2. 吉林大学学报编辑部, 长春 130026
2. Editorial Department of Journal of Jilin University, Changchun 130026, China
0 引言
五龙沟地区位于青海省都兰县境内,大地构造位置处于东昆仑造山带中东段。东昆仑造山带内出露大量早古生代和晚古生代早中生代两个时期的侵入岩,分别是原特提斯和古特提斯两期构造演化的产物[1]。因此,对这两套不同时期侵入岩开展细致的研究,能够为反演东昆仑造山带原特提斯和古特提斯具体的构造演化过程提供重要的岩石学和年代学证据。相比晚古生代早中生代花岗岩而言,前人对东昆仑造山带内志留纪早泥盆世花岗岩的研究略显薄弱。据现有资料报道,东昆仑造山带至少从早泥盆世开始,已经进入了后碰撞的伸展阶段。如,前人在西段祁曼塔格地区和东昆中断裂带附近测出的花岗岩年龄为386~413 Ma[2,3,4,5,6,7],可见,前人限定东昆仑地区原特提斯洋闭合后进入造山后阶段时限为不早于413 Ma。当然,前人也曾报道过老于413 Ma花岗岩的存在,如西段祁曼塔格地区白干湖花岗岩年龄为430 Ma[8],并指出其可能与早古生代大洋的碰撞造山有关,但由于没有详细的岩石地球化学资料作依据,无法具体判断其构造意义,所以这些老于413 Ma的花岗质岩无法限定原特提斯闭合时限。不过,这也从一个侧面反映,东昆仑地区原特提斯洋的闭合可能要比413 Ma早,但到底能提早到何时值得进一步研究。
前人在该区域的研究普遍通过开展锆石U-Pb年代学、岩石地球化学、同位素研究等地球化学方法来探讨该区域岩石的岩浆来源及构造背景等[9,10,11]。故本文借鉴前人的经验方法,通过对五龙沟地区猴头沟二长花岗岩开展详尽的锆石U-Pb年代学、岩石地球化学、Hf同位素组成及其构造意义研究,确定其属于典型的造山后伸展阶段A型花岗岩,年龄为419 Ma,从而将原特提斯洋闭合时限提早到晚志留世,这对于反演东昆仑原特提斯洋的构造演化过程有重要意义。
1 地质背景及岩体地质特征东昆仑造山带位于青藏高原北部,南邻巴颜喀拉松潘甘孜造山带,北邻柴达木陆块,东西延伸约1 500 km,记录青藏高原拼合的早期历史[12,13,14](图 1)。区内发育3条近东西向的区域性断裂,即东昆北、东昆中和东昆南断裂;姜春发等[16]据此将其划分为东昆北带、东昆中带和东昆南带3个次级构造单元。五龙沟地区就位于东昆中带中东段(图 1b)。沿着东昆中断裂和东昆南断裂发育两条蛇绿岩带,一般认为其分别代表了原特提斯洋和古特提斯洋的存在[16,17],其存在时间分别大致为新元古代早泥盆世和石炭纪晚三叠世[16,17,18,19,20,21]。
五龙沟地区以发育大面积花岗岩、多个造山型金矿床和矽卡岩型铜多金属矿点为特征[22]。研究区内地层自北东向南西,依次为古元古代金水口岩群斜长片岩、石英片岩夹大理岩,中元古代长城纪小庙组大理岩、角闪片麻岩、石英片岩,中、新元古代青白口纪丘吉东沟组变砾岩、千枚岩夹大理岩和早古生代奥陶纪祁曼塔格群变凝灰岩、火山角砾岩。矿区断裂构造最发育的是3条规模较大的NWWNW向剪切带(图 2),它们是矿区内最重要的金矿导矿、容矿构造[23,24,25]。研究区以发育大量花岗质侵入岩为主要特征,由老到新依次为:在研究区北东部新元古代花岗质岩体侵位于古元古代金水口群中;在研究区南东部,大面积寒武纪花岗质岩体侵位于中元古代小庙组中;中部则是大面积志留纪花岗质岩体侵位;另外还有少量二叠纪和泥盆纪花岗质岩体侵位[22]。
本文研究的猴头沟二长花岗岩就是五龙沟地区志留纪花岗质岩体的一部分,岩性较为单一,主要为肉红色二长花岗岩,不具分带现象,出露面积为30 km2,呈北西向侵位于五龙沟地区中部,并受北西向断裂构造所夹持。该花岗岩体与周围岩体及地层主要为侵入接触关系或断层接触关系。其中,南东侧侵入到中元古界长城系小庙组;南侧侵入到古元古界金水口群;北东侧与奥陶系祁曼塔格群主要为断层接触;南西侧与中元古界小庙组也为断层接触;该岩体后期被早泥盆世斜长花岗岩及早二叠世石英闪长岩、二长花岗岩等花岗质岩体及后期基性岩脉侵入(图 2、3)。陆露等[26]曾在黄龙沟和深水潭地区分别对该岩体开展锆石U-Pb定年工作,获得年龄为418~420 Ma。
本文报道的猴头沟二长花岗岩位于五龙沟地区猴头沟南的五龙沟西侧,由北向南,依次采集了6件样品(HTG-01-B1、HTG-02-B1、HTG-03-B1、HTG-04-B1、HTG-05-B1、HTG-06-B1,图 3)。所有样品均进行了岩相学研究与主量元素、微量元素和稀土元素分析研究,其中HTG-03-B1进行了LA-ICP-MS锆石U-Pb定年和Hf同位素研究工作。
样品野外呈肉红色,均发生弱风化,粗粒自形结构,块状构造。主要矿物组成为条纹长石(36%~40%)、斜长石(20%~24%)、石英(30%左右)和黑云母(8%~12%),副矿物为锆石、磷灰石等(图 4)。结合岩石地球化学分析结果,确定其类型为二长花岗岩。其中条纹长石自形程度较好,主要是自形半自形,可见长柱状,卡氏双晶,条纹明显;斜长石镜下聚片双晶明显,部分发生黏土化,单偏光下明显模糊不干净;石英以他形为主;黑云母自形程度较差,主要为他形、片状,单偏光下显淡绿色和黄绿色,多色性较明显,镜下观察发现部分黑云母存在绢云母化现象。
2 测试方法 2.1 锆石制靶和CL照相首先将样品粉碎,通过常规的磁选和重力分选方法挑选出锆石颗粒,接着在双目镜下挑选;然后,将分选出的锆石用双面胶粘在载玻片上,罩上PVC环;将环氧树脂和固化剂进行充分混合后注入PVC环中,待树脂充分固化后将样品从载玻片上剥离,并对其进行打磨和刨光;最后对靶上样品进行显微镜下的反射光和透射光照相以及阴极发光(CL)照相。本次锆石阴极发光(CL)照相工作在北京锆石领航科技有限公司进行。
2.2 LA-ICP-MS锆石U-Pb测年LA-ICP-MS锆石U-Pb测年在中国冶金地质总局山东局测试中心完成。实验仪器为装配193 nm激光剥蚀系统的美国热电公司生产的Xseries2型等离子体质谱仪(LA-ICP-MS)。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。在等离子体中心气流(Ar+He)中加入了少量氮气,以提高仪器灵敏度、降低检出限和改善分析精密度[27]。另外,激光剥蚀系统配置了一个信号平滑装置,即使激光脉冲频率低达1 Hz,采用该装置后也能获得光滑的分析信号[28]。激光束斑直径选用40 μm,每个时间分辨分析数据包括20~30 s的空白信号和50 s的样品信号。U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正,每分析5个样品点,分析2次91500。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal[29,30]完成。详细的仪器操作条件和数据处理方法同Liu等[29,30,31]。年龄计算及谐和图的绘制采用Ludwig编写的Isoplot程序[32]。
2.3 岩石地球化学测试岩石地球化学测量在澳实分析检测(广州)有限公司完成。主量元素由荷兰PANalytical生产的Axios仪器利用熔片X-射线荧光光谱法(XRF)测定,将准备好的样品与包含助溶剂(硝酸锂)的四硼酸锂-偏硼酸锂混合后倒入铂金模具中,利用XRF进行分析。除稀土元素(REE)之外的微量元素测试用美国生产的电感耦合等离子体-原子发射光谱(Varian VISTA ICP-AES)和电感耦合等离子体-质谱分析方法(Perkin Elmer Elan 6000 ICP-MS)完成,制备好的样品用含氮、高氯的氢氟酸进行溶解,残渣利用稀盐酸进行过滤并稀释;然后利用ICP-AES和ICP-MS进行分析,结果利用光谱元件间的相互干扰进行校正。稀土元素(REE)利用美国生产的Agilent 7700x电感耦合等离子体-质谱仪(ICP-MS)进行分析测试,将样品加入到硼酸锂中进行熔融,并混合均匀,然后放到1 000 ℃的熔炉中进行熔融,再将熔融物冷却,并用100 mL4%的硝酸进行溶解,最后用ICP-MS进行分析。主量元素分析精度和准确度优于5%,微量和稀土元素分析精度和准确度为5%~10%,具体流程可参见文献[33]。
2.4 锆石Hf同位素测试方法Hf同位素研究选取对象为LA-ICP-MS锆石U-Pb测年所用锆石。测试是在南京大学内生金属矿床成矿机制国家重点实验进行,所用仪器为Neptune II MC-ICP-MS,该仪器配有NewWave UP213激光剥蚀探针。仪器条件设置和数据采集详见文献[34,35]。对锆石中测试点采用35 μm直径的激光进行原位分析,以氦气当做载体气体,同时向气相载体中加入少许氮气以获得更高的灵敏度。
3 分析结果 3.1 锆石U-Pb定年结果猴头沟二长花岗岩中分离出的锆石多为短柱状,晶形完好,颗粒大小不均,多数为 100~200 μm,阴极发光均具有清晰的生长环带和韵律结构(图 5),具有典型岩浆锆石的特点。锆石Th和U的质量分数变化范围较大,分别为(70.9~502 .0)×10-6和(130~922)×10-6,样品Th/U值较高,为0.40~0.93,且锆石群形态单一,为岩浆活动一次结晶而形成的,能代表花岗岩的形成年龄(表 1)。选择环带结构清晰的 25个代表性颗粒进行锆石U-Pb年龄测定,其中9号测试点数据不谐和,其余24个测试点206Pb/238U表面年龄为415~427 Ma(表 1),锆石U-Pb谐和图显示24个测试点在谐和图上分布比较集中,其加权平均年龄值为(419.0±1.9)Ma(MSWD=0.59) (图 6),代表了猴头沟地区二长花岗岩的结晶年龄,属于晚志留世末期。
测点 | wB/10-6 | Th/U | 同位素比值 | 年龄/Ma | |||||||||||
Th | U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | ||
1 | 247.0 | 444 | 0.56 | 0.051 0 | 0.001 4 | 0.474 2 | 0.012 4 | 0.067 1 | 0.000 8 | 243 | 56.5 | 394 | 8.5 | 419 | 4.6 |
2 | 264.0 | 472 | 0.56 | 0.053 1 | 0.001 6 | 0.493 8 | 1.012 4 | 0.067 3 | 0.000 8 | 345 | 102.8 | 407 | 9.6 | 420 | 4.9 |
3 | 502.0 | 922 | 0.54 | 0.056 3 | 0.001 1 | 0.520 4 | 2.012 4 | 0.066 5 | 0.000 6 | 465 | 44.4 | 425 | 7.0 | 415 | 3.8 |
4 | 199.0 | 299 | 0.66 | 0.052 3 | 0.001 3 | 0.494 9 | 3.012 4 | 0.068 3 | 0.000 7 | 302 | 55.6 | 408 | 7.9 | 426 | 4.5 |
5 | 139.0 | 257 | 0.54 | 0.055 5 | 0.001 6 | 0.511 6 | 4.012 4 | 0.066 5 | 0.000 9 | 432 | 64.8 | 419 | 10.3 | 415 | 5.2 |
6 | 220.0 | 285 | 0.77 | 0.052 3 | 0.001 4 | 0.489 6 | 5.012 4 | 0.067 6 | 0.000 8 | 298 | 67.6 | 405 | 9.1 | 422 | 4.9 |
7 | 268.0 | 363 | 0.74 | 0.055 4 | 0.001 4 | 0.523 3 | 6.012 4 | 0.068 3 | 0.000 9 | 428 | 59.3 | 427 | 8.9 | 426 | 5.2 |
8 | 234.0 | 467 | 0.50 | 0.055 8 | 0.001 8 | 0.519 8 | 7.012 4 | 0.067 0 | 0.000 9 | 456 | 74.1 | 425 | 11.6 | 418 | 5.6 |
10 | 353.0 | 585 | 0.60 | 0.053 6 | 0.001 3 | 0.500 8 | 8.012 4 | 0.067 4 | 0.000 7 | 367 | 53.7 | 412 | 7.8 | 420 | 4.3 |
11 | 236.0 | 528 | 0.45 | 0.057 9 | 0.001 3 | 0.548 3 | 9.012 4 | 0.068 3 | 0.000 8 | 528 | 50.0 | 444 | 8.0 | 426 | 4.6 |
12 | 285.0 | 459 | 0.62 | 0.056 8 | 0.001 2 | 0.527 0 | 10.012 4 | 0.067 1 | 0.000 7 | 483 | 48.1 | 430 | 7.4 | 419 | 4.3 |
13 | 232.0 | 433 | 0.54 | 0.055 3 | 0.001 3 | 0.517 3 | 11.012 4 | 0.067 5 | 0.000 7 | 433 | 51.8 | 423 | 7.9 | 421 | 4.0 |
14 | 241.0 | 495 | 0.49 | 0.054 9 | 0.001 4 | 0.511 5 | 12.012 4 | 0.067 2 | 0.000 7 | 409 | 55.6 | 419 | 8.8 | 419 | 4.4 |
15 | 212.0 | 532 | 0.40 | 0.055 3 | 0.001 2 | 0.513 3 | 13.012 4 | 0.067 1 | 0.000 8 | 433 | 48.1 | 421 | 7.8 | 419 | 4.8 |
16 | 176.0 | 303 | 0.58 | 0.063 2 | 0.001 8 | 0.586 8 | 14.012 4 | 0.067 5 | 0.000 9 | 722 | 60.0 | 469 | 10.3 | 421 | 5.3 |
17 | 81.2 | 130 | 0.62 | 0.054 2 | 0.001 9 | 0.503 1 | 15.012 4 | 0.068 0 | 0.001 4 | 389 | 79.6 | 414 | 11.7 | 424 | 8.4 |
18 | 187.0 | 226 | 0.83 | 0.055 3 | 0.001 7 | 0.507 6 | 16.012 4 | 0.066 9 | 0.000 8 | 433 | 70.4 | 417 | 10.2 | 417 | 5.1 |
19 | 234.0 | 453 | 0.52 | 0.056 2 | 0.001 4 | 0.518 1 | 17.012 4 | 0.066 5 | 0.000 6 | 461 | 58.3 | 424 | 8.7 | 415 | 3.9 |
20 | 125.0 | 210 | 0.59 | 0.062 7 | 0.001 8 | 0.580 0 | 18.012 4 | 0.067 2 | 0.000 8 | 698 | 65.0 | 464 | 9.8 | 419 | 4.7 |
21 | 439.0 | 798 | 0.55 | 0.054 7 | 0.001 2 | 0.510 2 | 19.012 4 | 0.067 2 | 0.000 6 | 398 | 50.0 | 419 | 7.6 | 419 | 3.8 |
22 | 345.0 | 371 | 0.93 | 0.053 6 | 0.001 6 | 0.498 5 | 20.012 4 | 0.067 0 | 0.000 9 | 354 | 68.5 | 411 | 10.6 | 418 | 5.5 |
23 | 329.0 | 604 | 0.55 | 0.053 4 | 0.001 2 | 0.494 8 | 21.012 4 | 0.066 9 | 0.000 6 | 346 | 49.1 | 408 | 7.2 | 418 | 3.8 |
24 | 264.0 | 449 | 0.59 | 0.058 0 | 0.001 3 | 0.552 5 | 22.012 4 | 0.068 5 | 0.000 7 | 532 | 54.6 | 447 | 8.6 | 427 | 4.5 |
25 | 70.9 | 160 | 0.44 | 0.053 2 | 0.002 1 | 0.493 7 | 23.012 4 | 0.067 1 | 0.001 1 | 339 | 86.1 | 407 | 13.4 | 418 | 6.9 |
猴头沟二长花岗岩岩石地球化学分析结果见表 2。主量元素组成: w(SiO2)为73.08%~75.03%,w(TiO2)为0.17%~0.21%,w(Al2O3)为12.38%~12.82%,w(TFeO)为1.43%~1.82%,w(MnO)为0.01%~0.02%,w(MgO)为0.08%~0.21%,w(CaO)为0.33%~0.95%,w(Na2O)为3.29%~3.44%,w(K2O)为5. 09%~5.39%,w(P2O5)为0.031%~0.034%,w(Na2O+K2O)为8.38%~8.82%,K2O/Na2O为1.53~1.59。据w(SiO2)-w(K2O)岩石系列图解(图 7a)判断,属高钾钙碱性系列向钾玄岩性系列的过渡。A/CNK值为0.970~1.066,A/NK>1,A/NK-A/CNK判别图解(图 7b)显示样点落入准铝质过铝质花岗岩区。分异指数(ID)为93.05~95.33,说明岩浆分离结晶作用强烈,分异程度很高。在各种SiO2和氧化物哈克图解中,无明显变化趋势(图未附)。
猴头沟二长花岗岩稀土总量质量分数为339.5×10-6~378.0×10-6,轻稀土质量分数为 313.5×10-6~346.4×10-6,重稀土质量分数为26.0×10-6~32.7×10-6,轻稀土元素较重稀土元素富集明显,轻重稀土比值为9.67~12.12,LaN/YbN值为11.80~15.83(表 2),配分曲线为右倾型分布模式(图 8)。δEu为0.08~0.12,Eu强烈亏损。猴头沟样品花岗岩微量元素原始地幔标准化蜘蛛图(图 9)显示,Rb、Th、U、La、Ce、Nd等元素相对富集,Nb、Ta、Ba、Sr、P、Ti、Eu等亏损而呈现"V"型谷,其中Eu、P、Ba、Sr显示强烈的亏损异常,表明花岗质岩浆形成过程中长石为残留相,Nb、Ta、Ti亏损通常表明与俯冲作用有成因联系[41]。
3.3 锆石Hf同位素本次测试标样为锆石MT和锆石Plai,其176Hf/177Hf值分析结果分别为0.282 502±0.000 005 (2σ,n=26)和 0.282 914±0.000 012 (2σ,n=24)。对于εHf(t)的计算,采用常数如下:176Lu为1.867×10-11[42],(176Lu/177Hf)CHUR=0.033 6,(176Hf/177Hf)CHUR=0.282 785[43],亏损地幔Hf模式年龄(TDM1)的计算应用的是测量的176Lu/177Hf锆石比值,并且假设现在球粒陨石地幔176Hf/177Hf值为0.283 250,亏损地幔的176Lu/177Hf比值为0.038 4[44]。锆石两阶段模式年龄计算是将锆石初始176Hf/177Hf值投影到地幔增长曲线上,其中所用平均大陆地壳176Lu/177Hf平均值为0.015。
本次研究成功获得猴头沟二长花岗岩样品(HTG-03-B1)中共23个锆石的Hf同位素组成(表 3),其176Yb/177Hf和176Lu/177Hf范围分别为0.036 845~0.135 098和0.000 743~0.002 618。176Lu/177Hf非常接近或小于0.002,表明源区具有极低的放射性成因176Hf的积累,分析获得的176Hf/177Hf值能够代表源区的Hf同位素组成[46]。23个锆石分析点的(176Hf/177Hf)i值为0.282 525~0.282 660,εHf(t)值为0.2~5.1,相对变化较小,显示了Hf同位素组成的均一性。与此相对应,样品也显示出变化较小的二阶段模式年龄(TDM2)为1 066~1 371 Ma。
测点 | 年龄/Ma | 176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | 2σ | (176Hf/177Hf)i | εHf(0)(a) | εHf(t) | 2σ | TDM1/Ma | TDM2/Ma | fLu/Hf |
1 | 419 | 0.060 462 | 0.001 186 | 0.282 590 | 0.000 021 | 0.282 580 | -6.9 | 2.1 | 0.7 | 942 | 1 249 | -0.96 |
2 | 420 | 0.036 845 | 0.000 743 | 0.282 633 | 0.000 019 | 0.282 627 | -5.4 | 3.8 | 0.7 | 870 | 1 143 | -0.98 |
3 | 415 | 0.094 403 | 0.001 792 | 0.282 631 | 0.000 023 | 0.282 617 | -5.5 | 3.3 | 0.8 | 898 | 1 169 | -0.95 |
4 | 426 | 0.086 039 | 0.001 671 | 0.282 673 | 0.000 027 | 0.282 660 | -4.0 | 5.1 | 1.0 | 835 | 1 066 | -0.95 |
5 | 415 | 0.075 256 | 0.001 495 | 0.282 594 | 0.000 027 | 0.282 582 | -6.8 | 2.1 | 1.0 | 944 | 1 247 | -0.96 |
6 | 422 | 0.053 588 | 0.001 074 | 0.282 638 | 0.000 022 | 0.282 630 | -5.2 | 3.9 | 0.8 | 871 | 1 136 | -0.97 |
7 | 426 | 0.078 603 | 0.001 576 | 0.282 631 | 0.000 025 | 0.282 619 | -5.4 | 3.6 | 0.9 | 893 | 1 159 | -0.95 |
8 | 418 | 0.060 232 | 0.001 205 | 0.282 647 | 0.000 023 | 0.282 638 | -4.9 | 4.1 | 0.8 | 861 | 1 121 | -0.96 |
10 | 420 | 0.084 303 | 0.001 639 | 0.282 672 | 0.000 026 | 0.282 659 | -4.0 | 4.9 | 0.9 | 836 | 1 072 | -0.95 |
11 | 426 | 0.078 319 | 0.001 495 | 0.282 617 | 0.000 019 | 0.282 605 | -5.9 | 3.1 | 0.7 | 911 | 1 189 | -0.96 |
12 | 419 | 0.049 560 | 0.000 985 | 0.282 622 | 0.000 021 | 0.282 614 | -5.8 | 3.3 | 0.7 | 891 | 1 172 | -0.97 |
13 | 421 | 0.056 517 | 0.001 132 | 0.282 664 | 0.000 021 | 0.282 655 | -4.3 | 4.8 | 0.7 | 836 | 1 081 | -0.97 |
14 | 419 | 0.052 539 | 0.001 037 | 0.282 613 | 0.000 019 | 0.282 605 | -6.1 | 3.0 | 0.7 | 905 | 1 193 | -0.97 |
15 | 419 | 0.037 449 | 0.000 755 | 0.282 562 | 0.000 019 | 0.282 556 | -7.9 | 1.2 | 0.7 | 970 | 1 303 | -0.98 |
16 | 421 | 0.076 687 | 0.001 530 | 0.282 640 | 0.000 027 | 0.282 628 | -5.1 | 3.8 | 0.9 | 879 | 1 140 | -0.95 |
18 | 417 | 0.075 876 | 0.001 467 | 0.282 623 | 0.000 027 | 0.282 612 | -5.7 | 3.2 | 0.9 | 901 | 1 179 | -0.96 |
19 | 415 | 0.068 417 | 0.001 338 | 0.282 616 | 0.000 022 | 0.282 605 | -6.0 | 2.9 | 0.8 | 909 | 1 195 | -0.96 |
20 | 419 | 0.045 598 | 0.000 920 | 0.282 533 | 0.000 025 | 0.282 525 | -8.9 | 0.2 | 0.9 | 1 015 | 1 371 | -0.97 |
21 | 419 | 0.085 415 | 0.001 634 | 0.282 560 | 0.000 021 | 0.282 547 | -8.0 | 0.9 | 0.8 | 996 | 1 323 | -0.95 |
22 | 418 | 0.135 098 | 0.002 618 | 0.282 607 | 0.000 024 | 0.282 587 | -6.3 | 2.3 | 0.9 | 954 | 1 235 | -0.92 |
23 | 418 | 0.069 639 | 0.001 343 | 0.282 590 | 0.000 023 | 0.282 580 | -6.9 | 2.0 | 0.8 | 945 | 1 251 | -0.96 |
24 | 427 | 0.053 919 | 0.001 061 | 0.282 637 | 0.000 024 | 0.282 628 | -5.2 | 4.0 | 0.9 | 873 | 1 137 | -0.97 |
25 | 418 | 0.093 208 | 0.001 822 | 0.282 646 | 0.000 026 | 0.282 631 | -4.9 | 3.9 | 0.9 | 878 | 1 135 | -0.95 |
注:εHf(0)和εHf(t) 值利用现在的(176Hf/177Hf)CHUR=0.282 785和(176Lu/177Hf)CHUR=0.033 6[43]计算获得。TDM1值利用现在的(176Hf/177Hf)DM=0.283 25和(176Lu/177Hf)DM=0.038 4[44]计算获得。TDM2值利用现在的(176Hf/177Hf)DM=0.283 250,(176Lu/177Hf)DM=0.038 4[44]和(176Lu/177Hf)cc=0.015[45]计算获得。 |
花岗岩类岩石成因类型与其生成的构造背景密切相关,不同构造演化阶段形成的岩石成因类型有所差异。其具有高硅(w(SiO2)为73.08%~75.03%)和高碱(w(K2O+Na2O)为8.38%~8.82%)、相对富铝(A/CNK为0.970~1.066)、高TFeO/MgO(8.65~20.58)和104Ga/Al值(3.039~3.304)、富集轻稀土、明显的负Eu异常和相对原始地幔明显富集Zr、Nb、Y、Hf等高场强元素,并且强烈亏损 Ba、Sr、P和 Ti等低场强元素的特征,这些特征与A型花岗岩类的地球化学特征一致[47],在Whalen等[47]提出的判别图解(图 10)中,所有样品点均落入A型花岗岩区域。其高的Rb/Nb值和Y/Nb值等进一步表明,猴头沟二长花岗岩属于A2型花岗岩[48](图 11)。
4.2 岩石岩浆源区讨论A型花岗岩的成因前人总结大致有以下4种观点:地幔碱性岩浆的分离结晶作用[49,50];熔出含水长英质岩浆之后的富 F、Cl麻粒岩相下地壳的低程度部分熔融[51,52];幔源岩浆与深熔形成的壳源岩浆的混合与交代作用[53,54];低压下钙碱性岩石的部分熔融[55]。猴头沟二长花岗岩可以排除是幔源岩浆来源的可能,因为花岗质岩浆不能直接由幔源橄榄岩直接形成,幔源橄榄岩形成的岩浆酸碱度不会高于闪长质(w(SiO2)为55%)[56,57]。猴头沟二长花岗岩并不发育镁铁质包体,没有明显幔源岩浆与地壳熔体混合成因的证据。所以可以判定,该区域二长花岗岩不是地幔成因,故可以推测是壳源成因。
原始地幔标准化蛛网图上,强烈的Nb、Ta、Ti异常表明猴头沟二长花岗岩与板块俯冲有成因联系。在花岗质岩浆形成过程中,幔源镁铁质熔体或者是初生幔源镁铁质下地壳的部分熔融形成高176Hf/177Hf值(即εHf(t)>0)[58]。约为419 Ma的猴头沟二长花岗岩的锆石εHf(t)值为0.2~5.1,可以推断猴头沟二长花岗岩是镁铁质下地壳部分熔融的产物(图 12)。强烈亏损的P、Sr和明显的负Eu异常表明源区可能斜长石富集。样品也显示二阶段模式年龄(TDM2)为1 066~1 371 Ma,表明为花岗岩源区应为中元古代镁铁质下地壳。锆石的饱和温度提供了一个简单有效的长英质花岗岩从原岩分离结晶时温度的估算方法[43]。猴头沟二长花岗岩的锆石饱和温度(TZr)为715~727 ℃,其平均温度为720 ℃,相对较高,这与A型花岗岩石大都属于高温成因的认识一致[52,59,60,61]。
4.3 构造环境和动力学意义由于五龙沟地区研究程度很低,关于猴头沟二长花岗岩的侵位机制等前人没有任何报道;本文也未能对此开展过系统调查,所以只能从其地球化学特征判断其侵位时的构造背景。通常而言,A1型花岗岩主要形成于造山后或非造山伸展的构造环境[48,62,63,64,65],而A2型花岗岩通常代表花岗质岩浆起源于陆陆碰撞或岛弧环境下的大陆壳部分熔融[48]。w(Rb)-w(Yb+Ta)图解(图 13a)、w(Rb)-w(Y+Nb)图解(图 13b)及w(Y)-w(Nb)图解(图 13c)等均无法有效判断其构造环境,暗示为造山后花岗岩,且从R1-R2图解(图 13d)可知,猴头沟二长花岗岩大致落入造山后环境的A型花岗岩区域内,可以推测猴头沟二长花岗岩应为造山后A2型花岗岩。该二长花岗岩锆石U-Pb年龄((419.0±1.9) Ma)属于早古生代晚志留世,可见其为早古生代晚志留世造山旋回末后造山的产物,说明东昆仑造山带在早古生代晚志留世造山旋回末后造山阶段,在五猴头地区形成了A2型花岗岩。
如前所述,东昆仑造山带记录青藏高原拼合的早期历史(图 1)[12,13,14]。沿着东昆中断裂和东昆南断裂发育两条蛇绿岩带,一般认为其分别代表了原特提斯洋和古特提斯洋的存在[16,17],其存在大致时间分别为新元古代早泥盆世和石炭纪晚三叠世[12,16,17,18,19,20,21]。大量的早泥盆世造山后花岗岩的报道也进一步限定原特提斯洋的闭合时限最晚应该是早泥盆世,如西段祁曼塔格地区喀雅克登塔格造山后环境形成的二长花岗岩为394 Ma[2];中段鲸鱼湖北侧东昆中断裂带附近造山后环境形成花岗岩年龄为413~403 Ma[3];西段祁曼塔格地区造山后环境形成的乌兰乌珠尔正长花岗岩为389 Ma[4];东段具有典型后碰撞特征的跃进山花岗岩体为407 Ma,并显示很强的幔源岩浆作用印记[1];西段祁曼塔格地区代表后碰撞阶段壳幔岩浆混合产物的野马泉二长花岗岩和花岗闪长岩年龄为393~386 Ma[5];东段具有典型的造山后伸展阶段A型花岗岩特征的冰沟正长花岗岩年龄为391 Ma[6];中段夏日哈木矿区构造后伸展体制下的花岗岩年龄为391 Ma[7]。可见,前人限定东昆仑地区原特提斯洋进入造山后阶段时限为不早于413 Ma。而根据本文的进一步研究表明,原特提斯洋沿着东昆中断裂带的最早闭合时限,可能要提早到晚志留世之前,因为形成于419 Ma的猴头沟二长花岗岩为具有典型造山后伸展环境形成的A2型花岗岩特征。
总之,最晚在晚志留世,东昆仑地区原特提斯洋盆已经闭合,东昆中和东昆南带拼合在一起,整个东昆仑造山带进入造山后伸展阶段,拼贴后的伸展作用阻碍了浅部洋壳的进一步俯冲,但深部的俯冲板片仍在继续向下俯冲,导致深部继续俯冲的板片发生断离,形成板片窗,引起深部软流圈的上涌。随后,上涌的软流圈物质对上覆地壳的直接加热导致低压下的中元古代镁铁质下地壳部分熔融最终形成本区高钾钙碱性系列的A2型花岗岩。
5 结论1)五龙沟地区猴头沟二长花岗岩成因类型为造山后伸展阶段A2型花岗岩,富SiO2、K2O、贫Al2O3、贫Sr、富Y和Yb,具有强烈的负铕异常,Rb、Th、U、La、Ce、Nd相对富集,Nb、Ta高场强不相容元素亏损,Ba、Sr、P、Ti 强烈亏损。
2)猴头沟二长花岗岩锆石的Hf同位素研究表明,锆石εHf(t)值为0.2~5.1,对应二阶段模式年龄(TDM2)为1 066~1 371 Ma,推测花岗岩源区来自中元古代镁铁质下地壳部分熔融。
3)LA-ICP-MS锆石U-Pb测年表明,猴头沟二长花岗岩的206Pb/238U加权平均年龄值为(419.0±1.9)Ma,由此推测原特提斯洋在东昆仑地区的最晚闭合时限应该不晚于晚志留世末期(~419 Ma),而不是前人认为的早泥盆世。
[1] | 刘彬, 马昌前, 张金阳, 等.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J]. 岩石学报, 2012, 28(6):1785-1807. Liu Bin, Ma Changqian, Zhang Jinyang, et al. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes[J]. Acta Petrologica Sinica, 2012,28(6):1785-1807. |
[2] | 谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRI MP年龄及其地质意义[J]. 岩石矿物学杂志, 2006, 25(1):25-32. Chen Hongwei, Luo Zhaohua, Mo Xuanxue, et al. SHRIMP Ages of Kayakedengtage Complex in the East Kunlun Mountains and Their Geological Implications[J]. Acta Petrologica Etmineralogica, 2006, 25(1):25-32. |
[3] | 赵振明, 马华东, 王秉璋, 等. 东昆仑早泥盆世碰撞造山的侵入岩证据[J]. 地质论评, 2008,54(1):47-56. Zhao Zhenming, Ma Huadong, Wang Bingzhang, et al. The Evidence of Intrusive Rocks About Collision-Orogeny During Early Devonian in Eastern Kunlun Area[J]. Geological Review, 2008, 54(1):47-56. |
[4] | 郭通珍, 刘荣, 陈发彬, 等. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及地质意义[J]. 地质通报, 2011, 30(8):1203-1211. Guo Tongzhen, Liu Rong, Chen Fabin, et al. LA-MC-ICPMS Zircon U-Pb Dating of Wulanwuzhuer Porphyritic Syenitegranite in the Qimantag Mountain of Qinghai and Its Geological Significance[J]. Geological Bulletin of China, 2011, 30(8):1203-1211. |
[5] | 高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报,2014, 30(6):1647-1665. Gao Yongbao, Li Wenyuan, Qian Bing, et al. Geochronology, Geochemistry and Hf Isotopic Compositions of the Granitic Rocks Related with Iron Mineralization in Yemaquan Deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 2014, 30(6):1647-1665. |
[6] | 刘彬, 马昌前, 郭盼, 等. 东昆仑中泥盆世A型花岗岩的确定及其构造意义[J]. 地球科学:中国地质大学学报, 2013, 38(5):947-962. Liu Bin, Ma Changqian, Guo Pan, et al. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications[J]. Earth Science:Journal of China University of Geosciences, 2013,38(5):947-962. |
[7] | 王冠,孙丰月,李碧乐,等.东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义[J].吉林大学学报(地球科学版), 2014,44(3):876-891. Wang Guan, Sun Fengyue, Li Bile, et al. Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3):876-891. |
[8] | 高永宝, 李文渊. 东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因[J]. 地球化学, 2011, 40(4):324-336. Gao Yongbao, Li Wenyuan. Petrogenesis of Granites Containing Tungsten and Tin Ores in the Baiganhu Deposit, Qimantage, NW China:Constraints from Petrology, Chronology and Geochemistry[J]. Geochimica,2011, 40(4):324-336. |
[9] | 陈广俊,孙丰月,李碧乐,等.东昆仑沟里地区暗色包体及其寄主岩石地球化学特征及成因[J].吉林大学学报(地球科学版),2014,44(3);892-904. Chen Guangjun, Sun Fengyue, Li Bile, et al. Geochemistry and Petrogenesis of Gouli Mafic Enclaves and Their Host Rocks in Eastern Kunlun. Journal of Jilin University(Earth Science Edition), 2014,44(3):892-904. |
[10] | 李金超,贾群子,杜玮,等.东昆仑东段阿斯哈矿床石英闪长岩LA-ICP-MS锆石U-Pb定年及岩石地球化学特征[J].吉林大学学报(地球科学版),2014,44(4):1188-1199. Li Jinchao,Jia Qunzi,Du Wei,et al. LA-ICP-MS Zircon Dating and Geochemical Characteristics of Quartz Diorite in Asiha Gold Deposit in East Segment of the Eastern Kunlun[J]. Journal of Jilin University(Earth Science Edition),2014,44(4):1188-1199. |
[11] | Peng Bo, Sun Fengyue,Li Bile,et al.The Geochemistry and Geochronology of the Xiarihamu II Mafic-Ultramafic Complex, Eastern Kunlun, Qinghai Province,China:Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits Ore[J]. Geology Reviews, 2016, 73:13-28. |
[12] | 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3):403-414. Mo Xuanxue,Luo Zhaohua,Deng Jinfu,et al.Granitoids and Crustal Growth in the East Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007,13(3):403-414. |
[13] | 许志琴,杨经绥,李海兵,等.造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社, 2007:1-458. Xu Zhiqin, Yang Jingsui, Li Haibing, et al. Terrane Amalgamation, Collision and Uplift in the Qinghai-Tibet Plateau[M]. Beijing:Geological Publishing House, 2014:1-458. |
[14] | Chen N S, Sun M, Wang, Q Y, et al. EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen, Records of Multi-Tectonometamorphic Events[J]. Chinese Science Bulletin, 2007, 52(16):2252-2263. |
[15] | Yuan C, Zhou M F, Sun M, et al. Triassic Granit-oids in the Eastern Songpan Ganzi Fold Belt, SW China, Magmatic Response Togeodynamics of the Deep Lithosphere[J]. Earth and Planetary Science Letters, 2010, 290(3/4):481-491. |
[16] | 姜春发, 杨经绥, 冯秉贵, 等. 昆仑开合构造[M]. 北京:地质出版社, 1992:1-224. Jiang Chunfa, Yang Jingsui, Feng Binggui, et al. The Opening and Closing Structure of Kunlun Area[M]. Beijing:Geological Publishing House,1992:1-224. |
[17] | Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications[J]. Tectonophysics, 1996, 258(1/2/3/4):215-231. |
[18] | Yang J S, Shi R D, Wu C L, et al. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau:Evidence for Paleo-Tethyan Suture in Northwest China[J]. Journal of Earth Science, 2009, 20(2):303-331. |
[19] | Sengör A M C. Tectonics of the Tethysides, Orogenic Collage Development in a Collisional Setting[J]. Annual Review of Earth and Planetary Sciences, 1987, 15:213-244. |
[20] | Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J].Annual Review of Earth and Planetary Sciences, 2000, 28:211-280. |
[21] | Roger F, Arnaud N, Gilder S, et al. Geochronological and Geochemical Constraints on Mesozoic Suturingin East Central Tibet[J]. Tectonics, 2003, 22(4):1037-1057. |
[22] | 青海省第一地质矿产勘查院.青海省都兰县五龙沟地区红旗沟深水潭金矿区详查报告[R].平安:青海省第一地质矿产勘查院,2010. First Geology and Mineral Exploration Institute of Qinghai Province. The Detailed Investigation Report of Gold Deposit in Hongqigou-Shenshuitan, Wulonggou, Qinghai Province[R]. Ping'an:The First Geology and Mineral Exploration Institute of Qinghai Province, 2010. |
[23] | 李厚民,沈远超,胡正国,等. 青海东昆仑五龙沟金矿床成矿条件及成矿机理[J]. 地质与勘探, 2001, 37(1):65-69. Li Houmin, Shen Yuanchao, Hu Zhengguo, et al. Minerogenetic Mechanism and Condition of Wulonggou Gold Deposit In East Kunlun Mountains, Qinghai Province[J]. Geology and Prospecting,2001, 37(1):65-69. |
[24] | 丰成友. 青海东昆仑地区的复合造山过程及造山型金矿床成矿作用[D].北京:中国地质科学院,2002. Feng Chengyou. Multiple Orogenic Processes and Mineralization of Orogenic Gold Deposits in the Eastern Kunlun Orogen, Qinghai Province[D]. Beijing:Chinese Academy of Geological Sciences, 2002. |
[25] | 张德全, 张慧, 丰成友, 等. 柴北缘东昆仑地区造山型金矿床的流体包裹体研究[J]. 中国地质,2007, 34(5):843-854. Zhang Dequan, Zhang Hui, Feng Chengyou, et al. Fluid Inclusions in Orogenic Gold Deposits in the Northern Qaidammargin-East Kunlun Region[J]. Geology in China, 2007, 34(5):843-854. |
[26] | 陆露, 张延林, 吴珍汉, 等.东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义[J]. 地球学报, 2013, 34(4):447-454. Lu Lu, Zhang Yanlin, Wu Zhenhan, et al. Zircon U-Pb Dating of Early Paleozoic Granites from the East Kunlun Mountains and Its Geological Significance[J]. Acta Geoscientica Sinica, 2013, 34(4):447-454. |
[27] | Hu Z C, Gao S, Liu Y S, et al. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8):1093-1101. |
[28] | Hu Z, Liu, Y, Gao S, et al. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2012(78):50-57. |
[29] | Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43. |
[30] | Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. |
[31] | Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. |
[32] | Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Geochronology Center, 2003:1-70. |
[33] | Ding Q F, Jiang S Y, Sun F Y. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China:Petrogenesis and Tectonic Implications[J]. Lithos, 2014, 205:266-283. |
[34] | Wu F Y, Yang Y H, Xie L W, et al, Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1/2):105-126. |
[35] | Hou K J, Li Y H, Zou T R, et al. Laser Ablation MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J]. Acta Petrologica Sinica, 2007, 23:2595-2604. |
[36] | Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4):247-263. |
[37] | Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 10(3/4):635-643. |
[38] | Watson E B, Harrison T M. Zircon Saturation Revisited, Temperature and Composition Effects in a Variety of Crustal Magma Types[J]. Earth and Planetary Science Letters, 1983, 64(2):295-304. |
[39] | Boynton W V.Geochemistry of the Rate Earth Elements:Meteorite Studies[M]//Henderson P. Rare Earth Elements Geochemistry.Amsterdam:Elsevier, 1984:63-114. |
[40] | McDonough W F, Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253. |
[41] | Jiang Y H, Liu Z, Jia R Y, et al. Miocene Potassic Granite-Syenite Association in Western Tibetan Plateau:Implications for Shoshonitic and High Ba-Sr Granite Genesis[J]. Lithos, 2012, 134:146-162. |
[42] | Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions[J].Earth and Planetary Science Letters, 2004, 219(3/4):311-324. |
[43] | Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets[J]. Earth and Planetary Science Letters, 2008, 273(1/2):48-57. |
[44] | Griffin W L, Pearson N J, Belousova E, et al. The HfIsotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147. |
[45] | Griffn W L, Wan, X, Jackson S E, et al. Zircon Chemistry and Magma Mixing, SE China, In-Situ Analysis of Hf Isotopes, Tongluand Pingtan Igneous Complexes[J]. Lithos, 2002,61(3/4):237-269. |
[46] | 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604. Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser Ablation MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J]. Acta Petrologica Sinica, 2007, 23(10):2595-2604. |
[47] | Whalen J B, Currie K L, Chappell B W. A-Type Granites, Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. |
[48] | Eby G N. Chemical Subdivision of the A-Type Granitoids, Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20(7):641-644. |
[49] | Turner S P, Foden J D, Morrison R S. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma, an Example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2):151-179. |
[50] | Mushkin A, Navon O, Halicz L, et al. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5):815-832. |
[51] | Collins W J, Beams S D, White A J R. Nature and Origin of A-Type Granites With Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200. |
[52] | Clemens J D, Holloway J R, White A J R. Origin of an A-Type Granite:Experimental Constraints[J]. Am Mineral, 1986, 71:317-324. |
[53] | Harris C, Marsh J S, Milner S C. Petrology of the Alkaline Core of the Messum Igneous Complex, Namibia:Evidence for the Progressively Decreasing Effect of Crustal Contamination[J]. Journal of Petrology, 1999, 40(9):1377-1397. |
[54] | Yang J H, Wu F Y, Chung S L, et al. A hybrid Origin for the Qianshan A-Type Granite, Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence[J]. Lithos, 2006, 89(1/2):89-106. |
[55] | Skjerlie K P,Johnston A D. Vapor-Absent Melting at Iokbar of a Biotite and Amphibole-Bearing Tonalitic Gnesis:Implications for the Generation of A-Type Granites[J]. Geology, 1993, 20(3):263-266. |
[56] | Baker M B, Hischmann M M, Ghiorso M S, et al. Compositions of Nearsolidus Peridotite Melt from Experiments and Thermodynamic Calculations[J]. Nature, 1995, 375:308-311. |
[57] | Liu S, Hu R Z, Gao S, et al. Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of Permian Granodiorite and Associated Gabbro in the Songliao Block, NE China and Implications for Growth of Juvenile Crust[J]. Lithos, 2010,114(3/4):423-436. |
[58] | Wong J, Sun M, Xing G F, et al. Geochemical and Zircon U-Pb and Hf Isotopic Study of the Baijuhuajian Metaluminous A-Type Granite, Extension at 125-100 Ma and Its Tectonic Significance for South China[J]. Lithos,2009,112(3/4):289-305. |
[59] | Chappell B W. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Baplogranites[J]. Lithos, 1999,46(3):535-551. |
[60] | King P L, White A J R, Chappell B W,et al. Characterization and Origin of Aluminous A-Type Graintes from the Lachlan Fold Belt, Southeastern Australia[J]. J Petrol, 1997,38(3):371-391. |
[61] | King P L, Chappell B W, Allen C M, et al. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite,Australian[J]. Earth Sci, 2001,48(4):501-514. |
[62] | Sylvester P J. Post-Collisional Alkaline Granites[J]. The Journal of Geology, 1989,97(3):261-280. |
[63] | Bonin B. From Orogenic to Anorogenic Settings:Evolution of Granitoid Suites After a Major Orogenesis[J]. Geological Journal, 1990,25(3/4):261-270. |
[64] | Nedelec A, Stephens W E,Fallick A E. The Panafrican Stratoid Granites of Madagascar:Alkaline Magmatism in a Post-Collisional Extensional Setting[J]. Journal of Petrology, 1995,36(5):1367-1391. |
[65] | Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite:Petrogenesis Based on the Topsails Igneous Suite, Newfoundland Appalachians[J]. Journal of Petrology, 1996,37(6):1463-1489. |
[66] | Pearce J A, Harris N B W,Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Graniticrocks[J]. Journal of Petrology, 1984, 25(4):956-983. |
[67] | Batchelor R A,Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicatoinic Parameters[J]. Chem Geol,1985,48(1):43-55. |