文章快速检索  
  高级检索
全球早古生代造山带(Ⅰ):碰撞型造山
李三忠1,2,3, 杨朝1,2, 赵淑娟1,2, 李玺瑶1,2, 郭玲莉1,2, 余珊1,2, 刘鑫1,2, 索艳慧1,2, 兰浩圆1,2     
1. 中国海洋大学海洋地球科学学院, 山东 青岛 266100 ;
2. 海底科学与探测技术教育部重点实验室, 山东 青岛 266100 ;
3. 青岛海洋科学与技术国家实验室海洋地质功能实验室, 山东 青岛 266100
摘要: 自新元古代罗迪尼亚超大陆裂解以来,早古生代是板块构造运动活跃时期,具有板块运动速度较快、构造格局不稳定、块体之间相互作用复杂多变等特征,造山带演化极其复杂,导致全球早古生代古大陆重建现今仍较模糊。特别是,早古生代末450~400 Ma存在全球性准同时的造山运动,已经出现俯冲增生、碰撞、陆内3种类型的全球尺度造山带。本文侧重论述全球早古生代碰撞类型造山带的特征,总结典型碰撞造山带最新的年代学、变质、变形和岩浆作用特征及其时空分布。早古生代全球碰撞型造山带主要分布在南半球的泛非造山带和北半球的加里东期造山带,分别与南方冈瓦纳大陆和北方劳俄古陆的初步集结密切相关,早古生代碰撞造山主要体现在大陆块之间的碰撞作用为特征。这些早古生代碰撞造山带具有近似的碰撞年龄,大致相同的演化过程。其中,南方大陆主体碰撞完成于540 Ma,而北方大陆主体集结完成于420 Ma,从全球构造意义上可能意味着全球一个420~400 Ma的超大陆初步形成。
关键词: 早古生代     碰撞造山     加里东运动     泛非运动     冈瓦纳大陆     劳俄大陆    
Global Early Paleozoic Orogens (Ⅰ): Collision-Type Orogeny
Li Sanzhong1,2,3, Yang Zhao1,2, Zhao Shujuan1,2, Li Xiyao1,2, Guo Lingli1,2, Yu Shan1,2, Liu Xin1,2, Suo Yanhui1,2, Lan Haoyuan1,2     
1. College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China ;
2. Key Lab of Submarine Geosciences and Prospecting Technique, Ministry of Education, Qingdao 266100, Shandong, China ;
3. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, Shandong, China
Supported by Key Project of NSFC (Grants 41190072, 41190070,U1606401); NSFC for Distinguished Young Scientists (41325009); Taishan Scholor Program and Aoshan Elite Scientist Plan to Prof. Sanzhong Li
Abstract: Since the Neoproterozoic rifting of the supercontinent Rodina, Early Paleozoic entered an active period of plate tectonics. Because plate movement speed became faster, the plate configurations are variable and instabile, the interactions among blocks are complex and changeable. the evolution of orogenic belts are also extremely complex, resulting in that global Early Paleozoic paleo-continent reconstruction today are still ambiguous. In particular, there is a global quasi-simultaneous orogeny at the end of the Early Paleozoic (450-400 Ma), there are three types of global-scale orogenic belts, which are subduction-related acretionary, collisional and intracontinental. This paper focuses on Early Paleozoic collision-type orogenic belts in the globe. It is discussed and summarized for the new geochronological and metamorphic, deformation and magmatism and their temporal and spatial distribution of the typical collisional orogenic belts. Early Paleozoic global collision-type orogenic belts mainly include the Pan-African orogenic belts of the southern hemisphere and the Caledonian orogenic belts of the northern hemisphere, respectively. They are closely related with preliminary assemblies of the Southern Gondwana and the Northern Laurussia. The Early Paleozoic collisional orogeny is mainly characterized by the collisions between large-scale continental blocks. These Early Paleozoic collisional orogenic belts have an approximate collision age, roughly undergoing the same evolutionary process, which the main part of the continent-continent collision for the southern continents completed in 540 Ma, and the main part of the northern continents assembled in 420 Ma. In the global tectonic significance it may means the initial formation of a global supercontinent of 420-400 Ma.
Key words: Early Paleozoic     collisional orogeny     Caledonian orogeny     Pan-African orogeny     Gondwanaland     Laurussian continent    

0 引言

早古生代处于一特殊的地史时期,是新元古代罗迪尼亚(Rodinia)超大陆裂解和晚古生代潘吉亚超大陆(Pangea,也有人称为盘古超大陆)聚合的重要承接时期。罗迪尼亚超大陆裂解后,陆块数量增多,尤以微陆块众多,主要板块或作为整体或独自进行运动,各种尺度的板块运动进入活跃阶段。其清晰的演化过程及洋—陆格局重建是厘定板块构造旋回、深刻认识板块旋回机制的关键环节。超大陆聚合的研究主要立足于板块的古地磁、造山带增生-碰撞历史两大方面[1],由此可以恢复和制约不同板块的运动轨迹及其聚合历史。碰撞造山是离散板块的一种重要聚集方式。前人对板块重建的研究也揭示了全球尺度碰撞造山带,造山带对比和重建可以揭示陆块的聚集过程,如2.1~1.8 Ga古元古代造山带全球对比,揭示了Columbia超大陆的聚集[2-3]; 1.2~1.0 Ga新元古代不同陆块上残存的Grenville造山带的统一重建, 揭示了Rodinia超大陆的集结[4]。而大量地质事实揭示,新元古代晚期—早古生代期间,同样发生了全球性造山运动,全球板块经历的重大构造事件使洋—陆构造格局发生了巨变,陆块主体经历了离散状态到汇聚状态的转变,板块构造运动复杂多样,出现具有全球准同时性的俯冲增生、碰撞、陆内3种造山类型,如北方大陆聚合的加里东碰撞造山带、南方大陆聚合的泛非碰撞造山带、外缘增生造山带、古亚洲洋南部洋盆俯冲消减和微陆块拼合增生导致的天山增生造山带、原特提斯洋中华南陆块内部的华夏和扬子微陆块之间的陆内造山带[5-6]。因而,也有人提出过早古生代存在超大陆的可能。为了深入认识碰撞型造山在早古生代的特殊性和重要性,因此,本文系统收集和整理了全球碰撞造山带最新资料,下文分区域和关联性进行阐述,试图基于全球新元古代晚期—早古生代碰撞造山带及其对比研究,来探讨其在全球的早古生代板块重建和超大陆旋回探索中的意义,侧重大板块间的相互作用研究。

1 环北大西洋—北冰洋加里东造山带

现今的北大西洋由早古生代的亚匹特斯洋(Iapetus)演化而来。亚匹特斯洋盆于~420 Ma完全闭合,形成加里东造山带。中生代晚期北大西洋打开,导致加里东造山带现今分布于北大西洋东、西两岸。该区域的陆块主要有包括北美和格陵兰板块的劳伦古陆、波罗的陆块、阿瓦隆尼亚(Avalonia)微陆块或地体群、巴伦支海微陆块等(图 1)。环北大西洋—北冰洋沿岸是加里东造山带研究的起源地,亚匹特斯洋闭合,导致陆-陆碰撞,形成的加里东造山带被前人称为经典加里东造山带。除了经典加里东造山带外,该区域在波兰—德国北部的中欧地区还发育范围相对较窄的中欧缝合带,性质与经典加里东造山带有所不同,为微陆块与大陆块碰撞所致。

加里东造山带:①东格陵兰加里东造山带; ②斯堪的纳维亚加里东造山带; ③Svalbard加里东造山带; ④英国加里东造山带; ⑤中欧缝合带.部分构造线:BFZ.Billefjorden剪切带; ESZ.Eolussletta剪切带; 中欧缝合带(TESZ):西段S-TZ(Sorgenfrei-Tornquistzone), 东段T-TZ(Tornquist-Teisseyre); WGR.西部片麻岩区. 图 1 环北冰洋—北大西洋加里东造山带 Figure 1 Circum Arctic-North Atlantic Ocean Caledonides

通过对一系列碰撞标志的最新年代学数据(表 1)统计分析,经典加里东造山带(图 1)具有准同时碰撞造山特征:东格陵兰加里东造山带位于劳伦古陆(也称陆块、大陆)格陵兰东北部,陆-陆碰撞造山发生于439~408 Ma;斯堪的纳维亚造山带位于波罗的陆块的挪威西部,陆-陆碰撞造山发生于445~410 Ma;斯瓦尔巴特(Svalbard)造山带位于波罗的陆块以北的现今巴伦支海板块边缘(早古生代时为巴伦支海陆块),碰撞造山发生于475~420 Ma;英国西北部的加里东造山带,其地体的亲缘性较复杂,为阿瓦隆尼亚微陆块、岛弧、劳伦古陆以及波罗的陆块之间的复杂微陆块-岛弧-大陆块增生-碰撞造山带,造山时限为490~390 Ma;中欧加里东期缝合带,主要分布于北德国—波兰、丹麦以及法国一带,代表了阿瓦隆尼亚微陆块与波罗的陆块之间通奎斯特洋(Tornquist)的闭合,发生时限为450~440 Ma;阿帕拉契亚造山带位于北美板块东缘(图 2),在早古生代的490~410 Ma时间段内表现为北美克拉通与岛弧、阿瓦隆尼亚、卡罗莱纳(Carolina)、卡多姆、Meguma等微陆块的增生碰撞造山。

表 1 东格陵加里东造山带特征 Table 1 Features of East Greenland Caledonides
造山带岩性采样点所属地体年龄/Ma测年方法参考文献
东格陵兰陆-
陆碰撞造山带,
作用陆块:
劳伦古陆和
波罗的陆块
榴辉岩Liverpool land
(造山带南部)
Tvaerdal杂岩409~403U-Pb[7]
Jaettedal杂岩438~435U-Pb[7]
Huny Inlet杂岩432~417U-Pb[7]
Danmarkshavn
(造山带北部)
格陵兰北部榴辉岩省439Sm-Nd[8]
405~370Sm-Nd[8]
377SHRIMP[8]
414~393[9]
360(UHP)[9]
云母(角闪岩相)Danmarkshavn格林兰北部榴辉岩省376~330Rb-Sr[8]
S型花岗岩Kong Oscar Fojord930[9]
435[9]
同碰撞浅色
花岗岩体
Fjord Region
(N72rd R)
425[9]
钙碱性花岗岩Liverpool landHurry Inlet446[10]
深成岩地体438[10]
Hodal-Storefjord426~424[10]
侵入体
据文献[11]改编。 图 2 加里东造山带主要地体复原概图(A)和阿帕拉契亚造山带(B) Figure 2 Distribution of main terranes of Caledonides(A); Appalachian orogen(B)
1.1 东格陵兰加里东造山带

东格陵兰加里东造山带位于格陵兰半岛东部,呈NE走向,延伸范围70°N到82°N (图 1),长约1 300 km,地壳垂向增厚达42~44 km,发育大规模的褶皱推覆体、逆冲断层,是由劳伦古陆和波罗的陆块左旋斜向汇聚造成的,而后在早泥盆世发生左旋张扭作用[12-13],进入造山后伸展阶段。造山带的西部受加里东期造山运动影响微弱,但有构造窗出现,前陆盆地局部也出露花岗岩,出露的基底显示造山带基底主要为新太古代和古元古代长英质正片麻岩[9],北段基底年代稍晚于南段,并且出露大量碱性花岗岩[14-15]

格陵兰东部经历多次开合过程,中元古代和中生代为裂谷环境,古元古代和早古生代为造山环境。造山带南部广泛发育新元古代磨拉石建造的Eleonore Bay群变沉积岩,Tillite群的变质碎屑岩、冰碛岩,上部为被动陆缘沉积的寒武—奥陶纪碳酸盐岩,可能与亚匹特斯洋的打开有关[16-17]。早古生代地层发生褶皱,局部地区变形强烈,加里东期碰撞花岗岩发育并经历了广泛的高级变质作用。中生代后北大西洋打开,出现大量大洋盆性质的玄武质火山岩[16-18]。造山带东北部主要出露新元古代—志留纪沉积岩以及古元古代—中元古代沉积岩和玄武岩,说明劳伦古陆造山带东北部在中元古代为裂谷环境,Nathorst Land群沉积岩卷入了加里东造山运动,发生428 Ma的变质作用[19]。东格陵兰褶皱带发育425 Ma的同构造熔融事件[20]

Dronning Louise Land构造窗为该地区重要的加里东变形区,Storstrommen左旋剪切带(SSZ)将其与东部海岸沉积盆地分隔开,一条南北向的俯冲带将该构造窗分成加里东期变形强弱不同的东西两部分,即东部强、西部弱[21]。位于造山带中部的Central Fjord地区在加里东期受E—W向的挤压收缩,中地壳物质于425 Ma发生南北向的同构造侧向挤出,伴随大量南北轴向的褶皱,主要的断层在424 Ma由造山后垮塌或同造山伸展作用重新活化[20, 22]。总体上,该带发育439~414 Ma、409~360 Ma两期榴辉岩,晚志留世的榴辉岩相变质与同时期的S型花岗岩相对应,含蓝晶石的超高压榴辉岩表明变质程度从高压变质转变为超高压变质,说明了东格陵兰从俯冲到碰撞经历了长时间的进变质作用(表 1)。

1.2 斯堪的纳维亚加里东造山带

斯堪的纳维亚加里东造山带位于波罗的陆块西缘,最宽处约350 km。可将其分为原地地体和下部、中部、上部、顶部4个推覆体[23-24](图 1)。中部和下部地体包括古生代结晶岩席和新元古代硅质碎屑岩,代表波罗的板块的基底和向海部分的沉积岩。上部和顶部的地体包括新元古代—古生代沉积岩、火山弧岩浆杂岩和蛇绿混杂岩;其中,上部地体由波罗的板块的最外缘和Iapetus残留洋壳组成,顶部地体沉积序列和波罗的板块明显不同,C和Sr同位素地球化学特征表明其为劳伦古陆的碎块,早期发育倾向NW的逆冲断层[24-27]

中部地体的Juton推覆体主要由陆壳组成,于志留纪南东向推覆于波罗的陆块之上,两者之间以新元古代—早古生代滑脱构造带分隔开。北倾的S型花岗岩脉显示推覆作用发生年龄约为427 Ma[28],滑脱构造带的千枚岩Ar-Ar年龄显示402~394 Ma逆冲挤压转变为造山垮塌阶段的拉伸构造[29]。上部地体Köli推覆体在晚Arenig阶之前就位到波罗的陆块边缘之上,MORB型Vågåmo蛇绿岩与波罗的板块的粗碎屑岩和结晶岩以断层接触,含485~464 Ma波罗的和劳伦古陆混合动物群化石的砾岩层呈角度不整合覆盖其上[30-31]。而上部地体的Støren和Meråker推覆体发育早奥陶世493~480 Ma代表洋中脊和岛弧的铁镁质—中酸性火成岩,含443~428 Ma笔石类化石的浊积岩。

斯堪的纳维亚造山带的岩石特征如表 2。该造山带发育一条蛇绿混杂岩带,蛇绿岩代表的洋盆年龄大致为新元古代晚期—早奥陶世早期,487 Ma SSZ型枕状玄武岩和493~480 Ma岛弧火山岩表明亚匹特斯洋于晚寒武—早奥陶世开始俯冲,486~485 Ma的混合动物群说明劳伦古陆和波罗的陆块中间的亚匹特斯洋已经消减到很小的范围了。榴辉岩分布广泛,变质年龄在505~391 Ma之间,温压变化范围大可大致分为3期:早中奥陶世的冷俯冲型榴辉岩;晚奥陶世弧-陆碰撞相关的含蓝晶石超高压榴辉岩,且具有北早南新的特点;中晚志留世—中晚泥盆世的陆-陆碰撞超高压榴辉岩。西部片麻岩区(Western Gneiss Region, WGR, 图 1)的超高压岩石经历了400~380 Ma的长期折返过程[42]。同时,造山带内晚志留世的S型花岗岩发育,推覆体出露晚寒武—早奥陶世的岛弧火山岩。因此,该造山带经历了自北往南的剪刀式斜向弧-陆碰撞和陆-陆碰撞。

表 2 斯堪的纳维亚加里东造山带特征 Table 2 Features of Scandivinian Caledonides
岩性采样点所属地体年龄/Ma测年方法参考文献
同碰撞层状铁镁质侵入岩Trondheim以南上部地体侵入体426[32]
拉斑玄武岩Sørøy岛最南端中部地体(Hasvik层状侵入体)700[32]
层状侵入体Stavanger东南Bjerkreim-Sokndal层状侵入体930~920[32]
S型花岗岩脉中部地体Juton推覆体427U-Pb TIMS[32]
榴辉岩Norrtotten上部地体的Seve推覆体北部505~482(UHP)Sm-Nd/U-Pb[33]
491Ar-Ar[34]
Jämtland上部地体的Seve推覆体南部460~445(UHP)Sm-Nd/U-Pb[35]
下部地体北部的Jæren推覆体470~455Lu-Hf/Sm-Nd[35]
下部地体南部的Tromø推覆体452(UHP)U-Pb[35]
下部地体的西部片麻岩区域422~369(UHP)Lu-Hf/Sm-Nd[36]
415~397U-Pb zircon[27]
415(柯石英相)U-Pb[27]
400~380Ar-Ar[37]
Lindas推覆体460~430[37]
辉绿岩(MORB?)上部地体的Seve推覆体573Sm-Nd[38]
N-MORB型枕状玄武岩(SSZ)上部地体(蛇绿混杂岩)487U-Pb[39]
蛇绿岩上部地体Köli推覆体447~443[39]
斜长花岗岩(SSZ)Trondheim地区487~481[40]
蓝片岩西部片麻岩区Trondheim地体早—中奥陶世[41]
岛弧火山岩上部地体的Meråker推覆体493~480[39]
未成熟弧岩浆上部地体(Fongen-Hyllingen辉长杂岩)早—中奥陶世[39]
劳伦古陆和波罗的的混合动物群上部地体Köli推覆体485~464[31]
1.3 Svalbard加里东造山带

Svalbard群岛现今位于巴伦支海的西北角和欧洲板块之间,与巴伦支海陆架的西部具有相同的加里东期基底和后期的沉积岩盖层,属于巴伦支微陆块露出海面的部分,南北向断裂带将Svalbard地区分为西北、东北、西南3个具有不同岩石组合的地体[43],都经历了晚奥陶世—志留纪的构造-热事件,在加里东运动期间,巴伦支海微陆块与波罗的陆块、格陵兰地盾东北部汇聚,是亚匹特斯洋闭合的地方[44]。前人研究[45-46]认为,前加里东期其可能为独立的微陆块或属于北东格陵兰陆块中部的一部分或不同的岩石地体具有不同的来源,如东北和西北地体原属于格陵兰陆块东北,西南地体来源Pearya Land。沉积岩盖层中新元古代—早奥陶世低级变质沉积岩占约60%[45],地台型石炭纪及更年轻地层覆盖于褶皱了的晚志留世—中泥盆世老红色砂岩(ORS)之上[46]

西北部和东北部地体早古生代地层包含文德期冰碛岩、北美型动物群及以碳酸盐为主的寒武纪地层。西北部地区主要由475 Ma蓝片岩-榴辉岩相中高级变质岩组成[45-48];东北地体经历格林威尔和加里东两期造山运动,450~410 Ma期间发生绿片岩相变质作用和深熔型花岗岩作用,产出轴向近南北的直立褶皱或轻微西倾褶皱,与东格陵兰的中部地层具有相似性[44];西南地区局部发育榴辉岩和蓝片岩,发育奥陶纪不整合[46]。造山带的岩石特征如表 3所示,发生了中奥陶世和晚志留世—早泥盆世两期榴辉岩-蓝片岩相变质作用。其中,中奥陶世的高压变质作用和Billefjorden断裂带的糜棱岩变形年龄一致,晚志留世—早泥盆世的变质程度较弱,与同时期的磨拉石建造共同代表了加里东造山运动的痕迹。Biscayarhalvoya晚志留世砾岩沉积前的榴辉岩挤出作用, 暗示了块体相互作用于志留纪转变为碰撞,与阿帕拉契亚造山带的Taconic造山期对应[54]

表 3 斯瓦尔巴特加里东造山带特征 Table 3 Features of Svalbard Caledonides
岩性采样点所属地体年龄/Ma测年方法参考文献
蛇绿岩Ellesmere IslandPearya地体480[49]
榴辉岩-蓝片岩MotalafjellaSpitsbergen西部474~457Rb-Sr[50]
475U-Pb[32]
461Ar-Ar[50]
425~400Rb-Sr[51]
蓝片岩Nordenskiold land中西部Svalbard早—中奥陶世[52]
角闪岩相BiscayarhalvoyaSpitsbergen西北430~420Ar-Ar[51]
Richarddalen Group430~420Rb-Sr[50]
地壳重熔型岩浆Nordaustlande地体450~410U-Pb/Pb-evap[44]
960~940U-Pb/Pb-evap
糜棱岩Billefjorden断裂带450[53]
陆相磨拉石建造北西地体晚志留世—早泥盆世
1.4 英国加里东造山带

英国加里东期造山带是阿瓦隆尼亚微陆块、Midland Valley岛弧(MVT)和劳伦古陆以及波罗的陆块复杂相互作用的结果,分别以Iapetus缝合带和莫英俯冲带为南北界线,Highland边界断层再将其分为北部470~460 Ma变质变形强烈的正构造高区域(orthotectonic zone)和南部晚志留—早泥盆世左旋压扭环境下的低级变质作用发育的副构造低区域(paratectonic zone)[11, 55-56]。英国加里东期造山运动期间发育奥陶—志留纪和志留纪—早泥盆世的早晚两期花岗岩:470~455 Ma,与弧-陆碰撞相关的S型花岗岩,主要分布在北部高级构造区域;峰值大致为410 Ma的加里东晚期亚匹特斯洋俯冲产生的I型花岗岩,并发育少量S型花岗岩(表 4),主要沿Highland边界断层以南的左旋走滑断层分布,在苏格兰南部的Iapetus缝合带附近也有分布[56-57, 59]。在亚匹特斯洋关闭的最后阶段,变质作用伴随着深成作用发生,变质程度为沸石相-绿片岩相,局部达到榴辉岩相。中志留世—中泥盆世期的老红色砾岩角度不整合于早古生代地层之上。

表 4 英国加里东造山带特征 Table 4 Features of Caledonides in England
岩性所属地体年龄/Ma参考文献
S型花岗岩Highland边界断层以北的正构造高区域470~455[11, 57-58]
I型和S型花岗岩沿Highland断层以南的副构造低区域430~390/峰值为410[11, 57-58]
钙碱性火山岩北爱尔兰Tyrone Volcanic Group490~470(SSZ蛇绿岩就位)[59]
岛弧蛇绿岩北爱尔兰514~464
蓝片岩(576±32)或(505±11)
巴罗型中压高温变质带早奥陶世[60]
老红色砾岩磨拉石建造中志留—中泥盆世

前人通过对英国加里东造山带的变质变形及岩浆作用的研究,将英国的加里东造山运动大致分为3个阶段[58, 61]:Grampian阶段(480~465 Ma)是苏格兰加里东造山带主要的收缩阶段,在北爱尔兰蛇绿岩仰冲就位于490~470 Ma,为劳伦古陆和Midland Valley岛弧碰撞引起,发生喜马拉雅型地壳增厚,变质作用主要为碰撞造山带典型的巴罗型中压高温变质;465~435 Ma期间的Caradoc阶段主要发生安第斯山型陆壳俯冲并达到了一定深度、均衡调整、减压熔融和剥蚀作用,为Southern Uplands地体沉积物来源,此时英国Grampian、Middle Valley和Southern Uplands地体已经拼合;而435~395 Ma,Iapetus洋俯冲至闭合,阿瓦隆尼亚微陆块与其拼贴,地壳隆升。

1.5 中欧加里东造山带

中欧加里东造山带位于欧洲华力西造山带北部,主要指北德国—波兰、丹麦以及法国一带相对较窄的加里东期变形变质带,为Tornquist洋消亡、阿瓦隆尼亚微陆块和波罗的板块碰撞的结果。北界为早古生代Tornquist-Teisseyre缝合带(T-TZ)。地球物理特征表明, Tornquist洋具有向NE和SW的双向俯冲特征[62-63],发育倾向SW的右旋走滑断层。其西延为晚古生代—中生代Sorgenfrei-Tornquist Zone (S-TZ)[64-65],截止于Iapetus缝合带,造山带东侧毗邻东阿瓦隆尼亚微陆块的Carpathians地区[62-63](图 1)。

表 5列出了中欧加里东期造山带主要特征,发育两期榴辉岩相变质作用:一期为440~400 Ma超高压—高压变质,原岩为490~460 Ma,角闪岩相退变质过程发生在360~340 Ma;另一期为500~460 Ma高压变质。Vecoli[78]根据微体浮游生物Llanvirn期疑源类化石,认为阿瓦隆尼亚微陆块于Caradoc阶开始从冈瓦纳裂离;而晚Ashgill阶(437 Ma),中欧缝合线两侧的几丁石化石几乎是一致的,暗示了阿瓦隆尼亚微陆块和波罗的板块之间Tornquist洋已经消亡;且东欧地台Ashgill阶沉积地层中出现了亲冈瓦纳的疑源类化石。因此,Tornquist洋的消亡,阿瓦隆尼亚微陆块和波罗的板块的碰撞应发生在中、晚奥陶世[78]。古地磁数据也显示, 阿瓦隆尼亚和波罗的陆块的磁移曲线在志留纪446~421 Ma期间开始重合[65]。而在石炭纪末,因华力西造山运动向北收缩,使德国、丹麦、挪威和瑞典南部产生众多局部的裂谷和伸展盆地[79-83]

表 5 中欧加里东造山带特征 Table 5 Features of Central Eurpean Caledonides
岩性所属地体年龄/Ma测年方法变质相参考文献
榴辉岩French Massif Central432U-Pb[66-67]
415U-Pb zircon[66-67]
408Sm/Nd[66-67]
417U-Pb
412±10LA-ICP-MSUHP[68]
489~475zircons原岩[68]
法国Armorican地体439±13U-Pb zircon[69]
NE Sardinian460U-Pb原岩[70]
350LA-ICP-MS高温角闪岩相[70]
400SHRIMP U-Pb榴辉岩相[71]
Maures地块452~395U-Pb[71]
Alpine基底(B type)420~395U-Pb[71]
500~460[72]
Bohemian地体400/390~370/340[73]
Western Iberian地体418~363/406~383/SHRIMP/[73-74]
391~370/365~35040Ar-39Ar
Brittany436U-Pb zircon[73-74]
439[73-74]
Saxonian和Erzgebirge
杂岩的云母片岩-榴辉岩
355~33040Ar-39Ar[75-77]
磁移曲线阿瓦隆尼亚、波罗的陆块446~421拼合[65]
Llanvirn期
疑源类化石
阿瓦隆尼亚微陆块Caradoc阶从冈瓦纳裂离[78]
几丁石化石中欧缝合线两侧晚Ashgill阶(437)[78]
1.6 阿帕拉契亚造山带

阿帕拉契亚造山带位于北美克拉通东缘,呈NE—SW走向,通常以纽约、弗吉尼亚为界分为北、中、南阿帕拉契亚[77] (图 2)。西南毗邻Ouachita造山带,King[84]根据Ouachita造山带构造特征认为其是阿帕拉契亚造山带在西南方向的延伸。阿帕拉契亚造山带具有多阶段的造山过程,地体亲缘性显示,该造山带早古生代为北美克拉通与环冈瓦纳大陆北缘阿瓦隆尼亚、卡罗莱纳、卡多姆和Meguma地体碰撞的结果,其中卡罗莱纳地区变质变形具有连续性,一直持续到280 Ma,期间没有裂解或双峰式火山岩的裂谷记录。

北美克拉通东缘在罗迪尼亚裂解后到最终的陆-陆碰撞造山经历了以下几个阶段:800~700 Ma裂谷环境,晚前寒武—早寒武世被动大陆边缘的伸展阶段,奥陶纪弧-陆碰撞造山阶段,泥盆—早石炭世地体持续拼贴阶段,晚石炭—二叠纪陆-陆碰撞收缩变形[11, 85]

北阿帕拉契亚被动大陆边缘在中—晚奥陶纪(Taconic)转变为了活动大陆边缘,晚志留世(Acadian)造山运动主导了北阿帕拉契亚地区[86]。Dunnage带为北阿帕拉契亚造山带典型地区,中奥陶—早志留世的Red Indian Line缝合线将Dunnage带分成Notre Dame (鹿特丹)和Exploits两段:西北的鹿特丹段发育志留纪不整合,含Arenig阶低纬度亲劳伦动物群;东南的Exploits发育奥陶—志留纪的连续地层,含Arenig阶高纬度环冈瓦纳动物群[87]。Red Indian Line缝合线的蛇绿岩、钙碱性火山岩年龄以及变形研究表明,冲断作用发生在467~462 Ma,晚志留纪转变为右旋走滑断层[88]。中—南阿帕拉契亚造山带寒武纪之后经历了Taconic、Acadian、Alleghanian三期造山运动。480~435 Ma的Taconic造山运动影响广泛,奥陶纪、志留纪深成岩体与弧-陆碰撞的逆冲推覆作用相关[89],Blue Ridge-Piedmont逆冲岩席向前推覆至少250 km,出露459~394 Ma高压榴辉岩[90],在Blue Ridge、Inner Piedmont、Charlotte和卡罗莱纳等地区发生区域性绿片岩相和角闪岩相变质[91]。Acadian运动(410~340 Ma)表现为多阶段的地体拼贴,主要影响中阿帕拉契亚地区,发生强烈变形和区域性收缩性走滑作用,志留纪-早泥盆世地层和上覆地层以不整合面接触,造山带西部发育中—晚泥盆世磨拉石[92]。Alleghanian(330~230 Ma)运动为劳伦古陆和西非克拉通之间的全面碰撞阶段[93]

2 泛非造山带

泛非造山运动导致了冈瓦纳大陆的早古生代聚合,在晚新元古代—早寒武世之间表现为大陆块之间的陆-陆碰撞造山过程和大量新生地壳增加的增生-碰撞造山带(图 3)(对应Sengor[95]两分法中的阿尔泰型或突厥型造山带),时代要早于加里东期造山带。首先是非洲和南美大陆块之间的碰撞造山带主要导致Brazilides洋闭合和西冈瓦纳拼合的Brasiliano造山带形成,其碰撞过程包括多个阶段,时代主要为850~540 Ma。Kuunga造山带由Meert等[96], Meert[97]和Meert和Lieberman[98]基于古地磁证据和麻粒岩相变质证据提出,为南极—澳大利亚、印度、卡拉哈里以及刚果克拉通碰撞形成,其时代晚于Brasiliano和东非造山带,大致在570~530 Ma。现Kuunga造山带范围和性质研究仍具有争议,对其性质存在活化的造山带和碰撞造山带两种认识。近南北走向、南窄北宽的东非造山带为增生-碰撞造山带,形成时代大致为800~600 Ma,且东非造山带北部的阿拉伯—努比亚地盾(Arabian-Nubian Shield,ANS)和南部的莫桑比克带具有明显区别,可以将其分为两次造山运动。同时,东冈瓦纳主要由南极、印度、澳大利亚大陆块及一些微陆块经历了复杂多期的聚合而统一形成。最后,泛非晚期运动(530~500 Ma)将东、西冈瓦纳沿莫桑比克带聚合为冈瓦纳大陆(图 3)。

蓝色:大于600 Ma;紫色:主体介于550 Ma和600 Ma之间;橙色:主体介于500 Ma和550 Ma之间;棕色和绿色:小于500 Ma。蓝色缩写对应的缝合带名称:[A].Arauai;[Ara].Araguaia;[AS].Alice Spring;[B].Brasília;[Bets].Betsimisaraka;[Bor].Borborema;[CA].Central Africa;[CF].Cape Fold;[Dam].Damara;[Del].Delamerian;[DF].Dom Feliciano;[Dh].Dahomides;[DM].Dronning Maud;[G].Gariep;[Gu].Gurupi;[Gam].Gamburtsev;[K]. Kaoko;[Kuu].Kuunga;[KZ].Katagan-Zambezi;[Lach].Lachlan;[LS].Lützow-Shackleton;[Luf].Lufilian Arc;[M].Mauritanides;[Moz].Mozambique;[NBS].Nabitah;[NE].New England;[OHS]. Onib-Sol Hamed;[Par].Paraguai;[Ph].Pharusides;[Pin].Pinjarra;[R].Rebeira;[Roc].Rockelides;[Ross].Ross;[UAA].Urd Al Amar;[Sal].Saldanha;[Tuc].Tucavaca;[Teb].Tebicuary;[W]. West Congo;[Y].Yaoundé。绿色名和缩写对应的克拉通区域:AA.Ascuncíon Arch;CC.Curnamona克拉通;G.Grunehogna克拉通;Go. Goiás克拉通;LA.Luís Alvez克拉通;P.Parnaíba克拉通;Pp. Paranapanema准克拉通;RA. Rio Apa准克拉通;SL. Sāo Luís克拉通。据文献[94]修编。 图 3 冈瓦纳主要缝合带 Figure 3 Reconstruction of the Gondwana showing major suture zones
2.1 Brasiliano造山带

罗迪尼亚超大陆裂解后,西冈瓦纳在聚合过程中Brazilides洋闭合,圣弗朗西斯科—刚果、卡拉哈里和亚马逊—西非、拉普拉塔克拉通之间发生碰撞,形成Brasiliano造山带[99]。Brasiliano造山带北部~900 Ma的裂谷作用和~800 Ma的蛇绿岩标志新元古代Brazilides洋盆的存在[100-101]。古地磁数据显示Brazilides洋于约630 Ma闭合,碰撞持续到寒武纪[4, 102-105]。Brissilina造山带可分为七部分(图 4),并向南可延伸到Gariep Kaoko带[103-105](图 4)。

图 4 550 Ma西冈瓦纳Brasiliano造山带(据文献[101106-107]改编) Figure 4 Brasiliano orogen of west Gondwana in 550 Ma (revised after references [101106-107])

Brasiliano造山带发育590~500 Ma造山后A型花岗岩,570 Ma之后发育了大量的走滑剪切带,南部的构造研究显示南美和非洲之间的陆-陆碰撞具有穿时性,早期发育E—W、NWW—SEE、NW—SE的同碰撞构造,随后发育NE—SW、NNE—SSW走向的剪切带,伴随碰撞相关的花岗岩体分布[106]

Brasiliano造山带演化过程有多种观点,根据大量的岩浆活动和变质作用显示演化过程总体可分为850~700 Ma、650~600 Ma、590~540 Ma三个阶段[106]。刚果—圣弗朗西斯科克拉通和拉普拉塔克拉通碰撞产生南Brasilia造山带;650~600 Ma亚马逊—西非克拉通与已经连接的刚果—圣弗朗西斯科—拉普拉塔板块碰撞产生北Brasiliano造山带、Borborema造山带和Araguaia造山带(图 4);~550 Ma拉普拉塔和亚马逊克拉通碰撞产生Paraguay造山带完成西冈瓦纳的拼合[103-105]。而Da Silva等[107]则认为南部的Riberia和Dom Felisiano为640~620 Ma的陆-陆碰撞造山带,Brasiliano南延的Saldania和Kaoko为550~540 Ma的碰撞造山带。

2.2 东非造山带

东非造山带全长约6 000 km,包括非洲东部和马达加斯加岛,是世界上最重要的泛非造山带之一。根据造山带类型、年龄和几何形态,可将其分为南、北两部分(图 5):北部为北宽南窄的阿拉伯—努比亚地盾(也称ANS地体)于新元古代期间在毗邻莫桑比克洋或洋内发生显著的地壳增生;南部莫桑比克带(Mozambique Belt,MB)[108, 110],分布以东部麻粒岩省—Cabo Delgado推覆体杂岩(CDNC)为代表的新元古代地壳和被新元古代事件叠加的前新元古代地壳。

ANSZ. Angavo缝合带;ADT. Azania-Damaraland Thrust;ACSZ. Achankovil剪切带;EGBSZ. Eastern Ghats Boundary剪切带;KSZ. Koraput-Sonepur剪切带;RSZ. Ranotsara缝合带;SSZ. Sileru缝合带;PCSZ. Palghat-Cauvery剪切带;MSZ. Mugesse Suture Zone地体;CDNC. Cabo Delgado Nappe杂岩;EGB. Eastern Ghats Block东高止地块;EGNC. Eastern Granulite Nappe杂岩;HIC. Highland杂岩;LEB. Leeuwin地块;MB. Madras地块;MUB. Madurai地块;MUC. Mullingara杂岩;NAP. Naturaliste Plateau地块;NAC. Napler杂岩;NB. Nilgiri地块;RAC. Rayner杂岩;KC.Kadugannawa杂岩;REP. Rengail Province;SB. Salem地块;T-NB. Trivandrum-Nagercoil地体;ANS. Arabian Nubian地体;SGT. Southern Granulite地体;VIC. Vijayan杂岩;WAC. Wanni杂岩;NOC. Northampton杂岩;WG.西部麻粒岩带。 图 5 早寒武世东冈瓦纳块体分布以及东非造山带和Kuunga造山带地质图(据文献[98108-109]改编) Figure 5 Eastern African orogen and Kuunga orogen in East Gondwana during Early Cambrian (revised after references [98108-109])

南部莫桑比克带基底多为太古宙—古元古代或中元古代长英质片麻岩,被走向SWW—NEE、倾向NNW的新元古代—早古生代Lurio剪切带切割[111-114]。马达加斯加是东非造山带的东缘,以左旋Ranotsara剪切带和Andraparaty俯冲带为南北块体的界线,中部为太古宙克拉通,北部为新元古代Bemarivo俯冲增生地壳,南部为复杂的前寒武纪高级片麻岩基底[108, 115](图 5)。

东非造山带受两期构造运动的影响,表现出两期变质变形的特点。阿拉伯—努比亚地盾地区包括阿拉伯—努比亚地盾和大量岛弧、弧后盆地以及新元古代新生地壳,发育750~650 Ma、800~700 Ma多条蛇绿混杂岩带,变形年龄为700~610 Ma,为洋壳俯冲和岛弧碰撞过程[108, 110, 116-117]。东非造山带南段发育655~600 Ma的高压—超高压岩石和高温麻粒岩相变质[118],并在马达加斯加的南部有647~607 Ma的地壳缩短变形,表明莫桑比克带经历了655~600 Ma的陆-陆碰撞造山过程[102, 119]。而莫桑比克带发育605~520 Ma麻粒岩—角闪岩相高温低压变质以及530~490 Ma区域性绿片岩相退变质[109]。由于Azania向东运动,造成马达加斯加岛中部地块近南北向的Angavo剪切带(ANSZ)于560~550 Ma活化,并将前新元古代的构造带改造,发生580~540 Ma的褶皱和麻粒岩相变质作用,局部发现强烈的南北向面理和水平线理,构造特征与印度南部的剪切带相似[120]。因此,莫桑比克带以及马达加斯加中部还经历了~550 Ma的构造运动。

2.3 印度东高止造山带和印度南部麻粒岩地体

印度半岛由古元古代构造带将其分为北部陆核和南部4个太古宙克拉通,其东缘是东高止带(Eastern Ghats Belt,EGB),南端是南部麻粒岩地体(Southern Granulite Terrain,SGT[121])(图 5)。

东高止省是东高止带北部主要的组成单元,Rengali省位于东高止省的更北部,两者沿着断裂带广泛分布550~500 Ma的N/NW—S/SE收缩变质变形[122]。发育Sileru和Elchuru-Kunavaram-Koraput两条剪切带,岩石发生褶皱,含高镁铝麻粒岩俘虏体,发育530 Ma剪切面理和糜棱面理,U-Pb锆石和EPMA独居石数据显示剪切带在新元古代—早古生代发生过多幕构造变形[121, 123],伴随的变质作用有550~500 Ma的麻粒岩相变质和540~500 Ma的角闪岩相变质[124-127],其中角闪岩相变质与南极北缘的Rayner杂岩相似[128]

印度南部麻粒岩地体位于重建的东冈瓦纳中心位置,为太古宙和元古宙的混杂基底,北邻Dharwar克拉通(图 5),自北往南可分为Salem地体、Palghat-Cauvery剪切带(PCSZ)、Madurai地体、Trivandrum地体(T-NB地体)、Nagercoil地体5个构造单元[109]

Achankovil剪切带是Madurai地块的南界,岩石组合与Palghat-Cauvery剪切带相似,与Madurai地块北部一起经历了550~520 Ma榴辉岩和超高温麻粒岩相变质作用,紫苏花岗岩变质年龄为548~526 Ma,而Palghat-Cauvery剪切带发育年龄为750~560 Ma的弧岩浆岩,暗示Palghat-Cauvery剪切带大致在550 Ma由俯冲作用转变成碰撞造山作用[129-130]。Trivanderu地块和Negercoil地块独居石、锆石年龄显示,主要构造热事件发生在550 Ma,顺时针的pTt轨迹记录了Madurai地块(Azania板块)与Salem地块(代表新元古代印度块体)于540~510 Ma的碰撞事件[116]

2.4 斯里兰卡(Sri Lanka)

Cooray[131]将Sri Lanka分为4个构造单元:Highland杂岩(HIC), Wanni杂岩(WAC), Vijayan杂岩(VIC),Kadugannawa杂岩(KC),其中HIC和VIC之间以俯冲带接触(图 5)。Wanni杂岩与印度南部麻粒岩地体中的Achankovil剪切带在岩性组合和Nd同位素模式年龄(1.0~2.0 Ga)上具有相似性,Highland杂岩的变质区域也与印度南部在岩石特征上具有相似性,发育550 Ma高压麻粒岩相变质[98, 132]

2.5 环东南极泛非造山带

东南极克拉通与澳大利亚克拉通东南缘在中元古代通过Albany-Fraser造山带连接形成统一的块体[98, 133]。前人在东南极造山带中识别出了较为确定的两条泛非期缝合带,分别为东南极克拉通北缘Lutzow Holm Bay-普利兹湾(Prydz Bay)一带以及西缘Dronning Maud-Land(DML,毛德皇后地),并对其位置不断进行调整[134-140](图 5)。

东南极克拉通西缘毛德皇后地泛非期碰撞造山运动的响应主要分布在Heimefront剪切带(HSZ)以东区域,其西部地体几乎没受泛非运动的影响[141]。Jacobs等[134]等将毛德皇后地的泛非运动分为以下阶段:碰撞造山过程,褶皱冲断作用伴随着等温降压过程,中—新元古代岩石被570~550 Ma麻粒岩相变质作用和碰撞相关变形改造;530~490 Ma的造山垮塌和构造逃逸阶段;530~510 Ma造山后伸展垮塌阶段,大量的伸展构造和A型花岗岩侵入,伴随多种同构造岩浆作用。毛德皇后地东部Sor Rondance Mountains(图 5)详细的构造解析显示,该地区主要的伸展构造发生在泛非变质期600 Ma之前,在DML中—东部发育600~560 Ma左旋挤压走滑断层;而在560~550 Ma发育右旋张扭性断层[142]。其构造特征与东非造山带具有相似性,如与Angavo缝合带(ANSZ)北部的Wadi Kid地区NW—SE向的左旋横压最终转变为NW—SE向伸展作用,马达加斯加西部580~550 Ma的地壳增厚和530~500 Ma的左旋平移剪切[143]。毛德皇后地中部有泛非期同碰撞花岗岩就位以及角闪岩相-麻粒岩相变质,527~521 Ma花岗岩形成于伸展环境。

东南极北部的Lutzow Holm Bay—普利兹湾剪切带为Kuunga造山带的北东段[137],Kuunga造山作用的痕迹主要保存在Lutzow Holm Bay、普利兹湾、格罗夫山、南查尔斯王子山(图 5)。Ltitzow Holm Bay发育570~520 Ma区域性麻粒岩相变质和褶皱变形,同构造浅色花岗岩的年龄也显示发生520 Ma构造变形,且这些变形不是与伸展构造相关[142, 144]。普利兹湾记录了535~525 Ma与收缩变形有关的高温变质作用、混合岩、重熔型长英质片麻岩[102],530 Ma麻粒岩相顺时针pTt演化轨迹[137]。格罗夫山记录了~530 Ma的花岗岩侵入和高温变质作用[137]。南查尔斯王子山北部经历了早古生代变形,发育NE向糜棱岩带,有550 Ma长英质岩脉侵入[133]

2.6 澳大利亚Pinjarra造山带

Pinjarra造山带分布在澳大利亚西南缘(图 5),大部分被显生宙盆地覆盖,主要出露发育片麻岩以及中级变质碎屑岩、片岩。Fitzsimons[145]根据基底研究认为Pinjarra造山带将东冈瓦纳分为澳大利亚—南极(Australo-Antarctic)和印度—南极(Indo-Antarctic)两部分。Pinjarra造山带的性质决定了这两部分的拼合过程,现其性质的研究主要存在中元古代碰撞造山带后期活化和新元古代缝合带两类观点。

Pinjarra造山带以近南北向的Darling断裂与其东部的伊尔岗太古宙克拉通分隔(图 5)。Darling断裂发育剪切带、糜棱岩带和千糜岩[146],太古宙形成后经历了1 080 Ma和750~500 Ma两次活化[145, 147]。在Pinjarra造山带南端发育750 Ma右旋走滑,于550~500 Ma发生区域性的左旋走滑和角闪岩相糜棱岩[145-146]。古地磁证据表示沿着Pinjarra造山带的左旋走滑位移达到了大陆块尺度,因此这些晚新元古代—早古生代的地质现象是550 Ma印度和澳大利亚西缘发生斜向碰撞所引起[145, 148]。Pinjarra造山带主要的泛非事件记录在Leeuwin杂岩,产出~780 Ma和~520 Ma的A型非造山花岗岩[149],570~550 Ma发生麻粒岩相变质和强烈变形,高级变质作用峰期为550 Ma[102, 150-151]。与东南极东部的Denman Glacier和Bunger Hills地区都具有520~500 Ma造山后花岗岩记录,因此Pinjarra造山带向南可延伸到南极地区[145]

3 早古生代碰撞造山特征及全球意义

大板块之间近同时的碰撞造山是超大陆聚集的关键过程和主要形式。Columbia超大陆主要集中在21.0~18.0亿年之间,而Rodinia超大陆主要集中在13.0~10.0亿年之间,总体持续时限约为3.0亿年,峰期在11.0亿年。而早古生代碰撞造山主要发生在5.4~4.2亿年之间。总体从地球历史看,从点碰撞到全面碰撞造山的时限在缩短,这不仅与板块运动速度加速有关,而且与大陆块体或大板块在不断长大密切相关。碰撞造山也从古元古代的热造山,逐渐出现以冷造山占主导,岩石上表现在古元古代碰撞造山带中主要以高压麻粒岩为特征,而早古生代多数碰撞造山带以热榴辉岩为特点,到晚古生代之后以冷榴辉岩为特性。这都与地球总体的热衰减演化趋势是一致的。此外,碰撞造山与俯冲增生造山不同的是弯山构造很少发育。

早古生代全球碰撞型造山带主要分布在南半球的泛非造山带和北半球的加里东期造山带,分别与南方冈瓦纳大陆和北方劳俄古陆的初步集结密切相关,早古生代碰撞造山主要体现以大板块或大陆块之间的碰撞作用为特征。两者关闭方式都可能是内侧洋闭合机制(Intro-version)[104, 152]。实际上,从Pangea裂解到后期大洋的出现部位来看,前期大陆块之间碰撞造山的位置往往会重新裂解出现新的大洋盆地。如,加里东造山带裂解出现北大西洋,东、西冈瓦纳大陆拼合的莫桑比克造山带后期裂解出现印度洋。这一点和增生造山带不同,大板块周缘的增生造山带后期裂解往往形成弧后盆地,如汤加弧后盆地、日本岛弧西侧的弧后盆地;当然也有个别出现小洋盆或短暂的大洋盆地,如Rheic洋、勉略洋、古特提斯洋、新特提斯洋等。这种宏观现象可能不是局部构造因素控制,更可能是大尺度深部动力学机制控制。

碰撞造山最终往往形成巨型花状构造,对早期构造形迹改造较强烈,因而非常难以判断碰撞造山早期的板块俯冲极性,这是当前全球很多碰撞造山带俯冲极性存在巨大争论的原因,进而也是当前碰撞造山带研究急需解决的构造技术难题。我们的野外经验表明,揭示第一幕区域变形的极性是认清碰撞造山早期过程的关键,同时需要配合大地构造单元划分,岩石成分-地球化学极性研究,可望有效揭示这个精细演化历史。此外,中下地壳也可能保存其早期俯冲结构,因而关键部位的深反射地震剖面的研究也非常必要。只有碰撞早期的俯冲极性很好解决,全球尺度的板块重建才更为精细可靠。

碰撞造山往往具有全球效应,伴随一系列深、浅部过程的调整,深部构造过程如底侵、拆沉、深熔、渠道流,浅部地表系统如楔入、挤出、变形分解、走滑等地质过程。碰撞造山带的复杂性还体现在碰撞方式可以正向、斜向,俯冲角度,分期分段碰撞等,这些都会导致碰撞造山带之间具体的个性差异演化。此外,在碰撞前、同碰撞和碰撞后物质循环、再造,成岩、成矿、成盆、成藏、成灾、浅表地球系统河流水系变化和源汇效应、海水化学成分变化、环境变化与生物辐射或绝灭等等,都会有一系列综合连锁效应。这一切都可能取决于深部动力机制,就是碰撞的内动力机制,或驱动大陆块之间碰撞的动力来源。早古生代全球性碰撞事件的这些效应研究非常薄弱,这是当前需要多学科交叉深入探索的前沿。

4 结论

本文通过对全球早古生代造山带的系统集成分析,得出以下几点新认识:

1)早古生代碰撞造山带皆具有蓝片岩、榴辉岩、高压麻粒岩等典型的俯冲-碰撞相关的岩石特征,具有顺时针pTt轨迹;而且这些高压—超高压岩石具有全球准同时性,集中在550~450 Ma期间,可能表明在早古生代期间的1亿年内发生了全球性板块聚合运动。

2)南半球Brasiliano造山运动、东非造山运动和Kuunga造山运动导致冈瓦纳大陆分阶段最终于~540 Ma完成拼贴。而经典加里东造山带、中欧缝合带导致北半球劳俄大陆最终于~420 Ma完成拼合,此时斯瓦尔巴特和英国可能位于格陵兰地盾东南缘。早古生代碰撞造山导致全球南、北大陆的形成。

3)当前碰撞造山带研究中最为薄弱、争论最大的是俯冲极性以及早古生代碰撞造山带的全球深部机制和地表系统响应等,需要多学科加强交叉和综合研究。

参考文献
[1] 李江海, 李维波, 王洪浩, 等. 晚古生代泛大陆聚合的全球构造背景:板块漩涡运动轨迹含义的探讨[J]. 地质学报 , 2014, 88 (6) : 980-991. Li Jianghai, Li Weibo, Wang Honghao, et al. Global Tectonic Setting During the Late Paleozoic Convergence of Pangea: Discussion of Plate Vortex Trajectory[J]. Acta Geologica Sinica , 2014, 88 (6) : 980-991.
[2] Zhao G C, Cawood P A, Simon A W, et al. Review of Global 2.1-1.8 Ga Orogen: Implications for a Pre-Rodinia Supercontinent[J]. Earth-Science Reviews , 2002, 59 (1/2/3/4) : 125-162.
[3] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup[J]. Earth-Science Reviews , 2004, 67 (1) : 91-123.
[4] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, Configuration, and Break-up History of Rodinia:A Synthesis[J]. Precambrian Research , 2008, 160 (1/2) : 179-210.
[5] Shu L, Wang B, Cawood P A, et al. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China[J]. Tectonics , 2015, 34 (8) : 1600-1621. DOI:10.1002/2015TC003835
[6] Wang Y, Zhang F, Fan W, et al. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology[J]. Tectonics , 2010, 29 (6) : 1-70.
[7] Johnston S M, Hartz E H, Brueckner H K, et al. U-Pb Zircon Geochronology and Tectonostratigraphy of Southern Liverpool Land, East Greenland: Implications for Deformation in the Overriding Plates of Continental Collisions[J]. Earth & Planetary Science Letters , 2010, 297 (3/4) : 512-524.
[8] Hannes K, Bruecknera J A, Gilottia A P. Caledonian Eclogite-Facies Metamorphism of Early Proterozoic Protoliths from the North-East Greenland Eclogite Province[J]. Contrib Mineral Petrol , 1998, 130 : 103-120. DOI:10.1007/s004100050353
[9] Kalsbeek F, Jepsen H F, Nutman A P. From Source Migmatites to Plutons: Tracking the Origin of ca. 435 Ma S-Type Granites in the East Greenland Caledonian Orogen[J]. Lithos , 2001, 57 (1) : 1-21. DOI:10.1016/S0024-4937(00)00071-2
[10] Augland L E, Andresen A, Corfu F. Late Ordovician to Silurian Ensialic Magmatism in Liverpool Land, East Greenland: New Evidence Extending the Northeastern Branch of the Continental Laurentian Magmatic Arc[J]. Geological Magazine , 2012, 149 (4) : 561-577. DOI:10.1017/S0016756811000781
[11] Keller G R, Hatcher R D. Some Comparisons of the Structure and Evolution of the Southern Appalachian-Ouachita Orogen and Portions of the Trans-European Suture Zone Region[J]. Tectonophysics , 1999, 314 (1) : 43-68.
[12] Soper N J, Strachan R A, Holdsworth R E, et al. Sinistral Transpression and the Silurian Closure of Iapetus[J]. Journal of the Geological Society , 1992, 149 (6) : 871-880. DOI:10.1144/gsjgs.149.6.0871
[13] Dewey J F, Strachan R A. Changing Silurian-Devonian Relative Plate Motion in the Caledonides: Sinistral Transpression to Sinistral Transtension[J]. Journal of the Geological Society , 2003, 160 (2) : 219-229. DOI:10.1144/0016-764902-085
[14] Hull J M, Friderichsen J D, Gilotti J A. Gneiss Complex of the Skerfjorden Mregion Hypothesis, Environmental Speculation[J]. GSA Bulletin , 1997, 109 (1) : 16-42. DOI:10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2
[15] Thrane K. Relationships Between Archaean and Palaeoproterozoic Crystalline Basement Complexes in the Southern Part of the East Greenland Caledonides: An Ion Microprobe Study[J]. Precambrian Research , 2002, 113 (1) : 19-42.
[16] Kalsbeek F. Geochemistry, Tectonic Setting, and Poly-Orogenic History of Palaeoproterozoic Basement Rocks from the Caledonian Fold Belt of North-East Greenland[J]. Precambrian Research , 1995, 72 (3/4) : 301-315.
[17] Caby R, Bertrand-Sarfati J. The Eleonore Bay Group(Central East Greenland)[M]//Later Proterozoic Stratigraphy of the Northern Atlantic Regions. New York: Springer, 1988: 212-236.
[18] Larsen L M, Watt W S, Watt M. Geology and Petrology of the Lower Tertiary Plateau Basalts of the Scoresby Sund Region, East Greenland[R]. Greenland: Geological Survey of Greenland, 1989:157-164.
[19] Dhuime B, Bosch D, Bruguier O, et al. Age, Provenance and Post-Deposition Metamorphic Overprint of Detrital Zircons from the Nathorst Land Group (NE Greenland): A LA-ICP-MS and SIMS Study[J]. Precambrian Research , 2007, 155 (1) : 24-46.
[20] White A, Hodges K, Martin M. Geologic Constraints on Middle-Crustal Behavior During Broadly Synorogenic Extension in the Central East Greenland Caledonides[J]. International Journal of Earth Sciences , 2002, 91 (2) : 187-208. DOI:10.1007/s005310100227
[21] Friderichsen J D, Holdsworth R E, Jepsen H F, et al. Caledonian and Pre-Caledonian Geology of Dronning Louise Land, North-East Greenland[J]. Rapport Grønlands Geologiske Undersøgelse , 1990, 148 : 133-141.
[22] Braun A, Kim H R, Csatho B, et al. Gravity-Inferred Crustal Thickness of Greenland[J]. Earth & Planetary Science Letters , 2007, 262 (1/2) : 138-158.
[23] Stephens M B, Gee D G. A Tectonic Model for the Evolution of the Eugeoclinal Terranes in the Central Scandinavian Caledonides[C]//The Caledonide Orogen: Scandinavia and Related Areas. Wiley: Chichester, 1985: 953-978.
[24] Roberts D. The Scandinavian Caledonides:Event Chro-nology, Palaeogeographic Settings and Likely Modern Analogues[J]. Tectonophysics , 2003, 365 (1/2/3/4) : 283-299.
[25] Roberts D, Melezhik V A, Heldal T. Carbonate Formations and Early NW-Directed Thrusting in the Highest Allochthons of the Norwegian Caledonides: Evidence of Laurentian Ancestry[J]. Journal of the Geological Society , 2002, 159 (2) : 117-120. DOI:10.1144/0016-764901-128
[26] Hacker B R, Gans P B. Continental Collisions and the Creation of Ultrahigh-Pressure Terranes: Petrology and Thermochronology of Nappes in the Central Scandinavian Caledonides[J]. Geological Society of America Bulletin , 2005, 117 (1/2) : 117-134.
[27] Bingen B, Belousova E A, Griffin W L. Neoproterozoic Recycling of the Sveconorwegian Orogenic Belt: Detrital-Zircon Data from the Sparagmite Basins in the Scandinavian Caledonides[J]. Precambrian Research , 2011, 189 (3) : 347-367.
[28] Lundmark A M, Corfu F. Emplacement of a Silurian Granitic Dyke Swarm During Nappe Translation in the Scandinavian Caledonides[J]. Journal of Structural Geology , 2008, 30 (7) : 918-928. DOI:10.1016/j.jsg.2008.03.008
[29] Fossen H, Dunlap W J. Timing and Kinematics of Caledonian Thrusting and Extensional Collapse, Southern Norway: Evidence from 40Ar/39Ar Thermochronology[J]. Journal of Structural Geology , 1998, 20 (6) : 765-781. DOI:10.1016/S0191-8141(98)00007-8
[30] Bruton D L, Harper D A T. Brachiopods Andtrilobites of the Early Ordovician Serpentinite Otta Conglomerate, South Central Norway[J]. Norsk Geologisk Tidsskrift , 1981, 61 : 3-18.
[31] Sturt B A, Roberts D. Tectonostratigraphic Relationships and Obduction Histories of Scandinavian Ophiolitic Terranes[M]//Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Amsterdam: Springer, 1991: 745-769.
[32] Tegner C, Wilson J R, Robins B. Crustal Assimilation in Basalt and Jotunite: Constraints from Layered Intrusions[J]. Lithos , 2005, 83 (11) : 299-316.
[33] Brueckner H K, Roermund H L M V. Concurrent HP Metamorphism on both Margins of Iapetus: Ordovician Ages for Eclogites and Garnet Peridotites from the Seve Nappe Complex, Swedish Caledonides[J]. Journal of the Geological Society , 2007, 164 (1) : 117-128. DOI:10.1144/0016-76492005-139
[34] Dallmeyer R D, Gee D G. 40Ar/39Ar Mineral Dates from Retrogressed Eclogites Within the Baltoscandian Miogeocline: Implications for a Polyphase Caledonian Orogenic Evolution[J]. Geological Society of America Bulletin , 1986, 87 : 26-34.
[35] Janák M, Roermund H V, Majka J, et al. UHP Metamorphism Recorded by Kyanite-Bearing Eclogite in the Seve Nappe Complex of Northern Jämtland, Swedish Caledonides[J]. Gondwana Research , 2013, 23 (3) : 865-879. DOI:10.1016/j.gr.2012.06.012
[36] Kylander-Clark, Andrew R C, Hacker B R, et al. Slow Subduction of a Thick Ultrahigh-Pressure Terrane[J]. Tectonics , 2009, 28 (2) : 1779-1794.
[37] Boundy T M, Mezger K, Essene E J. Temporal and Tectonic Evolution of the Granulite-Eclogite Association from the Bergen Arcs, Western Norway[J]. Lithos , 1997, 39 (3/4) : 159-178.
[38] Andréasson P G. The Baltoscandian Margin in Neoproterozoic-Early Palaeozoic Times. Some Constraints on Terrane Derivation and Accretion in the Arctic Scandinavian Caledonides[J]. Tectonophysics , 1994, 231 (1/2/3) : 1-32.
[39] Grenne T, Ihlen P M, Vokes F M. Scandinavian Caledonide Metallogeny in a Plate Tectonic Perspective[J]. Mineralium Deposita , 1999, 34 (5) : 422-471.
[40] Slagstad T, Pin C, Roberts D, et al. Tectonomagmatic Evolution of the Early Ordovician Suprasubduction-Zone Ophiolites of the Trondheim Region, Mid-Norwegian Caledonides[J]. Geological Society London Special Publications , 2014, 390 (1) : 541-561. DOI:10.1144/SP390.11
[41] Eide E A, Lardeaux J M. A Relict Blueschist in Meta-Ophiolite from the Central Norwegian Caledonides-Discovery and Consequences[J]. Lithos , 2002, 60 (1) : 1-19.
[42] Walsh E O, Hacker B R, Gans P B, et al. Crustal Exhumation of the Western Gneiss Region UHP Terrane, Norway: 40Ar/39Ar Thermochronology and Fault-Slip Analysis[J]. Tectonophysics , 2013, 608 : 115-1179.
[43] Breivik A J, Mjelde R, Grogan P, et al. Caledonide Development Offshore-Onshore Svalbard Based on Ocean Bottom Seismometer, Conventional Seismic, and Potential Field Data[J]. Tectonophysics , 2005, 401 (1) : 79-117.
[44] Johansson A, Gee D G, Larionov A N, et al. Grenvillian and Caledonian Evolution of Eastern Svalbard a Tale of Two Orogenies[J]. Terra Nova , 2005, 17 (4) : 317-325. DOI:10.1111/ter.2005.17.issue-4
[45] Ohta Y. Caledonian and Precambrian History in Svalbard: A Review, and an Implication of Escape Tectonics[J]. Tectonophysics , 1994, 231 (1/2/3) : 183-194.
[46] Stephens M B. Terranes in Caledonides and Their Accretion History in Scandinavia and Svalbard Regions[J]. World Geology , 1991, 10 (1) : 91-92.
[47] Bernard G J, Peucat J J, Ohta Y. Age and Nature of Protoliths in the Caledonian Blueschist-Eclogite Complex of Western Spitsbergen: A Combined Approach Using U Pb, Sm Nd and REE Whole-Rock Systems[J]. Lithos , 1993, 30 (1) : 81-90. DOI:10.1016/0024-4937(93)90007-Y
[48] Griffiths J B, Peucat J J, Ohta Y. Age and Nature of Protoliths in the Caledonian Blueschist-Eclogite Complex of Western Spitsbergen: A Combined Approach Using U Pb, Sm Nd and REE Whole-Rock Systems[J]. Lithos , 1993, 30 (1) : 81-90. DOI:10.1016/0024-4937(93)90007-Y
[49] Trettin H P. The Arctic Islands[C]//Bally A W, Palmer A R. The Geology of North America.Boulder:An Overview the Geological Society of America, 1989:349-370.
[50] Dallmeyer R D, Reuter A. 40Ar/39Ar Whole-Rock Dating and the Age of Cleavage in the Finnmark Autochthon, Northernmost Scandinavian Caledonides[J]. Lithos , 1989, 22 (3) : 213-222. DOI:10.1016/0024-4937(89)90057-1
[51] Dallmeyer R D, Lecorche J P. 40Ar/39Ar Polyorogenic Mineral Age Record in the Northern Mauritanide Orogen, West Africa[J]. Tectonophysics , 1990, 177 (1) : 81-107.
[52] Koŝmińska K, Majka J, Mazur S, et al. Blueschist Facies Metamorphism in Nordenskiöld Land of West-Central Svalbard[J]. Terra Nova , 2014, 26 (5) : 377-386. DOI:10.1111/ter.2014.26.issue-5
[53] Michalski K, Lewandowski M, Manby G. New Palaeomagnetic, Petrographic and 40Ar/39Ar Data to Test Palaeogeographic Reconstructions of Caledonide Svalbard[J]. Geological Magazine , 2012, 149 (4) : 696-721. DOI:10.1017/S0016756811000835
[54] Labrousse L, Elvevold S, Lepvrier C, et al. Structural Analysis of High-Pressure Metamorphic Rocks of Svalbard: Reconstructing the Early Stages of the Caledonian Orogeny[J]. Tectonics , 2008, 27 (5) : 269-283.
[55] McKerrow W S, Niocaill C M, Dewey J F. The Caledonian Orogeny Redefined[J]. Journal of the Geological Society , 2000, 157 : 1149-1154. DOI:10.1144/jgs.157.6.1149
[56] Atherton M P, Ghani A A. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland[J]. Lithos , 2002, 62 (3) : 65-85.
[57] Oliver G J H, Wilde S A, Wan Y. Geochronology and Geodynamics of Scottish Granitoids from the Late Neoproterozoic Break-Up of Rodinia to Palaeozoic Collision[J]. Journal of the Geological Society , 2008, 165 (3) : 661-674. DOI:10.1144/0016-76492007-105
[58] Hollis S P, Cooper M R, Roberts S, et al. Stratigraphic, Geochemical and U-Pb Zircon Constraints from Slieve Gallion, Northern Ireland: A Correlation of the Irish Caledonian Arcs[J]. Journal of the Geological Society , 2013, 170 (5) : 737-752. DOI:10.1144/jgs2012-104
[59] Soper N J. The Newer Granite Problem: A Geotectonic View[J]. Geological Magazine , 1986, 123 (3) : 227-236. DOI:10.1017/S0016756800034725
[60] Read H H. Aspects of Caledonian Magmatism in Britain[J]. Geological Journal , 1961, 2 (4) : 653-683. DOI:10.1002/(ISSN)1099-1034
[61] Oliver G J H. Reconstruction of the Grampian Episode in Scotland: Its Place in the Caledonian Orogeny[J]. Tectonophysics , 2001, 332 (Sup.1/2) : 23-49.
[62] Golonka J, Gawęda A. Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic[M]//Sharkov, Evgenii. Tectonics-Recent Advances. Vienna: Intech Press, 2012: 261-282.
[63] Pharaoh T C. Palaeozoic Terranes and Their Lithospheric Boundaries Within the Trans-European Suture Zone (TESZ): A Review[J]. Tectonophysics , 1999, 314 (1/2/3) : 17-41.
[64] Berthelsen A. The Tornquist Zone Northwest of the Carpathians: An Intraplate Pseudosuture[J]. Gff , 1998, 120 (2) : 223-230. DOI:10.1080/11035899801202223
[65] Torsvik T H, Rehnstrns E F. The Tornquist Sea and Baltica-Avalonia Docking[J]. Tectonophysics , 2003, 362 (1) : 67-82.
[66] Matte P. Continental Subduction and Exhumation of HP Rocks in Paleozoic Orogenic Belts: Uralides and Variscides[J]. GFF , 1998, 120 (2) : 209-222. DOI:10.1080/11035899801202209
[67] Villaseca C, Castiñeiras P, Orejana D. Early Ordovician Metabasites from the Spanish Central System: A Remnant of Intraplate HP Rocks in the Central Iberian Zone[J]. Gondwana Research , 2015, 27 (1) : 392-409. DOI:10.1016/j.gr.2013.10.007
[68] Berger J, Féménias O, Ohnenstetter D, et al. New Occurrence of UHP Eclogites in Limousin (French Massif Central): Age, Tectonic Setting and Fluid-Rock Interactions[J]. Lithos , 2010, 118 (3) : 365-382.
[69] Godard G, Mabit J L. Peraluminous Sapphirine For-med During Retrogression of a Kyanite-Bearing Eclogite from Pays de Léon, Armorican Massif, France[J]. Lithos , 1998, 43 (1) : 15-29. DOI:10.1016/S0024-4937(98)00004-8
[70] Giacomini F, Bomparola R M, Ghezzo C. Petrology and Geochronology of Metabasites with Eclogite Facies Relics from NE Sardinia: Constraints for the Palaeozoic Evolution of Southern Europe[J]. Lithos , 2005, 82 (1) : 221-248.
[71] Palmeri R, Fanning M, Franceschelli M, et al. SHRIMP Dating of Zircons in Eclogite from the Variscan Basement in North-Eastern Sardinia (Italy)[J]. Neues Jahrbuch für Mineralogie-Monatshefte , 2004, 2004 (6) : 275-288. DOI:10.1127/0028-3649/2004/2004-0275
[72] Glodny J, Ring U, Kühn A, et al. Crystallization and Very Rapid Exhumation of the Youngest Alpine Eclogites (Tauern Window, Eastern Alps) from Rb/Sr Mineral Assemblage Analysis[J]. Contributions to Mineralogy and Petrology , 2005, 149 (6) : 699-712. DOI:10.1007/s00410-005-0676-5
[73] Massonne H J, Kopp J. A Low-Variance Mineral Assemblage with Talc and Phengite in an Eclogite from the Saxonian Erzgebirge, Central Europe, and Its P-T Evolution[J]. Journal of Petrology , 2005, 46 (2) : 355-375.
[74] Casado B O, Gebauer D, Schäfer H J, et al. A Single Devonian Subduction Event for the HP/HT Metamorphism of the Cabo Ortegal Complex Within the Iberian Massif[J]. Tectonophysics , 2001, 332 (3) : 359-385. DOI:10.1016/S0040-1951(00)00210-9
[75] Schmädicke E, Mezger K, Cosca M A, et al. Variscan Sm-Nd and Ar-Ar Ages of Eclogite Facies Rocks from the Erzgebirge, Bohemian Massif[J]. Journal of Metamorphic Geology , 1995, 13 (5) : 537-552. DOI:10.1111/jmg.1995.13.issue-5
[76] Werner O, Lippolt H J. White Mica 40Ar/39Ar Ages of Erzgebirge Metamorphic Rocks: Simulating the Chronological Results by a Model of Variscan Crustal Imbrication[J]. Geological Society London Special Publications , 2000, 179 (1) : 323-336. DOI:10.1144/GSL.SP.2000.179.01.19
[77] Hatcher R D. Developmental Model for the Southern Appalachians[J]. Geological Society of America Bulletin , 1972, 83 (9) : 2735-2760. DOI:10.1130/0016-7606(1972)83[2735:DMFTSA]2.0.CO;2
[78] Vecoli M, Samuelsson J. Quantitative Evaluation of Microplankton Palaeobiogeography in the Ordovician-Early Silurian of the Northern Trans European Suture Zone: Implications for the Timing of the Avalonia-Baltica Collision[J]. Review of Palaeobotany & Palynology , 2001, 115 (1/2) : 43-68.
[79] Thybo H. Geophysical Characteristics of the Tornquist Fan Area, Northwest Trans-European Suture Zone: Indication of Late Carboniferous to Early Permian Dextral Transtension[J]. Geological Magazine , 1997, 134 (5) : 597-606. DOI:10.1017/S0016756897007267
[80] Bayer U, Scheck M, Rabbel W, et al. An Integrated Study of the NE German Basin[J]. Tectonophysics , 1999, 314 (1) : 285-307.
[81] Marotta A M, Bayer U, Scheck M, et al. The Stress Field Below the NE German Basin: Effects Induced by the Alpine Collision[J]. Geophysical Journal International , 2001, 144 (2) : F8-F12.
[82] Ziegler P A, Schumacher M E, Dezes P, et al. Post-Variscan Evolution of the Lithosphere in the Rhine Graben Area: Constraints from Subsidence Modelling[J]. Geological Society London Special Publications , 2004, 223 (1) : 289-317. DOI:10.1144/GSL.SP.2004.223.01.13
[83] Artemieva I M, Meissner R. Crustal Thickness Controlled by Plate Tectonics: A Review of Crust-Mantle Interaction Processes Illustrated by European Examples[J]. Tectonophysics , 2012, 530 : 18-49.
[84] King P B. The Ouachita and Appalachian Orogenic Belts[M]//Alan E M Nairn, Francis G Stehli. The Gulf of Mexico and the Caribbean. New York: Springer, 1975: 201-241.
[85] Hatcher R D, Thomas W A, Viele G W. The Appalachian-Ouachita Orogen in the United States [M]. Boulder: Geological Society of America, 1989 .
[86] Faill R T. A Geologic History of the North-Central Appalachians; Part 1, Orogenesis from the Mesoproterozoic Through the Taconic Orogeny[J]. American Journal of Science , 1997, 297 (6) : 551-619. DOI:10.2475/ajs.297.6.551
[87] Van Staal C R, Dewey J F, Niocaill C M, et al. The Cambrian-Silurian Tectonic Evolution of the Northern Appalachians and British Caledonides: History of a Complex, West and Southwest Pacific-Type Segment of Iapetus[J]. Geological Society of London Special Publications , 1998, 143 (1) : 197-242. DOI:10.1144/GSL.SP.1998.143.01.17
[88] Lafrance B, Williams P F. Silurian Deformation in Eastern Notre Dame Bay, Newfoundland[J]. Canadian Journal of Earth Sciences , 1992, 29 (9) : 1899-1914. DOI:10.1139/e92-148
[89] Wones D R, Sinha A K. A Brief Review of Early Ordovician to Devonian Plutonism in the N American Caledonides[J]. Geological Society London Special Publications , 1988, 38 (1) : 381-388. DOI:10.1144/GSL.SP.1988.038.01.22
[90] Miller B V, Stewart K G, Whitney D L. Three Tectonothermal Pulses Recorded in Eclogite and Amphibolite of the Eastern Blue Ridge, Southern Appalachians[J]. Geological Society of America Memoirs , 2010, 206 : 701-724. DOI:10.1130/978-0-8137-1206-2
[91] Glover L, Speer A, Russell G S, et al. Ages of Regional Metamorphism and Ductile Deformation in the Central and Southern Appalachians[J]. Lithos , 1983, 16 (3) : 223-245. DOI:10.1016/0024-4937(83)90026-9
[92] Osberg P H. Silurian to Lower Carboniferous Tectonism in the Appalachians of the USA[J]. Geological Society London Special Publications , 1988, 38 (1) : 449-452. DOI:10.1144/GSL.SP.1988.038.01.28
[93] Park H, Barbeau Jr D L, Rickenbaker A, et al. Application of Foreland Basin Detrital-Zircon Geochronology to the Reconstruction of the Southern and Central Appalachian Orogen[J]. The Journal of Geology , 2010, 118 (1) : 23-44. DOI:10.1086/648400
[94] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics , 2013, 593 (3) : 1-19.
[95] Sengör A M C. Timing of Orogenic Events: A Persistent Geological Controversy[C]//Muller D W, McKenzie J A, Weissert H. Controversies in Modern Geology. London:Academic Press, 1991: 405-473.
[96] Meert J G, Van der Voo R, Ayub S. Paleomagnetic Investigation of the Neoproterozoic Gagwe Lavas and Mbozi Complex, Tanzania and the Assembly of Gondwana[J]. Precambrian Research , 1995, 74 (4) : 225-244. DOI:10.1016/0301-9268(95)00012-T
[97] Meert J G. A Synopsis of Events Related to the Assembly of Eastern Gondwana[J]. Tectonophysics , 2003, 362 (1) : 1-40.
[98] Meert J G, Lieberman B S. The Neoproterozoic Assembly of Gondwana and Its Relationship to the Ediacaran-Cambrian Radiation[J]. Gondwana Research , 2008, 14 (1) : 5-21.
[99] Cawood P A, Nemchin A A, Freeman M, et al. Linking Source and Sedimentary Basin: Detrital Zircon Record of Sediment Flux Along a Modern River System and Implications for Provenance Studies[J]. Earth and Planetary Science Letters , 2003, 210 (1) : 259-268.
[100] Machado N, Schrank A, Abreu F R, et al. Resultados Preliminares da Geocronologia U-Pb na Serra do Espinhaço Meridional[J]. Boletim da Sociedade Brasileira Geologia-Núcleo Minas Gerais , 1989, 10 : 171-174.
[101] Cawood P A, Buchan C. Linking Accretionary Orogenesis with Supercontinent Assembly[J]. Earth-Science Reviews , 2007, 82 (3) : 217-256.
[102] Pankhurst R J. West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region [M]. London: Geological Society, 2008 : 2 -410 .
[103] Murphy J B, Pisarevsky S, Nance R D. Potential Geodynamic Relationships Between the Development of Peripheral Orogens Along the Northern Margin of Gondwana and the Amalgamation of West Gondwana[J]. Mineralogy and Petrology , 2013, 107 (5) : 635-650. DOI:10.1007/s00710-012-0207-9
[104] Alkmim F F, Marshak S, Fonseca M A. Assembling West Gondwana in the Amalgamation of West Gondwana[J]. Geology , 2001, 29 (4) : 319-322. DOI:10.1130/0091-7613(2001)029<0319:AWGITN>2.0.CO;2
[105] Veevers J J. Gondwanaland from 650-500 Ma Assembly Through 320 Ma Merger in Pangea to 185-100 Ma Breakup: Supercontinental Tectonics via Stratigraphy and Radiometric Dating[J]. Earth-Science Reviews , 2004, 68 (1) : 1-132.
[106] Da Silva L C, McNaughton N J, Armstrong R, et al. The Neoproterozoic Mantiqueira Province and Its African Connections: A Zircon-Based U-Pb Geochronologic Subdivision for the Brasiliano/Pan-African Systems of Orogens[J]. Precambrian Research , 2005, 136 (3) : 203-240.
[107] Araújo M N C, Vasconcelos P M, da Silva F C A, et al. 40Ar/39Ar Geochronology of Gold Mineralization in Brasiliano Strike-Slip Shear Zones in the Borborema Province, NE Brazil[J]. Journal of South American Earth Sciences , 2005, 19 (4) : 445-460. DOI:10.1016/j.jsames.2005.06.009
[108] Fritz H, Abdelsalam M, Ali K A, et al. Orogen Styles in the East African Orogen: A Review of the Neoproterozoic to Cambrian Tectonic Evolution[J]. Journal of African Earth Sciences , 2013, 86 (4) : 65-106.
[109] Collins A S, Clark C, Plavsa D. Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts[J]. Gondwana Research , 2014, 25 (1) : 190-203. DOI:10.1016/j.gr.2013.01.002
[110] Stern R J. Arc-Assembly and Continental Collision in the Neoproterozoic African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences , 1994, 22 : 319-351. DOI:10.1146/annurev.ea.22.050194.001535
[111] Pinna P, Jourde G, Calvez J Y, et al. The Mozambique Belt in Northern Mozambique: Neoproterozoic (1100-850 Ma) Crustal Growth and Tectogenesis, and Superimposed Pan-African (800-550 Ma) Tectonism[J]. Precambrian Research , 1993, 62 (1) : 1-59.
[112] Muhongo S. Anatomy of the Mozambique Belt of Eastern and Southern Africa: Evidence from Tanzania[J]. Gondwana Research , 1999, 2 (3) : 369-375. DOI:10.1016/S1342-937X(05)70276-8
[113] Vogt M, Kröner A, Poller U, et al. Archaean and Palaeoproterozoic Gneisses Reworked During a Neoproterozoic (Pan-African) High-Grade Event in the Mozambique Belt of East Africa: Structural Relationships and Zircon Ages from the Kidatu Area, Central Tanzania[J]. Journal of African Earth Sciences , 2006, 45 (2) : 139-155. DOI:10.1016/j.jafrearsci.2006.01.012
[114] Bingen B, Jacobs J, Viola G, et al. Geochronology of the Precambrian Crust in the Mozambique Belt in NE Mozambique, and Implications for Gondwana Assembly[J]. Precambrian Research , 2009, 170 (3) : 231-255.
[115] Wit M J, Bowring S A, Ashwal L D, et al. Age and Tectonic Evolution of Neoproterozoic Ductile Shear Zones in Southwestern Madagascar, with Implications for Gondwana Studies[J]. Tectonics , 2001, 20 (1) : 1-45. DOI:10.1029/2000TC900026
[116] Berhe S M. Ophiolites in Northeast and East Africa: Implications for Proterozoic Crustal Growth[J]. Journal of the Geological Society , 1990, 147 (1) : 41-57. DOI:10.1144/gsjgs.147.1.0041
[117] Abdelsalam M G, Stern R J. Sutures and Shear Zones in the Arabian-Nubian Shield[J]. Journal of African Earth Sciences , 1996, 23 (3) : 289-310. DOI:10.1016/S0899-5362(97)00003-1
[118] Jöns N, Schenk V. Relics of the Mozambique Ocean in the Central East African Orogen: Evidence from the Vohibory Block of Southern Madagascar[J]. Journal of Metamorphic Geology , 2008, 26 (1) : 17-28.
[119] Kroner A, Sacchi R, Jaeckel P, et al. Kibaran Magmatism and Pan-African Granulite Metamorphism in Northern Mozambique: Single Zircon Ages and Regional Implications[J]. Journal of African Earth Sciences , 1997, 25 (3) : 467-484. DOI:10.1016/S0899-5362(97)00117-6
[120] Raharimahefa T, Kusky T M. Temporal Evolution of the Angavo and Related Shear Zones in Gondwana: Constraints from LA-MC-ICP-MS U-Pb Zircon Ages of Granitoids and Gneiss from Central Madagascar[J]. Precambrian Research , 2010, 182 (1) : 30-42.
[121] Dobmeier C J, Raith M M. Crustal Architecture and Evolution of the Eastern Ghats Belt and Adjacent Regions of India[J]. Geological Society London Special Publications , 2003, 206 (1) : 145-168. DOI:10.1144/GSL.SP.2003.206.01.09
[122] Crowe W A, Cosca M A, Harris L B. 40Ar/39Ar Geochronolgy and Neoproterozoic Tectonics Along the Northern Margin of the Eastern Ghats Belt in North Orissa, India[J]. Precambrian Research , 2001, 108 (3) : 237-266.
[123] Sengupta P, Sen J, Dasgupta S, et al. Ultra-High Temperature Metamorphism of Metapelitic Granulites from Kondapalle, Eastern Ghats Belt: Implications for the Indo-Antarctic Correlation[J]. Journal of Petrology , 1999, 40 (7) : 1065-1087. DOI:10.1093/petroj/40.7.1065
[124] Mezger K, Cosca M A. The Thermal History of the Eastern Ghats Belt (India) as Revealed by U-Pb and 40Ar/39Ar Dating of Metamorphic and Magmatic Minerals: Implications for the SWEAT Correlation[J]. Precambrian Research , 1999, 94 (3) : 251-271.
[125] Bose S, Das K, Arima M. Multiple Stages of Melting and Melt-Solid Interaction in the Lower Crust: New Evidence from UHT Granulites of Eastern Ghats Belt, India[J]. Journal of Mineralogical and Petrological Sciences , 2008, 103 (4) : 266-272. DOI:10.2465/jmps.080312
[126] Simmat R, Raith M M. U-Th-Pb Monazite Geochronometry of the Eastern Ghats Belt, India: Timing and Spatial Disposition of Poly-Metamorphism[J]. Precambrian Research , 2008, 162 (1) : 16-39.
[127] Dasgupta S, Bose S, Das K. Tectonic Evolution of the Eastern Ghats Belt, India[J]. Precambrian Research , 2013, 227 : 247-258. DOI:10.1016/j.precamres.2012.04.005
[128] Sarkar A, Pati U C, Panda P K, et al. Late Archaean Charnockitic Rocks from the Northern Marginal Zones of the Eastern Ghats Belt: A Geochronological Study[J]. Geol Surv India Spec Publ , 2000, 57 : 171-179.
[129] Santosh M, Collins A S, Tamashiro I, et al. The Timing of Ultrahigh-Temperature Metamorphism in Southern India: U-Th-Pb Electron Microprobe Ages from Zircon and Monazite in Sapphirine-Bearing Granulites[J]. Gondwana Research , 2006, 10 (1) : 128-155.
[130] Santosh M, Maruyama S, Sato K. Anatomy of a Cambrian Suture in Gondwana: Pacific-Type Orogeny in Southern India?[J]. Gondwana Research , 2009, 16 (2) : 321-341. DOI:10.1016/j.gr.2008.12.012
[131] Cooray C P. The Precambrian of Sri Lanka: A Historical Review[J]. Precambrian Research , 1994, 66 (1/2/3/4) : 3-18.
[132] Braun I, Kriegsman L M. Proterozoic Crustal Evolution of Southernmost India and Sri Lanka[J]. Geological Society London Special Publications , 2003, 206 (1) : 169-202. DOI:10.1144/GSL.SP.2003.206.01.10
[133] Boger S D. Antarctica-Before and After Gondwana[J]. Gondwana Research , 2011, 19 (2) : 335-371. DOI:10.1016/j.gr.2010.09.003
[134] Jacobs J, Bauer W, Fanning C M. Late Neoproterozoic/Early Palaeozoic Events in Central Dronning Maud Land and Significance for the Southern Extension of the East African Orogen into East Antarctica[J]. Precambrian Research , 2003, 126 (1) : 27-53.
[135] Jacobs J, Klemd R, Fanning C M, et al. Extensional Collapse of the Late Neoproterozoic-Early Palaeozoic East African-Antarctic Orogen in Central Dronning Maud Land, East Antarctica[J]. Geological Society London Special Publications , 2003, 206 (1) : 271-287. DOI:10.1144/GSL.SP.2003.206.01.14
[136] Zhao Y, Liu X C, Fanning C M, et al. The Grove Mountains, a Segment of a Pan-African Orogenic Belt in East Antarctica[C]//Abstract Volume of the 31th IGC.Rio de Janeiro:[s.n.], 2000: 11-13.
[137] Zhao Y, Liu X H, Liu X C, et al. Pan-African Events in Prydz Bay, East Antarctica, and Their Implications for East Gondwana Tectonics[J]. Geological Society London Special Publications , 2003, 206 (1) : 231-245. DOI:10.1144/GSL.SP.2003.206.01.12
[138] Yoshida M. Assembly of East Gondwanaland During the Mesoproterozoic and Its Rejuvenation During the Pan-African Period[J]. Geol Soc India Mem , 1995, 34 : 22-45.
[139] Yoshida M, Jacobs J, Santosh M, et al. Role of Pan-African Events in the Circum-East Antarctic Orogen of East Gondwana: A Critical Overview[J]. Geological Society London Special Publications , 2003, 206 (1) : 57-75. DOI:10.1144/GSL.SP.2003.206.01.05
[140] Liu X, Zhao Y, Hu J. The c. 1000-900 Ma and c. 550-500 Ma Tectonothermal Events in the Prince Charles Mountains-Prydz Bay Region, East Antarctica, and Their Relations to Supercontinent Evolution[J]. Geological Society London Special Publications , 2013, 383 (1) : 95-112. DOI:10.1144/SP383.6
[141] Bauer W, Thomas R J, Jacobs J. Proterozoic-Cambrian History of Dronning Maud Land in the Context of Gondwana Assembly[J]. Geological Society London Special Publications , 2003, 206 (1) : 247-269. DOI:10.1144/GSL.SP.2003.206.01.13
[142] Toyoshima T, Osanai Y, Nogi Y. Macroscopic Geological Structures of the Napier and Rayner Complexes, East Antarctica[J]. Geological Society London Special Publications , 2008, 308 (1) : 139-146. DOI:10.1144/SP308.6
[143] Martelat J E, Lardeaux J M, Nicollet C, et al. Strain Pattern and Late Precambrian Deformation History in Southern Madagascar[J]. Precambrian Research , 2000, 102 (1) : 1-20.
[144] Shiraishi K, Kagami H. Sm-Nd and Rb-Sr Ages of Metamorphic Rocks from the Sør Rondane Mountains, East Antarctica[C]//Yoshida Y. Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific, 1992: 29-35.
[145] Fitzsimons I C W. Proterozoic Basement Provinces of Southern and Southwestern Australia, and Their Correlation with Antarctica[J]. Geological Society London Special Publications , 2003, 206 (1) : 93-130. DOI:10.1144/GSL.SP.2003.206.01.07
[146] Harris L B. Neoproterozoic Sinistral Displacement Along the Darling Mobile Belt, Western Australia, During Gondwanaland Assembly[J]. Journal of the Geological Society, London , 1994, 15 (3) : 90-904.
[147] Blight D F, Compston W, Wilde S A. The Logue Brook Granite: Age and Significance of Deformation Zones Along the Darling Scarp[J]. Western Australian Geological Survey, Annual Report for 1981 , 1980 : 72-80.
[148] Powell C M A, Li Z X, McElhinny M W, et al. Paleomagnetic Constraints on Timing of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana[J]. Geology , 1993, 21 (10) : 889-892. DOI:10.1130/0091-7613(1993)021<0889:PCOTOT>2.3.CO;2
[149] Wilde S A. Evolution of the Western Margin of Australia During the Rodinian and Gondwanan Supercontinent Cycles[J]. Gondwana Research , 1999, 2 (3) : 481-499. DOI:10.1016/S1342-937X(05)70287-2
[150] Nelson D R. Compilation of SHRIMP U-Pb Zircon Geochronological Data Record[C]//Geological Survey of Western Australia Record 1997/2. Perth: Geological Survey of Western Australia, 1997:189.
[151] Halpin J A, Crawford A J, Direen N G, et al. Naturaliste Plateau, Offshore Western Australia: A Submarine Window into Gondwana Assembly and Breakup[J]. Geology , 2008, 36 (10) : 807-810. DOI:10.1130/G25059A.1
[152] Mitchell R N, Kilian T M, Evans D A D. Supercontinent Cycles and the Calculation of Absolute Palaeolongitude in Deep Time[J]. Nature , 2012, 482 (7384) : 208-211. DOI:10.1038/nature10800
http://dx.doi.org/10.13278/j.cnki.jjuese.201604101
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

李三忠, 杨朝, 赵淑娟, 李玺瑶, 郭玲莉, 余珊, 刘鑫, 索艳慧, 兰浩圆
Li Sanzhong, Yang Zhao, Zhao Shujuan, Li Xiyao, Guo Lingli, Yu Shan, Liu Xin, Suo Yanhui, Lan Haoyuan
全球早古生代造山带(Ⅰ):碰撞型造山
Global Early Paleozoic Orogens (Ⅰ): Collision-Type Orogeny
吉林大学学报(地球科学版), 2016, 46(4): 945-967
Journal of Jilin University(Earth Science Edition), 2016, 46(4): 945-967.
http://dx.doi.org/10.13278/j.cnki.jjuese.201604101

文章历史

收稿日期: 2016-03-16

相关文章

工作空间