构造意义[J]. 中国科学: D辑:地球科学 , 1996, 26 (3) : 216-222. Zhang Zongqing, Zhang Guowei. The Metamorphic Ages of Strata in Qinling and Its Tectonic Implication[J]. Science in China:Series D:Earth Sciences , 1996, 26 (3) : 216-222.
[140] Liu X, Li S Z, Suo Y H, et al. Tectonic Outline and Structural Styles of the Tongbai Collisional Orogen and Its Neighbors[J]. Acta Petrologica Sinica , 2010, 26 (4) : 1289-1302.
[141] Do ng, Y P, Zhang X N, Liu X M, et al. Propagation Tectonics and Multiple Accretionary Processes of the Qinling Orogen[J]. Journal of Asian Earth Sciences , 2015, 104 (15) : 84-98.
[142] Zhang Z, Li S Z, Cao H H, et al. Origin of the North Qinling Microcontinent and Proterozoic Geotectonic Evolution of the Kuanping Ocean, Central China[J]. Precambrian Research , 2015, 266 (1) : 179-193.
[143] 裴先治, 丁仨平, 李佐臣, 等. 西秦岭北缘关子镇蛇绿岩的形成时代:来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质学报 , 2007, 81 (11) : 1550-1561. Pei Xianzhi, Deng Saping, Li Zuochen, et al. LA-ICP-MS Zircon U-Pb Dating of the Gabbro from the Guanzizhen Ophiolite in the Northern Margin of the Western Qinling and Its Geological Significance[J]. Acta Geological Sinica , 2007, 81 (11) : 1550-1561.
[144] 李曙光. 大别山超高压变质岩折返机制与华北—华南陆块碰撞过程[J]. 地学前缘 , 2004, 11 (3) : 63-70. Li Shuguang. Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains and Continental Collision Process Between the North and South China Blocks[J]. Earth Science Frontiers , 2004, 11 (3) : 63-70.
[145] 董云鹏, 杨钊, 张国伟, 等. 西秦岭关子镇蛇绿岩地球化学及其大地构造意义[J]. 地质学报 , 2008, 82 (9) : 1186-1194. Dong Yunpeng, Yang Zhao, Zhang Guowei, et al. Geochemistry of the Ophiolite in the Guanzizhen Area, West Qinling and Its Tectonic Implications[J]. Acta Geological Sinica , 2008, 82 (9) : 1186-1194.
[146] 杨钊, 董云鹏, 柳小明, 等. 西秦岭天水地区关子镇蛇绿岩锆石LA-ICP-MS U-Pb定年[J]. 地质通报 , 2006, 25 (11) : 1321-1325. Yang Zhao, Dong Yunpeng, Liu Xiaoming, et al. LA-ICP-MS Zircon U-Pb Dating of Gabbro in the Guanzizhen Ophiolite, Tianshui, West Qinling, China[J]. Geological Bulletin of China , 2006, 25 (11) : 1321-1325.
[147] 李王晔.西秦岭—东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究:对特提斯洋演化的制约[D].合肥:中国科学技术大学, 2008. Li Wangye. Geochronology and Geochemistry of the Ophiolites and Island-Arc-Type Igneous Rocks in the Western Qinling Orogen and the Eastern Kunlun Orogeny: Implication for the Evolution of the Tethyan Ocean[D]. Hefei : University of Science and Technology of China, 2008. http://cdmd.cnki.com.cn/article/cdmd-10358-2008091811.htm
[148] 董云鹏, 张国伟, 杨钊, 等. 西秦岭武山E-MORB型蛇绿岩及相关火山岩地球化学[J]. 中国科学: D辑:地球科学 , 2007, 37 (A01) : 199-208. Dong Yunpeng, Zhang Guowei, Yang Zhao, et al. Wushan E-MORB Ophiolite in West Qinling and its Relevant Geochemical Features of the Volcanics[J]. Science in China :Series D:Earth Sciences , 2007, 37 (A01) : 199-208.
[149] Dong Y P, Genser J, Neubauer F, et al. U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China. Gondwana Res[J]. Gondwana Research , 2011, 19 (4) : 881-893.
[150] Dong Y P, Zhang G W, Hauzenberger C, et al. Palaeozoic Tectonics and Evolutionary History of the Qinling Orogen: Evidence from Geochemistry and Geochronology of Ophiolite and Related Volcanic Rocks[J]. Lithos , 2011, 122 (Sup.1/2) : 39-56.
[151] 杨军录, 冯益民, 潘晓平. 武山蛇绿岩的特征、同位素年代及其地质意义[J]. 前寒武纪研究进展 , 2001, 24 (2) : 98-106. Yang Junlu, Feng Yimin, Pan Xiaoping. Characteristics, Isotopic Age of Wushan Ophioliteand Its Geological Significantce[J]. Progress in Precambrian Research , 2001, 24 (2) : 98-106.
[152] 陈隽璐, 徐学义, 王洪亮, 等. 北秦岭西段早古生代埃达克岩地球化学特征及岩石成因[J]. 地质学报 , 2008, 82 (4) : 475-484. Chen Juanlu, Xu Xueyi, Wang Hongliang, et al. Geochemical Characteristics and Petrogenesis of Early Paleozoic Adakitic Rock in the West Segment of North Qingling[J]. Acta Geological Sinica , 2008, 82 (4) : 475-484.
[153] Wang M, Li C, Xie C M, et al. U-Pb Zircon Age, Geochemical and Lu-Hf Isotopic Constraints of the Southern Gangma Co Basalts in the Central Qiangtang, Northern Tibet[J]. Tectonophysics , 2015, 657 : 219-229. DOI:10.1016/j.tecto.2015.07.006
[154] 赵霞.北秦岭西段鹦鸽嘴蛇绿混杂岩地球化学特征及其构造意义[D].西安:西北大学, 2004. Zhao Xia. The Geochemistry of the Yinggezui Ophiolitic Melange in the West Northern Qinling Belt, and Its Tectonic Implication[D]. Xi'an: Northwest University, 2004. http://www.shangxueba.com/lunwen/v1434274.html
[155] Dong Y P, Wang R S, Zhou D W. Geochemistry and Genesis of Meta-Mafic-Ultramafic Rocks from Yushugou Region, North Margin of the South Tianshan Tectonic Belt, Western China[J]. Geochimica , 2001, 30 (6) : 559-568.
[156] 李源, 杨经绥, 裴先治, 等. 秦岭造山带早古生代蛇绿岩的多阶段演化:从岛弧到弧间盆地[J]. 岩石学报 , 2012, 28 (6) : 1896-1914. Li Yuan, Yang Jingsui, Pei Xianzhi, et al. A Modle for Multi-Stage of the Early Palaeozoic Danfeng Ophiolite in Qinling Orogen Belt: From Arc to Inter-Arc Basin[J]. Acta Petrologica Sinica , 2012, 28 (6) : 1896-1914.
[157] 陆松年, 李怀坤, 陈志宏. 塔里木与扬子新元古代热-构造事件特征, 序列和时代:扬子与塔里木连接(YZ-TAR)假设[J]. 地学前缘 , 2003, 10 (4) : 321-326. Lu Songnian, Li Huaikun, Chen Zhihong. Characteristics, Sequence and Ages of Neoproterozoic Thermo-Tectonic Events Between Tarim and Yangzi Blocks:A Hypothesis of Yangzi-Tarim Connection[J]. Earth Science Frontiers , 2003, 10 (4) : 321-326.
[158] 胡波.甘肃天水地区清水—张家川早古生代变质火山岩岩石地球化学特征及其构造意义[D].西安:长安大学, 2005. Hu Bo. Geochemical Characteristics of the Early Palaeozoic Meta-Volcanic Rocks from Qingshui-Zhangjiachuan in the Tianshui Area, Gansu, and Their Tectonic Significance[D]. Xi'an: Chang'an University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-11941-2006030053.htm
[159] Cui Z, Sun Y, Wang X. A Discovery of Radiolaria from Danfeng Ophiolites, North Qinling and Its Tectonic Significance[J]. Chinese Science Bulletin , 1996, 41 (11) : 916-919.
[160] 张宗清.南秦岭变质地层同位素年龄研究取得重大进展[C]//中国地质科学院地质研究所文集(27).北京:中国地质科学院地质研究所, 1994: 27-35. Zhang Zongqing. Advances in the Isotopic Age Study of Meta-Mrophic Stratigraphy in the South Qinling Orogeinc Belt, China[C]//Paper Collection of Institute of Geology of the Chinese Academy of Geological Sciences (27).Beijing: Institute of Geology Chinese Academy of Geological Sciences, 1994: 27-35.
[161] Liu L, Wang C, Chen D, et al. Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China[J]. Journal of Asian Earth Sciences , 2009, 35 (3/4) : 232-244.
[162] 王惠初, 陆松年, 莫宣学, 等. 柴达木盆地北缘早古生代碰撞造山系统[J]. 地质通报 , 2005, 24 (7) : 603-612. Wang Huichu, Lu Songnian, Mo Xuanxue, et al. An Early Paleozoic Collisional Orogen on the Northern Margin of the Qaidam Basin, Northwestern China[J]. Geological Bulletin of China , 2005, 24 (7) : 603-612.
[163] 宋述光, 牛耀龄, 张立飞, 等. 大陆造山运动:从大洋俯冲到大陆俯冲, 碰撞, 折返的时限:以北祁连山, 柴北缘为例[J]. 岩石学报 , 2009, 25 (9) : 2067-2077. Song Shuguang, Niu Yaoling, Zhang Lifei, et al. Time Constraints on Orogenesis from Oceanic Subduction to Conitnenatl Subduciton, Collision, and Exhumation: An Example from North Qilian and North Qiadam HP-UHP Belts[J]. Acta Petrologica Sinica , 2009, 25 (9) : 2067-2077.
[164] Song S, Niu Y, Su L, et al. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting During Exhumation in Response to Continental Collision[J]. Geochimica et Cosmochimica Acta , 2014, 130 (4) : 42-62.
[165] 吴才来, 杨经绥, 许志琴, 等. 柴达木盆地北缘古生代超高压带中花岗质岩浆作用[J]. 地质学报 , 2004, 78 (5) : 658-674. Wu Cailai, Yang Jingsui, Xu Zhiqin, et al. Granitic Magmatism on the Early Paleozoic UHP Belt of Northern Qaidam, NW China[J]. Acta Geological Sinica , 2004, 78 (5) : 658-674.
[166] 吴锁平.柴北缘古生代花岗岩类成因及其造山响应[D].北京:中国地质科学院, 2008. Wu Suoping. The Petrogenesis of Paleozoic Granitoids in the North Margin of Qaidam Basin and Their Orogenic Response[D]. Beijing: Chinese Academy of Geological Sciences, 2008. http://cdmd.cnki.com.cn/Article/CDMD-82501-2008177378.htm
[167] 郭进京. 柴北缘锡铁山地区滩间山群构造变形分析[J]. 前寒武纪研究进展 , 2000, 23 (3) : 147-152. Guo Jinjing. Structural Analysis of the Tanjianshan Group in the North Margin of Qaidam Block, China and Its Implication[J]. Progress in Precambrian Research , 2000, 23 (3) : 147-152.
[168] 张建新, 孟繁聪, 李金平. 柴达木北缘榴辉岩中的柯石英及其意义[J]. 科学通报 , 2009 (5) : 618-623. Zhang Jianxin, Meng Fancong, Li Jinping. The Coesite of Eclogites and Its Significance on the Northern Margin of the Qaidam Basin[J]. Chinese Science Bulletin , 2009 (5) : 618-623.
[169] 张建新, 杨经绥. 柴北缘榴辉岩的峰期和退变质年龄:来自U-Pb及Ar-Ar同位素测定的证据[J]. 地球化学 , 2000, 29 (3) : 217-222. Zhang Jianxin, Yang Jingsui. Peak and Retrograde Age of Eclogites at the Northern Margin of Qaidam Basin, Northwestern China: Evidences from U-Pb and Ar-Ar Dates[J]. Geochimica , 2000, 29 (3) : 217-222.
[170] Song S G, Zhang L F, Niu Y L, et al. Evolution from Oceanic Subduction to Continental Collision: A Case Study of the Northern Tibetan Plateau Inferred from Geochemical and Geochronological Data[J]. Journal of Petrology , 2006, 47 (3) : 435-455.
[171] Zhang J X, Meng F C, Wan Y S. A Cold Early Palaeozoic Subduction Zone in the North Qilian Mountains, NW China: Petrological and U-Pb Geochronological Constraints[J]. Journal of Metamorphic Geology , 2007, 25 (3) : 285-304. DOI:10.1111/jmg.2007.25.issue-3
[172] Mattinson C G, Wooden J L, Liou J G, et al. Age and Duration of Eclogite-Facies Metamorphism, North Qaidam HP/UHP Terrane, Western China[J]. American Journal of Science , 2006, 306 (9) : 683-711. DOI:10.2475/09.2006.01
[173] Chen D L, Sun Y, Liu L. The Metamorphic Ages of the Country Rocks of the Yukahe Eclogites in the Northern Margin of Qaidam Basin and Its Geological Significance[J]. Earth Science Frontiers , 2007, 14 (1) : 108-116. DOI:10.1016/S1872-5791(07)60005-0
[174] 宋述光, 张聪, 李献华, 等. 柴北缘超高压带中锡铁山榴辉岩的变质时代[J]. 岩石学报 , 2011, 27 (4) : 1191-1197. Song Shuguang, Zhang Cong, Li Xianhua, et al. HP/UHP Metamorphic Time of Eclogite in the Xitieshan Terrane, North Qaidam UHPM Belt, NW China[J]. Acta Petrologica Sinica , 2011, 27 (4) : 1191-1197.
[175] 郝国杰, 陆松年, 李怀坤, 等. 柴北缘沙柳河榴辉岩岩石学及年代学初步研究[J]. 前寒武纪研究进展 , 2001, 24 (3) : 154-162. Hao Guojie, Lu Songnian, Li Huaikun, et al. Determimation and Significance of Eclogite on Shaliuhe, in the North Margin of the Qaidam Basin[J]. Progress in Precambrian Research , 2001, 24 (3) : 154-162.
[176] 朱小辉, 陈丹玲, 刘良, 等. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义[J]. 岩石学报 , 2014, 30 (3) : 822-834. Zhu Xiaohui, Chen Danling, Liu Liang, et al. Geochronology, Geochemistry and Significance of the Early PaleozoicBack-Arc Type Ophiolite in Lüliangshan Area, North Qaidam[J]. Acta Petrologica Sinica , 2014, 30 (3) : 822-834.
[177] Zhu D C, Zhao Z D, Niu Y, et al. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau[J]. Gondwana Research , 2013, 23 (4) : 1429-1454. DOI:10.1016/j.gr.2012.02.002
[178] 胡培远, 李才, 李林庆, 等. 藏北羌塘中部早古生代蛇绿岩堆晶岩中斜长花岗岩的地球化学特征[J]. 地质通报 , 2009, 28 (9) : 1297-1308. Hu Peiyuan, Li Cai, Li Linqing, et al. Geochemical Characteristics of Early Palaeozoic Plagioclase Granite from Ophiolitic Cumulate in Central Qiangtang, Northern Tibet, China[J]. Geological Bulletin of China , 2009, 28 (9) : 1297-1308.
[179] 张修政.羌塘地区早古生代构造演化新认识:来自香桃湖志留纪基性高压麻粒岩的岩石学、地球化学以及年代学证据[D].长春:吉林大学, 2014. Zhang Xiuzheng. Petrology, Geochemistry and Geochronology of Silurian High-Pressure Granulites from Central Qiangtang, Tibet: Constraints on a New Tectonic Model for the Early Paleozoic Evolution of Qiangtang[D]. Changchun: Jilin University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267892.htm
[180] 翟庆国, 李才, 黄小鹏. 西藏羌塘中部古特提斯洋残片?:来自果干加年山变质基性岩地球化学证据[J]. 中国科学: D辑:地球科学 , 2007, 37 (7) : 866-872. Zhai Qingguo, Li Cai, Huang Xiaopeng. The Crustal Fragment of Paleo-Tethys Ocean in Central Qiangtang, Tibet?:Geochemical Evidence from Metamorphic Mafic Rock in the Guoganshan Moutains[J]. Science in China: Series D: Earth Sciences , 2007, 37 (7) : 866-872.
[181] 王立全, 潘桂棠, 李才, 等. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄:兼论原-古特提斯洋的演化[J]. 地质通报 , 2008, 27 (12) : 2045-2056. Wang Liquan, Pan Guitang, Li Cai, et al. SHRIMP U-Pb Zircon Dating of Eopaleozoic Cumulate in Guoganjianian Mt from Central Qiangtang Area of Northern Tibet:Considering the Evolvement of Proto-and Paleo-Tethys[J]. Geological Bulletion of China , 2008, 27 (12) : 2045-2056.
[182] 吴彦旺, 李才, 徐梦婧, 等. 藏北羌塘中部果干加年山石炭纪蛇绿岩地球化学特征及LA-ICP-MS锆石U-Pb年龄[J]. 地质通报 , 2014, 33 (11) : 1682-1689. Wu Yanwang, Li Cai, Xu Mengjing, et al. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Geochronology of Guogangjianan Carboniferous Ophiolite in Central Qiangtang, the Tibetan Plateau[J]. Geological Bulletion of China , 2014, 33 (11) : 1682-1689.
[183] 王生云.西藏羌塘中部果干加年山地区早二叠世蛇绿岩研究[D].长春:吉林大学, 2010. Wang Shengyun. Study on the Early Permian Ophiolite in Guoganjianian Mountain Area, the Central Qiangtang in Tibet[D]. Changchun: Jilin University, 2010. http://www.shangxueba.com/lunwen/v386930.html
[184] 李才, 翟刚毅, 王立全, 等. 认识青藏高原的重要窗口:羌塘地区近年来研究进展评述(代序)[J]. 地质通报 , 2009, 28 (9) : 1169-1177. Li Cai, Zhai Gangyi, Wang Liquan, et al. An Important Window for Understanding the Qinghai-Tibet Plateau:A Review on Research Progress in Recent Years of Qiangtang Area, Tibet, China[J]. Geological Bulletion of China , 2009, 28 (9) : 1169-1177.
[185] 胡培远, 李才, 吴彦旺, 等. 藏北羌塘中部存在志留纪洋盆:来自桃形湖蛇绿岩中斜长花岗岩的锆石U-Pb年龄证据[J]. 地质通报 , 2014, 33 (11) : 1651-1661. Hu Peiyuan, Li Cai, Wu Yanwang, et al. The Silurian Tethyan Ocean in Central Qiangtang, Northern Tibet: Constraints from Zircon U-Pb Ages of Plagiogranites Within the Taoxinghu Ophiolite[J]. Geological Bulletin of China , 2014, 33 (11) : 1651-1661.
[186] 彭智敏, 耿全如, 王立全, 等. 青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄, Hf同位素特征及地质意义[J]. 科学通报 , 2014 (26) : 2621-2629. Peng Zhimin, Geng Quanru, Wang Liquan, et al. Zircon U-Pb Ages and Hf Isotopic Characteristics of Granitic Gneiss from Bunsumco, Central Qiangtang, Qinghai-Tibet Plateau[J]. Chinese Science Bulletin , 2014 (26) : 2621-2629.
[187] Xu X Z, Yang J S, Li T F, et al. SHRIMP U-Pb Ages and Inclusions of Zircons from the Sumdo Eclogite in the Lhasa Block, Tibet, China[J]. Geological Bulletin of China , 2007, 26 (10) : 1340-1355.
[188] Jian P, Liu D, Kröner A, et al. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (II) Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province[J]. Lithos , 2009, 113 (3) : 767-784.
[189] 王保弟, 王立全, 潘桂棠, 等. 昌宁—孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义[J]. 科学通报 , 2013, 58 (4) : 344-354. Wang Baodi, Wang Liquan, Pan Guitang, et al. Zircon Geochronology of the Early Paleozoic Gabbro from the Nantinghe Belt Between Changning-Menglian and Its Geological Significance[J]. Chinese Science Bulletin , 2013, 58 (4) : 344-354.
[190] 赖绍聪, 秦江锋, 李学军, 等. 昌宁—孟连缝合带干龙塘—弄巴蛇绿岩地球化学及Sr-Nd-Pb同位素组成研究[J]. 岩石学报 , 2010, 26 (11) : 3195-3205. Lai Shaocong, Qin Jiangfeng, Li Xuejun, et al. Geochemistry and Sr-Nd-Pb Istopic Features of the Ganlongtang-Nongba Ophiolite from the Chang-ning-Menglian Suture Zone[J]. Acta Petrologica Sinica , 2010, 26 (11) : 3195-3205.
[191] Zhang M, Min K H, Wu Q, et al. A New Method to Determine the Upper Boundary Condition for a Permafrost Thermal Model: An Example from the Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes , 2012, 23 (4) : 301-311. DOI:10.1002/ppp.v23.4
[192] Cawood, P A, Buchan C. Linking Accretionary Orogenesis with Supercontinent Assembly[J]. Earth-Science Reviews , 2007, 82 (3/4) : 217-256.
[193] Fitzsimons I C W. Proterozoic Basement Provinces of Southern and Southwestern Australia, and Their Correlation with Antarctica[J]. Geological Society of London Special Publications , 2003, 206 (1) : 93-130. DOI:10.1144/GSL.SP.2003.206.01.07
[194] McElhinny M W, Powell C M A, Pisarevsky S A. Paleozoic Terranes of Eastern Australia and the Drift History of Gondwana[J]. Tectonophysics , 2003, 362 (1) : 41-65.
[195] Powell C M A. Tectonic Relationship Between the Late Ordovician and Late Silurian Palaeogeographies of Southeastern Australia[J]. Journal of the Geological Society of Australia , 1983, 30 (3/4) : 353-373.
[196] Coney P J, Edwards A, Hine R, et al. The Regional Tectonics of the Tasman Orogenic System, Eastern Australia[J]. Journal of Structural Geology , 1990, 12 (Sup.5/6) : 519-543.
[197] Coney P J. The Lachlan Belt of Eastern Australia and Circum-Pacific Tectonic Evolution[J]. Tectonophysics , 1992, 214 (1) : 1-25.
[198] Glen R A. Thrust, Extensional and Strike-Slip Tectonics in an Evolving Palaeozoic Orogen:A Structural Synthesis of the Lachlan Orogen of Southeastern Australia[J]. Tectonophysics , 1992, 214 (1/2/3/4) : 341-380.
[199] Gray D R, Foster D A. Orogenic Concepts, Application and Definition, Lachlan Fold Belt, Eastern Australia[J]. American Journal of Science , 1997, 297 (9) : 859-891. DOI:10.2475/ajs.297.9.859
[200] Gray D R, Foster D A. Character and Kinematics of Faults Within the Turbidite-Dominated Lachlan Orogen: Implications for Tectonic Evolution of Eastern Australia[J]. Journal of Structural Geology , 2001, 23 (23) : 523-528.
[201] Waight T E, Weaver S D, Ireland T R, et al. Field Characteristics, Petrography, and Geochronology of the Hohonu Batholith and the Adjacent Granite Hill Complex, North Westland, New Zealand[J]. New Zealand Journal of Geology and Geophysics , 1997, 40 (1) : 1-17. DOI:10.1080/00288306.1997.9514736
[202] OfflerR, MurrayC. Devonian Volcanics in the New England Orogen: Tectonic Setting and Polarity[J]. Gondwana Research , 2011, 19 (3) : 706-715. DOI:10.1016/j.gr.2010.11.003
[203] Aitchison J C, Ireland T R, Blake M C, et al. 530 Ma Zircon Age for Ophiolite from the New England Orogen Oldest Rocks Known from Eastern Australia[J]. Geology , 1992, 20 (2) : 125-128. DOI:10.1130/0091-7613(1992)020<0125:MZAFOF>2.3.CO;2
[204] Cawood P A, Leitch E C. Going Down: Subduction Initiation in the Proto-Pacific and Relationship to End Neoproterozoic Global Events[J]. Journal of African Earth Sciences , 1998, 27 (1) : 42-42.
[205] Li Z X, Powell C M A. An Outline of the Palaeogeographic Evolution of the Australasian Region Since the Beginning of the Neoproterozoic[J]. Earth Science Reviews , 2001, 53 (3) : 237-277.
[206] Phillips G, Offler R. Contrasting Modes of Eclogite and Blueschist Exhumation in a Retreating Subduction System: The Tasmanides, Australia Contrasting Modes of Eclogite and Blueschist Exhumation in a Retreating Subduction System: The Tasmanides, Australia[J]. Gondwana Research , 2011 (19) : 800-811.
[207] Vega-Granillo R, Sergio S S, Saúl H U, et al. U-Pb Detrital Zircon Data of the Rio Fuerte Formation (NW Mexico): Its Peri-Gondwanan Provenance and Exotic Nature in Relation to Southwestern North America[J]. Journal of South American Earth Sciences , 2008, 26 (4) : 343-354. DOI:10.1016/j.jsames.2008.08.011
[208] Candan O, Koralay O E, Topuz G, et al. Late Neoproterozoic Gabbro Emplacement Followed by Early Cambrian Eclogite-Facies Metamorphism in the Menderes Massif (W. Turkey): Implications on the Final Assembly of Gondwana[J]. Gondwana Research , 2015, 27 (4) : 1342-1358.
[209] Wegener A. Die Entstehung Der Kontinente[J]. Geologische Rundschau , 1912, 3 (4) : 276-292. DOI:10.1007/BF02202896
[210] Torsvik T H, Cocks L R M. Gondwana from Top to Base in Space and Time[J]. Gondwana Research , 2013, 24 (3/4) : 999-1030.
[211] Mitchell R N, Kilian T M, Evans D A D. Supercontinent Cycles and the Calculation of Absolute Palaeolongitude in Deep Time[J]. Nature , 2012, 482 (7384) : 208-211. DOI:10.1038/nature10800
http://dx.doi.org/10.13278/j.cnki.jjuese.201604102
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

李三忠, 杨朝, 赵淑娟, 李玺瑶, 索艳慧, 郭玲莉, 余珊, 戴黎明, 李少俊, 牟墩玲
Li Sanzhong, Yang Zhao, Zhao Shujuan, Li Xiyao, Suo Yanhui, Guo Lingli, Yu Shan, Dai Liming, Li Shaojun, Mu Dunling
全球早古生代造山带(Ⅱ):俯冲-增生型造山
Global Early Paleozoic Orogens (Ⅱ): Subduction-Accretionary-Type Orogeny
吉林大学学报(地球科学版), 2016, 46(4): 968-1004
Journal of Jilin University(Earth Science Edition), 2016, 46(4): 968-1004.
http://dx.doi.org/10.13278/j.cnki.jjuese.201604102

文章历史

收稿日期: 2016-03-16

相关文章

工作空间