文章快速检索  
  高级检索
大兴安岭中北段老道口闪长岩锆石U-Pb年龄、地球化学特征及构造意义
刘永江1,2, 刘宾强1,2, 冯志强1, 温泉波1, 李伟民1, 张铁安3, 李小玉3, 杜兵盈3    
1. 吉林大学地球科学学院, 长春 130061;
2. 东北亚矿产资源评价国土资源部重点实验室, 长春 130061;
3. 黑龙江省区域调查研究所, 哈尔滨 150080
摘要: 鄂伦春自治旗老道口闪长质岩体位于兴蒙造山带东段、大兴安岭中北段,原定义为老道口单元的老道口岩体主要由闪长岩、石英二长岩和闪长玢岩组成。锆石SIMS U-Pb定年测定闪长岩年龄为(126.09±0.95)Ma,属于早白垩世岩浆活动的产物,并非前人认为的形成于寒武纪。闪长岩的w(SiO2)为56.13%~57.91%,w(TiO2)为0.97%~0.99%,w(MgO)和w(TFe2O3)分别为2.00%~2.12%和6.73%~7.41%,Mg#值为36.00~38.00,w(Na2O)为4.29%~4.53%,w(K2O)为1.38%~1.59%,K2O/Na2O为0.31~0.37,w(Al2O3)为17.95%~18.36%,相对富钠高铝,稀土元素球粒陨石标准化曲线显示其具有富含轻稀土元素(LREE)、贫重稀土元素(HREE)以及Eu(0.85~0.87)弱负异常的特点。老道口闪长岩强不相容元素Th、U、K显著富集和高场强元素Nb、Ta明显亏损,其岩浆源区可能为俯冲流体交代的岩石圈地幔。闪长岩富集Ba、K、Rb、Th、U等大离子亲石元素,高场强元素Nb、Ta、Ti、P等明显亏损,指示了与俯冲作用相关的地球化学特征。结合老道口岩体地球化学特点和区域构造背景,认为该岩体很可能形成于蒙古-鄂霍茨克洋闭合造山后的岩石圈伸展构造环境。
关键词: SIMS锆石U-Pb 测年     蒙古-鄂霍茨克缝合带     闪长岩     岩石圈地幔     老道口岩体     兴蒙造山带    
SIMS Zircon U-Pb Age, Petrogeochemistry and Its Tectonic Implication of Laodaokou Diorite in the Mid-North Part of Great Xing'an Range
Liu Yongjiang1,2 , Liu Binqiang1,2, Feng Zhiqiang1, Wen Quanbo1, Li Weimin1, Zhang Tiean3, Li Xiaoyu3, Du Bingying3    
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources of China, Changchun 130061, China;
3. Heilongjiang Province Institute of Regional Geology Survey, Harbin 150080, China
Supported by National Key Fundamental Reasearch Development Programme “973”(2013CB429802); Geological Survey Projects of China Geological Survey(12120115001001-08)and the Open Fund Project of the Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources of China
Abstract: Laodaokou unit is located in Oroqen Autonomous Banner, Inner Mongolia, the east of Xing'an Mongolian orogenic belt, northern Great Xing'an Range. The unit is mainly composed of diorite, adamellite, and dioritic porphyrite. SIMS U-Pb dating of zircon of the diorite provides the age of (126.09±0.95) Ma, indicating that the plution was formed in Early Cretaceous instead of Cambrian as thought before. The major element data show that the diorites contains 56.13%-57.91% of SiO2, 0.97%-0.99% of TiO2, 2.00%-2.12% of MgO, 6.73%-7.41% of TFe2O3, 36.00-38.00 of Mg#, 4.29%-4.53% of Na2O, 1.38%-1.59% of K2O, 17.95%-18.36% of Al2O3. The K2O/Na2O ratios range from 0.31 to 0.37. The diorites are rich in alumina and sodium relatively. The rare earth elements chondrite standardized curves show that they are rich in light REE and depleted of heavy REE with weak negative δEu (0.85-0.87). Laodaokou plution is rich in large ion lithophile element (LILE)(e.g., Ba、K、Rb、Th、U), but depleted of high field strength elements (HFSE) (e. g., Nb、Ta、Ti、and P). The geochemical signatures above imply a characteristic related to subduction, and this suggests that the magmatic source of Laodaokou diorites were from the lithospheric mantle, which was metasomatosed by subduction fluid. Combining with the geochemical characteristics of Laodaokou plution and its regional tectonic settings, we conclude that the plution might be formed under a lithospheric extension after the closure of Mongolia-Okhotsk Ocean.
Key words: SIMS ziron U-Pb dating     Mongolia-Okhotsk suture zone     diorite     lithospheric mantle     Laodaokou diorites     Xing'an Mongolian orogenic belt    

0 引言

兴蒙造山带是西伯利亚板块和华北板块之间中小块体群组成的大范围构造拼合带,显生宙以来经历了额尔古纳地块、兴安地块、松嫩地块、佳木斯地块、兴凯地块等的拼合[1, 2, 3, 4, 5]。古生代期间,兴蒙造山带主要受古亚洲洋构造域的影响;中生代,经历了蒙古鄂霍茨克构造体系和环太平洋构造体系的叠加与改造[5, 6, 7, 8, 9, 10],具有复杂的构造活动和岩浆作用。大兴安岭地区位于兴蒙造山带东段,横跨于额尔古纳地块、兴安地块、松嫩地块之上,主体部分位于兴安地块和额尔古纳地块,以出露大面积中生代火山岩为特征。

近年来研究表明,大兴安岭地区晚中生代岩浆活动开始于晚侏罗世,早白垩世达到高峰,止于晚白垩世。关于岩浆岩形成的构造背景,尚存在较大争议,目前有地幔柱成因[5, 11]、蒙古鄂霍茨克洋俯冲成因[12, 13, 14]、太平洋板块俯冲成因[15, 16]等多种观点。然而,越来越多的学者把大兴安岭中生代岩浆岩的成因构造与蒙古鄂霍茨克海闭合,发生碰撞后伸展的环境相联系[13, 14, 17, 18, 19]。如李世超等[20]认为形成年龄为135 Ma的大兴安岭中段柴河地区玛尼吐组火山岩具有明显的减压-伸展的成因特征,时间和空间上[21]均与蒙古鄂霍茨克洋闭合造山后伸展有很好的对应,形成于蒙古鄂霍茨克闭合造山后的岩石圈伸展构造环境;武广等[22]认为大兴安岭北端洛古河东花岗岩形成年龄为(129.8±2.2)Ma,属后碰撞花岗岩,形成于蒙古鄂霍茨克海碰撞造山过程的后碰撞阶段;杨奇荻等[23]指出大兴安岭中南段甘珠尔庙地区晚中生代花岗岩((139~125)Ma)的形成背景与蒙古鄂霍茨克洋闭合碰撞后伸展有关;Ying等[24]从A型花岗岩、变质核杂岩和同沉积盆地的角度论证了大兴安岭中生代火山岩与蒙古鄂霍茨克造山带的重力坍塌形成的伸展构造有关。然而,多数研究都集中于大兴安岭北段、南段及额尔古纳地块上的满洲里、根河等地区,而对位于大兴安岭中北段的鄂伦春地区中生代火山岩的研究明显滞后,高精度年代学数据和元素地球化学资料很少。

本次研究区位于我国内蒙古东北地区的兴蒙造山带东段、大兴安岭中北段、蒙古鄂霍茨克造山带的东南侧(图 1a),地理位置上处于承接南北的重要作用。鄂伦春老道口闪长岩体除了1∶20万阿里河幅赵海山,表尚虎,陈荣升,等.阿里河幅(M51(16))1∶20万区域地质调查报告.哈尔滨:黑龙江省地质矿产局,1994.中提到外,鲜有其他报道。本文对老道口岩体进行了详细的岩相学、SIMS U-Pb测年和地球化学研究,以期阐明其成因及构造约束,为进一步深刻理解大兴安岭地区中生代构造岩浆活动提供科学依据。

a据文献[25]修编;b据文献[26]修编。图 1 东北地区构造简图(a) 及研究区区域地质图 (b)Fig.1 Structural sketch map of Northeast China (a) and regional geological map in the study area (b)
1 地质背景

大兴安岭地区鄂伦春自治旗老道口位于蒙古鄂霍茨克缝合-造山带的东南侧、大兴安岭中北段。大兴安岭以其鲜明的NE走向横跨在古亚洲洋构造域不同地质单元之上,其巨型火山岩带呈NNE向横亘于西伯利亚板块和华北板块及其缝合带上[21]。大兴安岭从晚侏罗世进入强烈的火山喷发阶段,继之是大规模的岩浆侵位,早白垩世时大兴安岭地区已经属于造山后环境[27, 28, 29, 30, 31, 32]。研究区位于大兴安岭中北部,夹持于新林喜桂图旗缝合带和贺根山嫩江黑河缝合带之间。大兴安岭北部地区晚中生代火山-岩浆活动强烈,广泛发育晚侏罗世早白垩世陆相中基性和中酸性火山岩,自下而上依次为上侏罗统塔木兰沟组,下白垩统吉祥峰组、上库力组和伊列克得组[33, 34]。这套火山岩的时代过去多被认为是晚侏罗世[35],但目前的研究表明晚侏罗世火山岩仅分布在局部地区[36],而大范围分布的火山岩的时代主要为早白垩世[7]。根据阿里河幅1∶20万地质图资料[25],研究区主要出露的岩石单元包括泥盆纪粗粒二长花岗岩、中粒二长闪长岩,侏罗纪中细粒钾长花岗岩、中粒二长花岗岩和白垩纪花岗斑岩等(图 1)。

2 岩体地质及岩相学特征

老道口岩体出露于老道口西北约1 km处,呈岩株产出,NE向展布,面积2.8 km2[37]。据野外观察发现,该岩体侵入泥盆纪阿里河单元中,在接触处有3 cm左右的冷凝边和后者的捕掳体,界线波状弯曲;同时,该岩体又侵入到邻区早白垩世花岗斑岩,且侵入关系明显。老道口岩体岩石类型主体为闪长岩、闪长玢岩,局部为石英二长岩,岩石颜色变化较大,总体呈灰绿色,局部呈灰黑、灰褐色,且结构不均匀。岩石片理发育,强烈变形,结构疏松,极易风化呈砂状。岩体相带不明显,各种岩石类型之间呈渐变过渡关系(图 2a)。

a、b(LDK-01-a).闪长岩野外露头及镜下; c、d(LDK-02).石英二长岩野外露头及镜下。Pl.斜长石;Q.石英;Hb.角闪石;Bt.黑云母;Kfs.钾长石。图 2 老道口闪长岩体野外照片及显微照片(正交偏光)Fig.2 Photograph of outcrops and photomicrogranphs of diorites in Laodaokou

闪长岩(LDK-01-a):主要矿物成分为斜长石(~60%)、角闪石(~25%)和黑云母(~15%),全晶质结构,块状构造。斜长石半自形他形,一级灰白干涉色,二轴晶,聚片双晶、卡氏双晶发育,部分发生绢云母化蚀变。角闪石半自形他形粒状、板条状,单偏光镜下绿色,多色性明显,横切面对称消光,发育两组角闪石式解理,夹角56°(~124°)。黑云母自形半自形片状,具有显著的多色性和吸收性,一组极完全解理,正中突起,正延性,干涉色二级顶至三级顶,二轴晶负光性,光轴角小。另含有少量磷灰石、磁铁矿、榍石和锆石等副矿物(图 2ab)。

石英二长岩(LDK-02):似斑状结构,斑晶主要为斜长石(~40%)、碱性长石(~40%)和石英(~10%),基质为细碎的石英和长石颗粒(~10%),块状构造。斜长石自形半自形,板状、棱角状,聚片双晶发育,表面不干净,发生高岭土化蚀变。碱性长石半自形他形板状、短柱状,粒径较斜长石小,发生帘石化蚀变。石英颗粒较细碎,与破碎的长石颗粒共同构成基质,发育蠕虫结构(图 2 cd)。

闪长玢岩(LDK-03):斑状结构,斑晶主要为斜长石,基质为细碎的石英、长石和角闪石等,块状构造。斜长石(~50%)斑晶和基质中都有,其中,斑晶斜长石(~30%)为自形半自形板状,发育聚片双晶,发生强烈绢云母化和高岭土化。基质主要为石英(~25%)、长石(~20%)、角闪石(~25%)。基质排列杂乱无章,没有定向性。

3 SIMS锆石U-Pb年代学 3.1 样品采集及测试技术

对闪长岩样品(LDK-01-a)进行年龄测定。其中,锆石的挑选工作在河北省廊坊区域地质调查研究所实验室利用标准重矿物分离技术分选完成。锆石的透射光、反射光和阴极发光(CL)图像的采集和SIMS U-Pb年龄测定均在中国科学院地质与地球物理研究所完成。用于U-Pb年龄测定的锆石样品颗粒和锆石标样Plésovice[38](或TEMORA[39])和Qinghu[40]粘贴在环氧树脂靶上,然后抛光使其曝露一半晶面。对锆石进行透射光和反射光显微照相以及阴极发光图像分析,以检查锆石的内部结构和帮助选择适宜的测试点位。样品靶在真空下镀金以备分析。U、Th、Pb的测定在CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见文献[40]。由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成[41]作为普通Pb组成进行校正。同位素比值及年龄误差均为1σ。数据结果处理采用ISOPLOT软件[39, 40, 41, 42, 43, 44]

3.2 测试结果

老道口闪长岩锆石为无色,呈自形-半自形长柱状,大小200~400 μm,长宽比为1∶1~5∶1(图 3a),呈板条状结构,个别颗粒具扇形结构,发育典型岩浆振荡环带,较高的Th/U值(0.64~1.28)(表 1),这些都反映了岩浆锆石的特点[45, 46]。个别颗粒因破碎而显得形态多样(图 3a)。LDK-01-a样品的SIMS锆石U-Pb年结果见图 3表 1。年龄为(121.5±5.3)~(130.9±2.2)Ma。对20个颗粒进行加权平均年龄计算所得结果为(126.09±0.95)Ma,MSWD=0.54,所测20个点均分布在谐和线上或其附近(图 3b),代表该岩体的形成时代,为早白垩世,并非前人认为的形成于寒武纪。

表 1 老道口闪长岩SIMS锆石U-Pb同位素分析结果 Table 1 SIMS zircon U-Pb data of Laodaokou diorite
测点号wB/10-6Th/
U
同位素比值年龄/Ma
UTh207Pb/235U1σ206Pb/238U1σ207Pb/235U1σ206Pb/238U1σ
LDK-01-a0166530.810.132 756.620.019 61.98126.67.9125.02.5
LDK-01-a0272580.810.133 275.740.019 51.56127.06.9124.31.9
LDK-01-a032982900.970.131 593.220.019 61.69125.53.8125.02.1
LDK-01-a041631751.070.138 213.920.019 81.51131.44.9126.61.9
LDK-01-a051181301.100.144 194.480.020 51.68136.85.7130.92.2
LDK-01-a062802620.930.134 213.560.019 61.54127.94.3125.11.9
LDK-01-a071541500.970.138 415.240.019 61.66131.66.5125.32.1
LDK-01-a081922001.040.143 883.610.020 01.55136.54.6127.42.0
LDK-01-a092122681.270.134 793.550.019 71.52128.44.3125.41.9
LDK-01-a101872391.280.133 835.490.019 81.50127.56.6126.61.9
LDK-01-a111721700.990.134 774.890.019 51.64128.45.9124.42.0
LDK-01-a121391611.160.130 214.350.019 71.71124.35.1125.62.1
LDK-01-a1371570.810.140 005.930.019 91.74133.07.4127.22.2
LDK-01-a141631761.080.137 203.930.019 91.54130.54.8126.71.9
LDK-01-a1545290.640.153 476.840.020 11.97145.09.3128.42.5
LDK-01-a162753161.150.138 473.750.020 01.61131.74.6127.52.0
LDK-01-a171001111.110.139 484.850.019 71.56132.66.0125.71.9
LDK-01-a18100760.760.135 334.890.020 11.53128.95.9128.01.9
LDK-01-a19102890.880.136 045.910.019 62.65129.57.2125.03.3
LDK-01-a2051591.160.122 617.550.019 04.39117.48.4121.55.3
图 3 老道口闪长岩锆石CL图锆石(a)和SIMS U-Pb谐和年龄图(b)Fig.3 Cathodoluminescence ( CL) images of zircons(a)and SIMS U-Pb concordia age(b)of Laodaokou diorite
4 岩石地球化学特征 4.1 测试技术

样品元素含量分析测定工作在中国科学院地质与地球物理研究所完成,采用X射线荧光光谱仪对样品的主量元素进行了分析,分析精度和准确度优于5%。通过等离子质谱仪(X-series)进行痕量元素和稀土元素的分析。具体分析结果见表 2

表 2 老道口地区闪长岩主量元素、微量元素和稀土元素质量分数 Table 2 Chemical compositions of major elements,trace elements,and REE elements of Laodaokou diorite
样品号SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5烧失量合计Mg#Na2O/K2O
LDK-03-A56.130.9717.957.410.102.095.894.331.510.342.1698.8836.002.87
LDK-03-B57.910.9718.196.730.082.015.304.291.590.331.6699.0637.002.70
LDK-03-C57.270.9918.366.860.092.125.754.531.480.351.4099.2038.003.06
LDK-03-D57.120.9818.226.740.092.055.874.451.380.341.4098.6438.003.22
LDK-03-E56.930.9718.146.920.092.005.714.311.460.341.5898.4536.002.95
样品号LiScVCrCoNiCuZnGaRbSrYZrNb
LDK-03-A13.6411.69123.3610.3920.9915.3063.3446.5219.365.38708.4720.91180.096.97
LDK-03-B13.8115.00127.189.0819.299.2849.6933.2420.4630.291 018.5221.41181.197.51
LDK-03-C13.5214.58131.796.4619.726.6156.9436.7620.5119.38967.4620.63186.167.03
LDK-03-D12.0414.45128.826.6319.396.5859.9755.6120.6015.511 001.3220.52183.437.08
LDK-03-E13.3912.20132.627.1517.417.5145.9946.0020.5412.74879.1920.73176.467.13
样品号CsBaLaCePrNdSmEuGdTbDyHoErTm
LDK-03-A1.25754.5518.0239.375.6823.655.021.344.330.643.650.752.030.28
LDK-03-B1.67771.2324.0953.827.0028.475.761.504.850.693.880.802.150.31
LDK-03-C0.99820.0322.0739.096.4226.285.441.474.650.663.720.762.040.29
LDK-03-D0.87755.2922.7645.726.7227.555.651.504.750.693.780.752.050.29
LDK-03-E1.24767.1720.5537.646.3126.095.391.454.600.673.760.772.080.29
样品号YbLuHfTaPbThUEu/
Eu*
Ce/
Ce*
La/
Sm
Nb/
Ta
Sr/
Y
Sm/
Nd
ΣREE
LDK-03-A1.850.314.460.3925.892.540.700.330.283.5917.870.370.21106.92
LDK-03-B2.000.324.740.448.733.550.960.330.224.1817.070.370.20135.64
LDK-03-C1.880.314.770.419.412.690.760.320.234.0617.150.370.21115.08
LDK-03-D1.890.314.700.409.202.860.720.320.244.0317.700.370.21124.41
LDK-03-E1.890.304.520.418.012.600.620.320.213.8117.390.370.21111.79
注:主量元素质量分数单位为%;微量元素和稀土元素质量分数单位为10-6。Mg#=100(w(MgO)/40.31)/(w(MgO)/40.31+w(TFeO)/71.85)。
4.2 主量元素

老道口闪长岩w(SiO2)为56.13%~57.91%,w(Al2O3)为17.95%~18.36%,具有高铝质特点。样品的w(Na2O)和w(K2O)分别为4.29%~4.53%和1.38%~1.59%,Na2O/K2O值为2.70~3.22,表现出相对富Na2O的特征。在w(SiO2)-w(K2O+N2O)图解(图 4a)中,落在了闪长岩和正长闪长岩范围内。在w(SiO2)-w(K2O)图解(图 4b)中,样品落入了钙碱性系列范围内,其里特曼指数为0.83~0.89,小于3.3,具有钙碱性系列的岩浆演化趋势。w(MgO)中等,为2.00%~2.12%,Mg#值为36.00~38.00,小于高Mg闪长岩的Mg#A/CNK为0.92~0.99,A/NK多为2.03~2.09,为准铝质岩石(图 5)。

a图岩石边界类型引自文献[47];b底图据文献[48]。图 4 老道口闪长岩的硅碱图解(a)和w(SiO2)-w(K2O)图解(b)Fig.4 TAS(a) and w(SiO2)-w(K2O)(b)diagram of diorite in Laodaokou area
A/CNK=n(Al2O3)/n(CaO+Na2O+K2O);A/NK=n(Al2O3)/n(Na2O+K2O)。底图据文献[49]图 5 老道口闪长岩A/CNK-A/NK图解Fig.5 A/CNK-A/NK diagram of Laodaokou diorite
4.3 微量元素

老道口地区闪长岩稀土元素质量分数不高,w(ΣREE)=(106.92~135.64)×10-6,LREE/HREE值为6.73~8.04,(La/Yb)N=6.57~8.12,反映轻重稀土分馏程度较高。δEu为0.85~0.87,表现出铕的弱负异常。在球粒陨石标准化的稀土元素配分曲线(图 6a)上,闪长岩轻稀土富集,曲线向右陡倾,重稀土相对亏损且分异特征不明显。在原始地幔标准化蛛网图(图 6b)上,相对于高场强元素和HREE,这些闪长岩富集大离子亲石元素(LILE:Ba,K)和元素化学性质活泼的不相容元素(U,Th,Pb),相对亏损高场强元素(Nb、Ta、Zr、Hf、Ti),指示了与俯冲作用相关的微量元素地球化学特征。闪长岩具有较高的w(Sr)((708.47~1 018.52)×10-6)及低的w(Yb)((1.85~2.00)×10-6),并且具有较高的Nb/Ta及Sr/Y值,分别为17.07~17.87及33.88~48.80(表 2),暗示了岩浆源区可能有陆壳物质的参与。但从变化不大的微量元素比值La/Sm(3.59~4.18)来看,地壳混染作用在岩浆演化过程中的影响是不大的,因此元素地球化学特征主要反映了其源区的地球化学性质[18, 52]

a底图据文献[50];b底图据文献[51]。图 6 老道口闪长岩稀土元素球粒陨石标准化配分图(a)和微量元素地幔标准化蛛网图(b)Fig.6 Chondrite normalized rare earth element pattern diagram(a)and primitive mantle normalized spider diagram(b) of Laodaokou dioritie batholith
5 讨论 5.1 岩石成因

老道口岩体富集大离子亲石元素(Ba,K)和元素化学性质活泼的不相容元素(U,Th,Pb),明显亏损高场强元素(HFSE:Nb,Ta,Ti,P),指示了与俯冲作用相关的微量元素地球化学特征[53]。老道口闪长岩强不相容元素(Th,U,K)显著富集和高场强元素(Nb,Ta)明显亏损,具该特点的闪长岩岩浆源区可能为俯冲流体交代的岩石圈地幔或是陆壳物质。由表 2可知,Nb/Ta值为17.07~17.87,明显高于壳源岩浆的Nb/Ta值(11~12),而与幔源岩浆的Nb/Ta值(17.5)[54]相符,反映了岩浆的幔源特点。Zr/Hf值(38.23~40.38)接近于原始地幔值(36.27),远高于大陆地壳值(11),同样暗示岩浆的形成与地幔有关。因此,微量元素特征显示老道口闪长岩体岩浆应来源于地幔,而非地壳。样品的Th/Ce值为0.06~0.07,高于MORB(0.016)和OIB(0.05)的Th/Ce值,表明俯冲沉积物对源区组分有一定贡献[52]。Th/Ta值(6.34~8.07)、Th/Nb值(0.36~0.47)高,较好地反映了源区受俯冲流体交代作用的影响[55, 56, 57],而在Rb/Y-Nb/Y和Nb/Zr-Th/Zr图解(图 7)中可以看出,闪长岩表现出流体交代富集的趋势。再者,大兴安岭中生代火山岩和花岗岩的Sr-Nd同位素组成稳定,εNd(t)值绝大多数集中在1~2,初始87Sr/86Sr值多数集中在0.705左右,变化范围大,反映火山岩和花岗质岩石的源区主要为起源于地幔的年轻地壳物质组成。因此,笔者认为老道口闪长岩可能是受俯冲的板片流体/沉积物交代的岩石圈地幔部分熔融而成,在上升过程中未受到明显的地壳混染,而岩石所表现出来的轻微混染特征可能受俯冲板片脱水形成的流体交代岩石圈地幔作用控制。

底图据文献[58]。图 7 老道口闪长岩的Rb/Y-Nb/Y(a)和Nb/Zr-Th/Zr(b)图解Fig.7 Diagrams of Rb/Y-Nb/Y(a)and Nb/Zr-Th/Zr(b)of the Laodaokou diorite
5.2 岩体形成时代

据阿里河幅1∶20万区域地质调查报告,研究区已有的年代学资料多为全岩/单矿物K-Ar和锆石U-Pb等时线年龄等,其年龄变化区间为(60~225)Ma。如此不确切的年代学资料严重制约了对研究区中生代构造岩浆活动和火山岩形成的构造背景的研究,且由于K-Ar等时线测年方法本身的局限难以将上述年龄理解为岩体的形成年龄。本文采用锆石SIMS U-Pb定年的方法,锆石微量元素和SIMS定年分析表明闪长岩的锆石具有轻稀土元素亏损、重稀土元素富集以及高的Th/U值(0.64~1.28);阴极发光图像揭示锆石具有典型的岩浆振荡环带,因此它们为岩浆成因锆石,所测得的年龄应代表岩体的形成时代。定年结果表明,闪长岩的年龄为(126.09±0.95)Ma,为早白垩世,并不是前人认为的形成于寒武纪。该年龄与大兴安岭地区广泛分布的中生代火山岩和花岗质岩石年龄一致(图 8),这些年龄分布总体上呈NE向,与蒙古鄂霍茨克缝合带的展布方向一致,推测其形成可能受到蒙古鄂霍茨克造山带的影响。

①赵海山,表尚虎,陈荣升,等.阿里河幅(M51(16))1∶20万区域地质调查报告.哈尔滨:黑龙江省地质矿产局,1994.

图 8 大兴安岭中北部中生代岩浆岩年龄分布图Fig.8 Age distribution of the Mesozoic igneous rocks in the northern Great Xing’an Range
5.3 构造背景

老道口闪长岩属钙碱性系列,代表一种伸展的构造背景。在大兴安岭其他地区,如柴河林场钾长花岗岩((133±3)Ma)形成于伸展的构造背景[63];大兴安岭地区早白垩世广泛分布的火山岩也揭示了区域性伸展环境的存在[64];早白垩世晚期广泛发育的变质核杂岩、A型花岗岩和裂谷盆地等也说明早白垩世中国东北地区处于区域性伸展环境[65, 66]。另外,部分学者对大兴安岭岩浆岩进行了岩石学、地球化学及同位素年代学等方面研究,也认为早白垩世时期是大兴安岭地区伸展构造背景下的岩浆演化重要阶段[64, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]。区域上,晚中生代地壳伸展的构造背景受何种体制制约还不是很清楚,一种可能的情况是,古亚洲洋最后消亡后的后造山环境[4, 77, 78, 79, 80, 81, 82, 83],但是后碰撞阶段过程持续到晚中生代的可能性不大。另一种可能情况是受太平洋板块俯冲的影响,但张旗[84]认为西太平洋的向西俯冲对中国东部中生代岩浆活动影响有限,因为太平洋真正向西俯冲时间只有(125~110)Ma和(43~0)Ma两个时间段;李锦轶等[85]认为白垩世中晚期至古近纪初,中国东北及邻区的大陆才开始在古太平洋俯冲作用的影响下,遭受了伸展及岩石圈减薄作用的改造;许文良等[64]认为太平洋俯冲作用影响的空间范围主要在松辽盆地及其以东地区。由此猜测大兴安岭地区晚中生代地壳伸展的构造背景可能受到蒙古鄂霍茨克板块的影响。蒙古鄂霍茨克洋在晚古生代末期较为宽广[86],局部已经存在俯冲[87, 88],并延续至三叠纪;由于西伯利亚板块相对于中蒙地块的旋转,造成了鄂霍茨克板块从西向东的剪刀式关闭,西部晚三叠世开始闭合,东段的碰撞持续到晚侏罗世早白垩世[17, 27, 89, 90]。在晚侏罗世早白垩世,蒙古鄂霍茨克造山带进入造山后伸展的演化阶段[18]。研究区位于大兴安岭中北段,靠近蒙古鄂霍茨克缝合带,大兴安岭北部地区中生代火山岩具有由西向东年龄变新和源区深度增加的趋势[7, 91, 92],暗示本区俯冲流体可能来源于蒙古鄂霍茨克洋壳。同时,蒙古鄂霍茨克洋呈剪刀式自西向东逐渐闭合,西部最终闭合时间为晚侏罗世,东部最终闭合碰撞造山为早白垩世,这一演化过程与本区闪长岩体的形成时间基本一致,进一步说明老道口岩体与蒙古鄂霍茨克洋的演化密切相关。

6 结论

对老道口闪长岩体的年代学和地球化学研究获得了以下结论:

1)老道口闪长岩体的形成年龄为(126.09±0.95)Ma,为早白垩世,并非前人认为的形成于寒武纪。

2)老道口闪长岩体的岩浆源区为俯冲流体交代的岩石圈地幔,可能是受俯冲的板片流体/沉积物交代的岩石圈地幔部分熔融而成。

3)老道口闪长岩体可能成于蒙古鄂霍茨克洋闭合后的岩石圈伸展构造环境。

参考文献
[1] 刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J].中国地质, 2010, 37(4):943-951. Liu Yongjiang, Zhang Xingzhou, Jin Wei, et al. Late Paleozoic Tectonic Evolution in Northeast[J]. Geology in China, 2010, 37(4):943-951.
[2] 赵春荆, 彭玉荆, 党增欣. 吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社, 1996. Zhao Chunjing, Peng Yujing, Dang Zengxin. The Formation and Evolution of Crust in Eastern Jilin and Heilongjiang Provinces[M]. Shenyang:Liaoning University Press, 1996.
[3] 任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘, 1999, 6(3):85-93. Ren Jishun, Niu Baogui, Liu Zhigang. Soft Collision, Superposition Orogeny and Polycyclic Suturing[J]. Earth Science Frontiers, 1999, 6(3):85-93.
[4] 王成文, 金巍, 张兴洲, 等. 东北及邻区晚古生代大地构造属性新认识[J]. 地层学杂志, 2008, 32(2):119-136. Wang Chengwen, Jin Wei, Zhang Xingzhou, et al. New Conception of the Late Paleozoic Tectonics in the Northeastern China and Adjacent Areas[J]. Journal of Stratigraphy, 2008, 32(2):119-136.
[5] 林强, 葛文春, 曹林, 等. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 2003, 32(3):208-222. Lin Qiang, Ge Wenchun, Cao Lin, et al. Geochemistry of Mesozoic Volcanic Rocks in Da Hinggan Ling:The Bimodal Volcanicrocks[J]. Geochimical, 2003, 32(3):208-222.
[6] Xu W L, Ji W Q, Pei F P, et al. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China:Chronology, Geochemistry and Tectonic Implications[J]. Journal of Asian Earth Sciences, 2009, 34(3):392-402.
[7] Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic Volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1/2):179-198.
[8] Wu F Y, Li X H, Yang J H,et al. Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Sinica, 2007, 23(6):1217-1238.
[9] 孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其他地质意义[J]. 岩石学报, 2011, 27(4):1209-1226. Meng En, Xu Wenliang, Yang Debin, et al. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2011, 27(4):1209-1226.
[10] 徐美君, 许文良, 孟恩, 等. 内蒙古东北部额尔古纳地区上护林向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J]. 地质通报, 2011, 30(9):1321-1338. Xu Meijun, Xu Wenliang, Meng En, et al. LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area, Northeastern Inner Mongolia[J]. Geological Bulletin of China, 2011, 30(9):1321-1338.
[11] 葛文春, 林强, 孙德有, 等. 大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J]. 岩石学报, 1999, 15(3):396-407. Ge Wenchun, Lin Qiang, Sun Deyou, et al. Geochemical Characteristics of the Mesozoic Basalts in Da Hinggan Ling:Evidence of the Mantle-Crust Interaction[J]. Acta Petrologica Sinica, 1999, 15(3):397-407.
[12] 谢鸣谦. 拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M]. 北京:科学出版社, 2000. Xie Mingqian. Amalgamating Plate Tectonic and Its Droved Mechanism-Tectonic Evolution of Northeast China and Adjacent Area[M]. Beijing:Science Press, 2000.
[13] Fan W M, Guo F, Wang Y J, et al. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology and Geothermal Reasearch, 2003, 121:115-135.
[14] Meng Q R. What Drove the Mesozoic Extension of the Northern China-Mongolia Tract?[J].Tectonophysics, 2003, 369:155-174.
[15] 蒋国源, 权恒. 大兴安岭根河、海拉尔盆地中生代火山岩[J]. 中国地质科学院沈阳地质矿产研究所所刊, 1988, 17:23-100. Jiang Guoyuan, Quan Heng. The Mesozoic Volcanic Rocks in the Genhe-Hailaer Basin of Great Hinggan Mountains[J]. Bull Shenyang Inst Geol Min Res, Chinese Acad Geol Sci,1988, 17:23-100.
[16] 赵国龙, 杨桂林, 傅嘉有. 大兴安岭中南部中生代火山岩[M]. 北京:北京科学技术出版社, 1989:1-252. Zhao Guolong, Yang Guilin, Fu Jiayou. The Mesozoic Volcanic Rocks in the Sourth-Central of Great Hinggan Mountains[M]. Beijing:Beijing Science and Technology Press, 1989:1-252.
[17] Zorin Y A. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia[J]. Tectonophysics, 1999, 306(1):33-56.
[18] 郭锋, 范蔚茗, 王岳军, 等. 大兴安岭南段晚中生代双峰式火山作用[J]. 岩石学报, 2001, 17(1):161-168. Guo Feng, Fan Weiming, Wang Yuejun, et al. Petrogenesis of the Late Mesozoic Bimodal Volcanic Rocks in the Sourthern Da Hinggan[J]. Acta Petrologica Sinica, 2001, 17(1):161-168.
[19] 张昱,赵焕力,韩彦东. 大兴安岭北段塔木兰沟组玄武岩地球化学及构造背景[J]. 地质与资源, 2005, 14(2):87-96. Zhang Yu, Zhao Huanli, Han Yandong. Geochemical Characteristics and Tectonic Background of Basalt from Tamulangou Formation in Northern Daxing'anling[J]. Geology and Re-sources, 2005, 14(2):87-96.
[20] 李世超, 徐仲元, 刘正宏, 等. 大兴安岭中段玛尼吐组火山岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2013, 32(2/3):399-407. Li Shichao, Xu Zhongyuan, Liu Zhenghong, et al. Zircon U-Pb Dating and Geochemical Study of Volcanic Rocks in Manitu Formation of Central Da Hinggan Mountains[J]. Geological Bulletin of China, 2013, 32(2/3):399-407.
[21] 孙德有, 苟军, 任云生, 等. 满洲里南部玛尼吐组火山岩锆石U-Pb年龄与地球化学研究[J]. 岩石学报, 2011, 27(10):3083-3094. Sun Deyou, Gou Jun, Ren Yunsheng, et al. Zircon U-Pb Dating and Study on Geochemistry of Volcanic in Manitu Formation from Sourthern Manchuria, Inner Mongolia[J]. Acta Petrologica Sinica, 2011, 27(10):3083-3094.
[22] 武广, 陈衍景, 赵振华, 等. 大兴安岭北端洛古河东花岗岩的地球化学、SHRIMP锆石U-Pb年龄和岩石成因[J]. 岩石学报, 2009, 25(2):233-247. Wu Guang, Chen Yanjing, Zhao Zhenhua, et al. Geochemistry Zircon SHRIMP U-Pb Age and Petrogenesis of the East Luoguhe Granites at the Northern End of the Great Hinggan Range[J]. Acta Petrologica Sinica, 2009, 25(2):233-247.
[23] 杨奇荻,郭磊, 王涛,等. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 2014,30(7):1961-1981. Yang Qidi, Guo Lei, Wang Tao, et al. Geochronology, Origin, Sources and Tectonic Settings of Late Mesozoic Two-Stage Granites in the Ganzhuermiao Region, Central and Southern Da Hinggan Range, NE China[J]. Acta Petrologica Sinica, 2014, 30(7):1961-1981.
[24] Ying J F, Zhou X H, Zhang L C, et al. Geochronological Framework of Mesozoic Volcanic Rocks in the Great Xing'an Range, NE China, and Their Geodynamic Implications[J]. Journal of Asian Earth Sciences, 2010, 39(6):786-793.
[25] 黑龙江省地质矿产局. 黑龙江省地质志[M]. 北京:地质出版社, 1993:1-734. Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional Geology of Heilongjiang Province[M]. Beijing:Geological Publishing House, 1993:1-734.
[26] Zhou J B, Wilde S A, Zhang X Z, et al. Pan-African Metamorphic and Magmatic Rocks of the Khanka Massif, NE China:Further Evidence Regarding Their Affinity[J]. Geological Magazine, 2010, 147(5):737-749.
[27] Ruzhentes S V, PospeloyⅡ,Badarch G. Tectonics of Mongolian Indosinides[J].Geotectonics, 1989, 6:13-27.
[28] 郑亚东, 王士政, 王玉芳. 中蒙边境区新发现的特大型推覆构造及伸展变质核心杂岩[J]. 中国科学:B辑, 1990, 20(12):1299-1305. Zheng Yadong, Wang Shizheng, Wang Yufang. The New Discovery of Mega Thrusting and Metamorphic Core Complexes in the Boundary of China and Mongolia[J]. Science in China:Series B, 1990, 20(12):1299-1305.
[29] Zonenshain L P, Kuzmin M L,Natapov L M. Geology of the USSR:A Plate-Tectonics Synthesis[M].Washington DC:American Geophysical Union, Geodynamics Series,1990:1-242.
[30] 李述靖, 张维杰. 内蒙古苏尼特左旗纬向推覆构造的发现及地质意义[J]. 地质力学学报, 1995, 1(1):44-52,97. Li Shujing, Zhang Weijie. The Latitudinal Nappe Structure in the Sunnitezuoqi of Inner Mongolia[J]. Journal of Geomechanics, 1995, 1(1):44-52,97.
[31] 林强, 葛文春, 孙德有, 等. 中国东北地区中生代火山岩的大地构造意义[J]. 地质科学, 1998, 33(2):129-139. Lin Qiang, Ge Wenchun, Sun Deyou, et al. Tectonic Significance of Mesozoic Volcanic Rocks in Northeastern China[J]. Scientia Geologica Sinica, 1998, 33(2):129-139.
[32] 吴福元, 曹林. 东北亚地区的若干重要基础地质问题[J]. 世界地质, 1999, 18(2):1-13. Wu Fuyuan, Cao Lin. Some Important Problems of Geology in Northeastern Asia[J]. World Geology, 1999, 18(2):1-13.
[33] 黑龙江省地质矿产局. 塔河区幅1:200000区域地质调查报告[R]. 哈尔滨:黑龙江省地质矿产局,1985. Bureau of Geology and Mineral Resources of Heilongjiang Province. Geological Survey Report of Tahe, Inner Mongolia(1:200000)[R]. Harbin:Bureau of Geology and Mineral Resources of Heilongjiang Province, 1995.
[34] 黑龙江省地质矿产局. 二十五站幅1:200000区域地质调查报告[R].哈尔滨:黑龙江省地质矿产局,1988. Bureau of Geology and Mineral Resources of Heilongjiang Province. Geological Survey Report of Ershiwuzhan, Inner Mongolia(1:200000)[R]. Harbin:Bureau of Geology and Mineral Resources of Heilongjiang Province, 1998.
[35] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京:地质出版社, 1991:189-219. Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. Regional Geology of the Inner Mongolia Autonomous Region[M]. Beijing:Geological Publishing House, 1991:189-219.
[36] 陈志广, 张连昌, 周新华, 等. 满洲里新右旗火山岩剖面年代学和地球化学特征[J]岩石学报, 2006, 22(12):2971-2986. Chen Zhiguang, Zhang Lianchang, Zhou Xinhua, et al. Geochronology and Geochemical Characteristics of Volcanic Rocks Section in Manzhouli Xinyouqi, Inner-Monogolia[J]. Acta Petrologica Sinica, 2006, 22(12):2971-2986.
[37] 黑龙江省地质矿产局. 阿里河幅1:20万区域地质调查报告[R]. 哈尔滨:黑龙江省地质矿产局, 1994:1-300. Bureau of Geology and Mineral Resources of Heilongjiang Province. Geological Survey Report of Alihe, Inner Mongolia(1:200000)[R]. Harbin:Bureau of Geology and Mineral Resources of Heilongjiang Province, 1994:1-300.
[38] JiΓí Sláma, Jan Košler, Daniel J, et al. Plešovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis[J]. Chemical Geology, 2008, 249:1-35.
[39] Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards[J]. Chem Geol, 2004, 205:115-140.
[40] Li X H, Liu Y, Li Q L, et al. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS Without External Standardization[J/OL]. Geochem Geophys Geosyst, 2009, 10:Q04010. doi:10. 1029/2009 GC002400.
[41] Stacey J S, Kramers J D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model[J]. Earth Planet Sci Lett, 1975, 26:207-221.
[42] Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Pb-Pb Dating of Phanerozoic Baddeleyite by SIMS with Oxygen Flooding Technique[J]. Journal of Analytical Atomic Spectrometry, 2010, 25:1107-1113.
[43] Ludwig K R. Users Manual for Isoplot/Ex rev. 2.49[M]. Berkeley:Berkeley Geochronology Centre Special Publication, 2001:56.
[44] Wiedenbeck M, Alle P, Corfu F, et al. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and REE Analyses[J]. Geostand Newsl, 1995, 19:1-23.
[45] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1589-1604. Wu Yuanbao, Zheng Yongfei. Study on Genetic Mineralogy of Zircons and Constraints on Interpretation of U-Pb Age[J]. Chinese Science Bulletin, 2004, 49(16):1589-1604.
[46] Pupin J P. Zircon and Granite Petrology[J]. Contributions to Mineralogy and Petrology, 1980, 73:207-220.
[47] Cox K G, Bell J D, Pankhurst R J. The Interpretation of Igneous Rocks[M]. London:Allen and Unwin, 1979:1-450.
[48] Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Hseoxides of Major and Minor Elements[J]. Lithos, 1989, 22:247-263.
[49] Wang Q,Xu J F,Zhao Z H. Cretaceous High-Potassium Intrusive Rocks in the Yueshan-Hongzhen Area of East China:Adakites in an Extensional Tectonic Regime Within a Continent[J]. Geochemical Journal, 2004, 38(Sup.):417-434.
[50] Boynton W V. Geochemistry of the Rare Earth Elements:Meteorite Studies[C]//Henderson P.Rare Earth Elements Geochemistry. Amsterdam:Elservier, 1984:63-114.
[51] Sun S S,McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalt:Implications for Mantle Compositions and Processes[J]. Geol Soc London Spec Publ, 1989, 42:313-345.
[52] 张玉涛, 张连昌, 英基丰, 等. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J]. 岩石学报, 2007, 23(11):2811-2822. Zhang Yutao, Zhang Lianchang, Ying Jifeng, et al. Geochemistry and Source Characteristics of Early Cretaceous Volcanic Rocks in Tahe, North Da Hinggan Mountain[J]. Acta Petrologica Sinica, 2007, 23(11):2811-2822.
[53] Kelemen P B, Shimizu N, Dunn T. Relative Depletion of Niobium in some Arc Magmas and the Continental Crest:Partitioning of K, Nb, La and Ce During Melt/Rock Reaction in the Upper Mantle[J]. Earth and Planetary Science Letcers, 1993, 120:111-134.
[54] Green T H. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System[J/OL]. Chemical Geology,1995, 120(3/4):347-359. doi:10.1016/0009-2541(94)00145-X.
[55] Wilson M. Igneous Petrogenesis[M]. London:Unwin Hyman,1989:1-466.
[56] Pearce J A,Peate D W.Tectonic Implications of the Composition of Volcanic Arc Magmas[J]. Ann Rev Earth Planet Sci, 1995, 23:252-285.
[57] Elliott T, Plank T, Zindler A, et al. Element Transport from Alab to Volcanic Fronit at the Marians Arc[J]. J of Geophysics Ree, 1997, 102(B7):14991-15019.
[58] Kepezhinskas P, McDermott F, Defant M J. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis[J]. Geochimica Et Cosmochimica Acta, 1997, 61(3):577-600.
[59] 张吉衡. 大兴安岭地区中生代火山岩的年代学格架[D].长春:吉林大学, 2006. Zhang Jiheng.Geochronological Framework of the Mesozoic Volcanic Rocks in the Great Xing'an Range, NE China[D]. Changchun:Jilin University, 2006.
[60] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30.
[61] 张彦龙,葛文春,柳小明, 等. 大兴安岭新林镇岩体的同位素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2008, 38(2):178-186. Zhang Yanlong, Ge Wenchun, Liu Xiaoming, et al. Isotopic Characteristics and Its Significance of the Xinlin Town Plution, Great Hinggan Mountains[J]. Journal of Jilin University(Earth Science Edition), 2008, 38(2):178-186.
[62] 佘宏全,李进文,向安平, 等. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 2012, 28(2):571-594. She Hongquan,Li Jinwen,Xiang Anping, et al. U-Pb Ages of the Zircons Fromprimary Rocks in Middle-Northern Daxing'anling and Its Implications to Geotectonic Evolution[J]. Acta Petrologica Sinica, 2012, 28(2):571-594.
[63] 王兴安,徐仲元,刘正宏, 等. 大兴安岭中部柴河地区钾长花岗岩的成因及构造背景:岩石地球化学、锆石U-Pb同位素年代学的制约[J]. 岩石学报, 2012, 28(8):2647-2655. Wang Xing'an, Xu Zhongyuan, Liu Zhenghong, et al. Petrogenesis and Tectonic Setting of the K-Feldspar Granites in Chaihe Area, Central Great Xing'an Range:Constraints from Petro-Geochemistry and Zircon U-Pb Isotope Chronology[J]. Acta Petrologica Sinica, 2012, 28(8):2647-2655.
[64] 许文良,王枫,裴福萍, 等. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2):339-353. Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29(2):339-353.
[65] Davis G A, Zheng Y D, Wang C, et al. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt,with Emphasis on Hebei and Liaoning Provinces,Northern China[J]. Memoirs-Geological Society of America, 2001, 194:171-197.
[66] Wu F Y, Sun D Y, Li H M, et al. A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143-173.
[67] Wang T, Zheng Y D, Zhang J J, et al.Pattern and Kinematic Polarity of Late Mesozoic Extension in Continental NE Asia:Perspectives from Metamorphic Core Complexes[J]. Tectonics, 2011, 30(6):1-27.
[68] 邵济安, 张履桥, 牟堡垒.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘,1999,6(4):339-346. Shao Ji'an, Zhang Lüqiao, Mou Baolei. Magmatism in the Mesozoic Extending Orogenic Process of Da Hinggan MTS[J]. Earth Science Frontiers, 1999, 6(4):339-346.
[69] 邵济安, 张履桥, 贾文, 等. 内蒙古喀喇沁变质核杂岩及其隆升机制探讨[J]. 岩石学报,2001, 17(2):283-290. Shao Ji'an, Zhang Lüqiao, Jia Wen, et al. Harkin Metamorphic Core in Inner Mongolia and Its Upwelling Mechanism[J]. Acta Petrologica Sinica, 2001, 17(2):283-290.
[70] 邵济安, 张履桥, 肖庆辉, 等. 中生代大兴安岭的隆起:一种可能的陆内造山机制[J]. 岩石学报, 2005,21(3):789-794. Shao Ji'an, Zhang Lüqiao, Xiao Qinghui, et al. Rising of Da Hinggan Mts in Mesozoic:Apossible Mechanism of Intracontinental Orogeny[J]. Acta Petrologica Sinica, 2005, 21(3):789-794.
[71] 吴福元, 孙德有, 林强. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报,1999,15(2):181-189. Wu Fuyuan, Sun Deyou, Lin Qiang. Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China[J]. Acta Petrologica Sinica, 1999, 15(2):181-189.
[72] 吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄[J]. 长春科技大学学报, 1999, 29(4):313-318. Wu Fuyuan, Sun Deyou. The Mesozoic Magmatism and Lithospheric Thinning in Eastern China[J]. Journal of Changchun University of Science and Technology, 1999, 29(4):313-318.
[73] 吴福元,孙德有, 张广良,等. 论燕山运动的深部地球动力学本质[J]. 高校地质学报, 2000, 6(3):379-388. Wu Fuyuan, Sun Deyou, Zhang Guangliang, et al. Deep Geodynamics of Yanshan Movement[J]. Geological Journal of China Universities, 2000, 6(3):379-388.
[74] 吴福元, 葛文春, 孙德有, 等. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘,2003, 10(3):51-60. Wu Fuyuan, Ge Wenchun, Sun Deyou, et al. Discussions on the Lithospheric Thinning in Eastern China[J]. Earth Science Forntiers, 2003,10(3):51-60.
[75] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6):1217-1238. Wu Fuyuan, Li Xianhua, Yang Jinhui, et al. Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Sinica, 2007, 23(6):1217-1238.
[76] 葛文春, 吴福元, 周长勇, 等. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报, 2005, 50(12):1239-1246. Ge Wenchun, Wu Fuyuan, Zhou Changyong, et al. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Range[J]. Chinese Science Bulletin, 2005, 50(12):1239-1246.
[77] 邵济安,牟保磊,何国琦, 等. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J]. 中国科学:D辑, 1997, 27(5):390-394. Shao Ji'an, Mou Baolei, He Guoqi, et al. Geological Effects of the Northern Part of North China in the Process of Tectonic Superposition in the Paleo Asian Domain and the Paleo Pacific Domain[J]. Science in China:Series D, 1997, 27(5):390-394.
[78] Chen Bin, Jahn B M, Wilde S A, et al. Two Constrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China:Petrogenesis and Tectonic Implications[J]. Tectonophysics, 2000, 328(1/2):157-182.
[79] 陈斌,赵国春,Simon Wilde. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J]. 地质论评,2001,47(4):361-367. Chen Bin, Zhao Guochun, Simon Wilde. Subduction-and Collision-Related Granitoids from Southern Sonidzuoqi, Inner Mongolia:Isotopic Ages and Tectonic Implications[J]. Geological Review, 2001, 47(4):361-367.
[80] 陈斌,马星华,刘安坤,等. 锡林浩特杂岩和蓝片岩的锆石U-Pb年代学及其对索仑缝合带演化的意义[J]. 岩石学报,2009,25(12):3123-3129. Chen Bin, Ma Xinghua, Liu Ankun, et al. Zircon U-Pb Ages of the Xilinhot Metamorphic Complex and Blueschist, and Implications for Tectonic Evolution of the Solonker Suture[J]. Acta Petrologica Sinica, 2009, 25(12):3123-3129.
[81] Xiao Wenjiao,Windley Brian F,Hao Jie, et al.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J/OL]. Tectonics, 2003, 22:1069,doi:1011029/2002TC001484.
[82] 李锦轶,张进,杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 2009, 39(4):584-605. Li Jinyi, Zhang Jin, Yang Tiannan, et al. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(4):584-605.
[83] 张兴洲,马玉霞,迟效国, 等. 东北及内蒙古东部地区显生宙构造演化的有关问题[J]. 吉林大学学报(地球科学版), 2012, 42(5):1269-1285. Zhang Xingzhou, Ma Yuxia, Chi Xiaoguo, et al. Discussion on Phanerozoic Tectonic Evolution in Northeastern China[J]. Journal of Jilin University(Earth Science Edition),2012, 42(5):1269-1285.
[84] 张旗. 中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J]. 岩石矿物学杂志, 2013, 32(1):113-128. Zhang Qi. Is the Mesozoic Magmatism in Eastern China Related to the Westward Subduction of the Pacific Plate?[J]. Acta Petrologica Et Mineralogica, 2013, 32(1):113-128.
[85] 李锦轶, 莫申国, 和政军, 等. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J]. 地学前缘, 2004, 11(3):157-168. Li Jinyi, Mo Shenguo, He Zhengjun, et al. The Timing of Crustal Sinistral Strike-Slip Movement in the Northern Great Khing'an Ranges and Its Constraint on Reconstruction of the Crustal Tectonic Evolution of NE China and Adjacent Areas Since the Mesozoic[J]. Earth Science Frontiers, 2004, 11(3):157-168.
[86] Cogné J P, Kravchinsky V A, Halim N,et al. Late Jurassic-Early Cretaceous Closure of the Mongol-Okhotsk Ocean Demonstrated by New Mesozoic Palaeomagnetic Results from the Trans-Baikal Area (SE Siberia)[J]. Geophysical Journal International, 2005, 163(2):813-822.
[87] Tomurtogoo O, Windley B F, Kröner A, et al. Zircon Age and Occurrerce of the Adaatsag Ophiolite and Muron Shear Zone, Central Mongolia:Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen[J]. Journal of the Geological Society, 2005, 162(1):125-134.
[88] Mazukabzov A M, Donskaya T V, Gladkochub D P,et al. The Late Paleozoic Geodynamics of the West Transbaikalian Segment of the Central Asian Fold Belt[J]. Russian Geology and Geophysics, 2010, 51(5):482-491.
[89] Sorokin A A, Yarmolyuk V V, Kotov A B, et al. Geochronology of Triassic-Jurassic Granitoids in the Southern Framing of the Mongol-Okhotsk Fold Belt and Problem of Early Mesozoic Granite Formation in Central and Eastern Asia[J]. Doklady Earth Sciences, 2004, 399(8):1091-1094.
[90] Kravchinsky V A, Cogné J P, Harbert W P,et al. Evolution of the Mongol-Okhotsk Suture Zone, Siberia[J]. Geophysical Journal International, 2002, 148(1):34-57.
[91] 许文良, 葛文春, 裴福萍, 等. 东北地区中生代火山作用的年代学格架及其构造意义[J].矿物岩石地球化学通报, 2008, 27(增刊):286-287. Xu Wenliang, Ge Wenchun, Pei Fuping, et al. The Chronology Framework of the Volcanism in Northeast China and Its Construct Meaning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(Sup.):286-287.
[92] 张连昌, 陈志广, 周新华, 等. 大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约[J]. 岩石学报, 2007, 23(11):2823-2835. Zhang Lianchang, Chen Zhiguang, Zhou Xianhua, et al. Characteristics of Deep Sources and Tectonic-Magmatic Evolution of the Early Cretaceous Volcanics in Genhe Area, Da Hinggan Mountains:Constraints of Sr-Nd-Pb-Hf Isotopic Geochemistries[J]. Acta Petrologica Sinica, 2007, 23(11):2823-2835.
http://dx.doi.org/10.13278/j.cnki.jjuese.201602115
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

刘永江, 刘宾强, 冯志强, 温泉波, 李伟民, 张铁安, 李小玉, 杜兵盈
Liu Yongjiang, Liu Binqiang, Feng Zhiqiang, Wen Quanbo, Li Weimin, Zhang Tiean, Li Xiaoyu, Du Bingying
大兴安岭中北段老道口闪长岩锆石U-Pb年龄、地球化学特征及构造意义
SIMS Zircon U-Pb Age, Petrogeochemistry and Its Tectonic Implication of Laodaokou Diorite in the Mid-North Part of Great Xing'an Range
吉林大学学报(地球科学版), 2016, 46(2): 482-498
Journal of Jilin University(Earth Science Edition), 2016, 46(2): 482-498.
http://dx.doi.org/10.13278/j.cnki.jjuese.201602115

文章历史

收稿日期: 2015-07-23

相关文章

工作空间