文章快速检索  
  高级检索
西准噶尔恰达地区哈尔加乌组火山岩锆石U-Pb年代学、地球化学及地质意义
田陟贤1,2,3, 李永军1,2, 田猛4, 杨高学1,2, 向坤鹏1,2, 佟丽莉1,2    
1. 长安大学地球科学与资源学院, 西安 710054;
2. 国土资源部岩浆作用成矿与找矿重点实验室, 西安 710054;
3. 中国科学院广州地球化学研究所边缘海地质重点实验室, 广州 510640;
4. 新疆维吾尔自治区有色地质矿产勘查院, 乌鲁木齐 830000
摘要: 恰达地区的二叠系哈尔加乌组火山岩分布于唐巴勒蛇绿岩带东侧、准噶尔盆地西南缘,主要岩性为灰绿色-紫红色(气孔)(杏仁)玄武岩-玄武安山岩-安山岩。LA-ICP-MS锆石U-Pb年龄为(296.6±8.1) Ma,MSWD=7.7(93%置信度),时代属早二叠世。地球化学研究表明:该火山岩属亚碱性系列,全碱含量较高(w(Na2O+K2O)=3.95%~6.39%)且相对富钠。轻稀土(LREE)相对富集((La/Yb)N=3.49~14.66)且分馏较好((La/Sm)N值均大于1.00(1.68~3.51)),重稀土分馏较差((Gd/Yb)N=1.38~2.56)。仅部分样品有微弱的负铕异常(δEu=0.88~1.15)。微量元素具有大离子亲石元素(LILE)相对富集,高场强元素(HFSE)Nb、Ta相对亏损,Zr、Hf轻微富集的特征。综合火山岩的地球化学特征,结合相关构造判别图解及火山岩所处的区域地质背景,认为哈尔加乌组火山岩的形成背景以板内大陆环境为主,兼有部分弧火山岩的特征,形成于俯冲碰撞造山期后的区域伸展背景下,火山岩的岛弧特征是对碰撞前混染弧组分的继承。
关键词: 锆石LA-ICP-MS U-Pb测年     地球化学     构造环境     火山岩     哈尔加乌组     西准噶尔    
Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Volcanic Rocks of Haerjiawu Formation in Qiada, West Junggar
Tian Zhixian1,2,3, Li Yongjun1,2 , Tian Meng4, Yang Gaoxue1,2, Xiang Kunpeng1,2, Tong Lili1,2    
1. Earth Science & Resources College, Chang'an University, Xi'an 710054, China;
2. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi'an 710054, China;
3. Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
4. Xinjiang Institute of Geological Exploration for Nonferrous Resources, Urumqi 830000, China
Supported by National Natural Science Foundation of China (41273033) and Geological Survey Foundation of Xinjiang Uygur Autonomous Region (XJZBKD2008-04, XJQDZ2009-03)
Abstract: The Early Permian volcanic rocks in Haerjiawu Formation are distributed in eastern Tangbale ophiolite belt on the southwest margin of Junggar basin. The volcanic rocks are mainly composed of greyish-green or purplish-red (vesicular) (amygdaloidal) basalt, basaltic andesite, and andesite. The high-precision LA-ICP-MS zircon U-Pb dating reveals that they were formed in Early Permian at the age of (296.6±8.1) Ma, MSWD=7.7(93% conf.). Geochemically the volcanic rocks belong to sub-alkaline series. They have relatively high content of alkali (w(Na2O+K2O)=3.95%-6.39%), and enriched in sodium. The LREE are relatively enriched ((La/Yb)N=3.49-14.66) and well fractionated ((La/Sm)N=1.68-3.51); while the HREE fractionation is weak ((Gd/Yb)N=1.38-2.56). Only some of the samples have weak negative Eu anomalies (δEu=0.88-1.15). All samples are enriched in LILE; while HFSE are relatively depleted in Nb and Ta but slightly enriched in Zr, Hf. These characteristics, along with element correlation diagram, indicate that the volcanic rocks in Qiada area mainly generated in intra-plate continent with partial island arc environments. These volcanic rocks were from extensional setting of post-collisional period. These island-arc characteristics are inherited from pre-collisional arc component.
Key words: zircon LA-ICP-MS U-Pb age     geochemistry     tectonic setting     volcanic rocks     Haerjiawu Formation     west Junggar    

0 引言

西准噶尔位于西伯利亚、哈萨克斯坦和塔里木三大陆板块的交汇处,是中亚造山带的核心地带[1]。晚古生代是准噶尔盆地构造体制的重要转折阶段[2, 3],随着残余洋盆的消亡,发生了多期陆相火山喷发、大规模的富碱岩浆侵入;与幔源岩浆作用有关的成矿作用使之成为西准噶尔乃至整个中亚的重要成矿期[4, 5];广布的火山岩和侵入岩体为探讨这一时期的构造格局与演化提供了良好的物质基础。二叠纪火山作用是准噶尔地区晚古生代最晚的火山作用,研究该套火山岩对于认识区内火山作用特征、构造演化具有重要的意义,但目前相关的研究和报道较少。本次调查对下二叠统哈尔加乌组火山岩进行了较详尽的岩石学、同位素年代学、地球化学研究,并对其形成的构造环境进行探讨,以期为进一步认识西准噶尔恰达一带的构造演化提供新的证据。

1 地质背景

西准噶尔位于哈萨克斯坦板块、塔里木板块和西伯利亚板块交汇的中亚增生造山带关键部位[6, 7]。受古亚洲洋和周边造山带的发展演化及其构造运动的影响,经历了多阶段不同性质的构造变革[8]。其地质条件复杂,主要由一系列增生杂岩带、古生代岩浆弧构成[9, 10],主要构造特征为NE——SW向断裂非常发育,由北向南依次为巴尔雷克断裂、玛依勒断裂和达尔布特断裂(图 1a)。

F1. 巴尔雷克断裂;F2. 玛依勒断裂;F3. 达尔布特断裂。 图 1 西准噶尔构造略图(a)、哈尔加乌组分布地质简图(b)及哈尔加乌组剖面图(c)

Fig. 1 Simplified geological sketch of west Junggar (a),distribution of Haerjiawu Formation (b) and section of the Haerjiawu Formation (c)

研究区位于西准噶尔南缘恰达一带,属于准噶尔火山岩区9个古生代火山岩带之一的谢米斯台火山岩带西段[11]。该火山岩带形成于古生代准噶尔洋闭合洋-陆格局演化阶段[12]。发育中奥陶世——早二叠世的火山岩,主要为碱性、钙碱性系列。奥陶系——志留系以玄武岩-安山岩组合为主,泥盆系——石炭系以玄武岩-安山岩-英安岩组合为主,下二叠统整体为安山岩-霏细岩组合。该区下古生界包含奥陶系——志留系含蛇绿岩残块的变质杂岩[13];上古生界由泥盆系——石炭系的火山-海相沉积和二叠系陆相火山-磨拉石建造组成。区内侵入岩非常发育,从超基性岩至酸性岩均有出露,主要为石英闪长(玢)岩、花岗闪长(斑)岩、二长花岗岩、(斑状)碱长花岗岩、花岗斑岩等,深成、浅成相均有,深成相呈岩基产出,浅成相多呈小的岩株、岩脉状产出。

研究区出露的哈尔加乌组(P1h)主体为一套火山岩,同时也夹有沉积碎屑岩,火山碎屑岩和火山熔岩所占的比例较大,为陆内裂隙式火山喷发岩。火山岩以中性为主,兼具基性与酸性,主要岩性为灰绿色-紫红色(气孔)(杏仁)玄武岩-玄武安山岩-安山岩,局部出露紫红色英安岩、安山质火山角砾岩。该组与泥盆系库鲁木迪组(D2k)呈角度不整合接触(图 1b),后者主要为滨浅海——浅海相沉积,粉——细砂岩中基质以凝灰质为主,局部有火山岩发育。区域内还出露中奥陶统科克萨依组(O2k)(主要为晶屑玻屑凝灰岩夹玄武岩、杏仁状安山岩),与下奥陶统拉巴组(O1l)(黑色泥质粉砂岩夹灰绿色凝灰质不等粒砂岩)呈断层接触。研究区西南部为早二叠世后造山环境下形成的花岗岩体。研究区还出露奥陶纪蛇绿构造混杂岩(OφO),属唐巴勒蛇绿岩[13]

2 制样及分析方法

用于LA-ICP-MS(激光剥蚀电感耦合等离子体质谱)锆石U-Pb测年的样品均为较新鲜的灰紫色安山岩,采样点地理坐标为45°12′05″N,82°59′44″E(图 1b)。对野外采集的14件火山岩样品进行仔细的薄片镜下鉴定,选取其中11件样品用于岩石全分析(其余样品用于手标本观察等)。这些样品均采自较新鲜的基岩露头,采样位置避开了研究区内的断裂破碎带、碳酸盐蚀变带和接触带等,蚀变程度较低、杏仁和气孔构造较少(图 1c)。

LA-ICP-MS锆石原位U-Pb定年在西北大学大陆动力学国家重点实验室完成,主量元素分析在新疆地质矿产开发局中心实验室采用X射线荧光光谱(XRF)方法分析完成,稀土和微量元素在长安大学西部矿产资源与地质工程教育部重点实验室采用Thermo-X7电感耦合等离子体质谱仪进行测定。具体仪器参数、样品制备方法、分析流程及数据处理方法等参见文献[14]

3 锆石LA-ICP-MS U-Pb年龄

从样品中选取的锆石为浅黄色-无色透明呈正方双锥状、钮柱状及半截锥状的自形晶体,晶体长0.05~0.10 mm,宽0.03~0.08 mm,柱状长宽比为2∶1~3∶1,阴极发光图像表现出典型的岩浆韵律环带和明暗相间的条带结构等(图 2a),属于岩浆结晶产物[15]。锆石群形态单一,多数为喷发期岩浆活动一次结晶形成。

对样品8RZ-PM07-1锆石U-Pb分析共测试了数据点9个,由同位素比值和年龄数据(表 1)可知:锆石具有较高的Th/U值(0.41~0.54),属于典型岩浆成因锆石的范围[16];锆石微区数据点的207Pb/206Pb值非常接近(0.050 0~0.055 8),表明该类锆石为同期岩浆结晶成因;206Pb/238U年龄为274~306 Ma,最大的年龄误差9 Ma,所有数据点集中分布在谐和曲线附近(图 2b),206Pb/238U加权平均年龄为(296.6±8.1) Ma(MSWD=7.7,93%置信度),属于早二叠世。

表 1 哈尔加乌组火山岩LA-ICP-MS锆石U-Pb同位素分析结果 Table 1 Zircon LA-ICP-MS U-Pb isotopic analysis of the volcanic rocks in Haerjiawu Formation from Qiada of west Junggar
编号同位素比值年龄/MaTh/U
207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th238U/232Th207Pb/206Pb206Pb/238U238U/232Th
测值1σ 测值1σ 测值1σ 测值1σ 年龄1σ 年龄1σ 年龄1σ 年龄1σ
Phn-010.052 40.007 20.328 90.044 30.045 60.001 50.017 70.001 1305244289342879355220.49
Phn-020.050 00.001 60.334 50.010 40.048 60.000 40.015 60.000 3194562938306331260.41
Phn-030.052 70.002 00.343 60.012 30.047 40.000 50.062 10.000 73156430092983318130.54
Phn-040.052 40.003 40.323 80.020 60.044 80.000 60.015 40.000 430411928516283430990.43
Phn-050.052 50.002 10.346 10.013 30.047 90.000 5-0.000 40.000 33076930210301329860.47
Phn-060.052 80.002 90.349 30.018 70.048 00.000 60.015 60.000 43219930414302431490.52
Phn-070.052 70.003 10.315 50.017 80.043 50.000 60.013 90.000 431510527814274427970.46
Phn-080.053 00.003 30.351 40.021 10.048 10.000 70.015 00.000 533011030616303430090.53
Phn-090.055 80.004 80.358 40.030 20.046 60.000 90.013 80.000 7444153311232946277130.45
图 2 哈尔加乌组火山岩中典型锆石的CL图像(a)和锆石LA-ICP-MS U-Pb年龄谐和曲线图(b)

Fig. 2 CL images of representative zircon grains (a) and concordia diagrams (b) of volcanic rocks in Haerjiawu Formation from Qiada of west Junggar

4 岩石地球化学特征 4.1 主量元素地球化学

火山岩岩石化学分析结果及有关参数列于表 2。可以看出,研究区出露的哈尔加乌组火山岩主量元素丰度不尽相同,且个别组分丰度变化较大。其中:w(SiO2)为47.78%~67.14%,平均55.89%,为玄武安山岩-安山岩,表现出中基性——中性过渡的特点,可能表征了岩浆喷溢过程缓慢且经历了一定程度的结晶分异;w(TiO2)为0.43%~1.54%,平均0.85%,普遍低于MORB(洋中脊玄武岩)平均值(w(TiO2)=1.50%),6件样品低于岛弧拉斑玄武岩(w(TiO2)=0.80%),4件样品与大陆溢流玄武岩(w(TiO2)=1.00%)相当;w(P2O5)为0.10%~0.43%,平均0.22%; w(Al2O3)较低,为13.22%~17.20%,平均15.22%; w(CaO)(1.38%~10.67%,平均6.36%)和w(MgO)(1.78%~6.06%,平均 4.19%) 相对接近板内大陆玄武岩(w(CaO)=9.70%,w(MgO)=5.90%),而与MORB(w(CaO)=11.20%)相差较大[17];Mg#值为26.65~55.99,平均39.72,其值较小,表明经历了较弱的分离结晶作用;火山岩全碱丰度(w(Na2O+K2O)为3.95%~6.39%,平均5.18%)较高,整体具有越偏酸性全碱丰度越高的趋势;w(Na2O)(3.05%~5.95%,平均4.34%)>w(K2O)(0.17%~1.97%,平均0.84%),具相对富钠的特征。

表 2 哈尔加乌组火山岩常量元素和微量元素化学成分 Table 2 Major and trace element contents of Permian volcanic rocks from Qiada
编号wB/%Mg#σ wB/10-6
SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2ONa2O+K2OP2O5烧失量总计 LiBeScVCr
ph-160.940.5315.725.163.070.082.674.475.091.046.130.133.7998.9046.142.097.291.3619.71129.331.98
ph-260.750.6616.115.721.450.072.744.495.950.446.390.192.4998.5728.912.302.621.6321.14165.5119.10
ph-357.590.7914.325.741.440.153.177.664.140.804.940.215.3196.0127.041.6716.411.5226.14180.8101.60
ph-452.720.9015.347.121.980.134.417.544.040.985.020.306.6195.4650.532.5924.411.4825.35191.4156.50
ph-559.510.6415.486.002.110.084.514.684.391.976.360.172.1599.5438.982.4514.811.4423.67148.9179.20
ph-667.140.5614.146.542.720.141.781.385.480.275.750.202.34100.3542.831.370.160.799.1540.846.93
ph-749.490.4313.229.306.150.175.637.824.140.174.310.109.2696.6243.792.868.250.4238.90333.1388.90
ph-847.781.0116.759.362.290.125.1810.673.680.303.980.194.6097.3343.473.3128.681.1826.24275.2319.30
ph-954.911.5416.668.223.040.103.906.663.501.885.380.431.82100.8455.992.439.181.6719.30244.0281.20
ph-1052.481.2815.769.133.440.126.067.913.050.903.950.282.96100.4132.541.6514.021.1722.14247.5280.40
ph-1151.501.0417.208.963.160.146.066.644.300.464.760.193.2499.6526.652.6719.050.8020.76218.0256.70
编号wB/10-6
CoNiCuZnGaRbSrYZrNbCdInCsBaHfTaPbThULaCe
ph-122.6231.5461.9457.9815.0219.47418.809.5389.653.033.780.061.21242.902.370.267.852.590.828.7219.37
ph-223.7647.7288.0754.6515.686.60999.0010.1688.552.283.750.070.42224.202.420.1713.041.460.686.7115.70
ph-325.4036.7651.9461.0215.7714.68772.4012.5580.292.993.710.062.21309.202.250.1910.801.630.599.3620.42
ph-433.0652.7252.2876.7318.4619.911 114.0011.0472.612.513.630.071.33386.802.040.1817.023.570.9719.6833.30
ph-531.1857.2449.1465.8817.4833.97965.609.8174.892.153.680.080.66768.802.100.1654.561.610.6110.0917.62
ph-63.3515.972.6747.5511.836.64155.7013.3298.082.080.310.020.1373.322.610.122.911.180.958.1921.12
ph-755.4438.9939.3875.3910.922.89117.206.7828.430.910.110.040.0976.820.860.044.291.030.615.5511.80
ph-8564.10049.47206.3087.9818.758.21813.1013.5683.703.030.400.050.28183.402.090.193.311.180.4511.620.16
ph-9241.4033.65118.10104.1021.6045.03564.4024.10283.409.840.690.060.67455.105.780.658.694.331.4222.2352.22
ph-10441.8044.35173.40101.4018.1717.75653.9017.48152.405.430.420.050.40272.103.380.343.971.670.6111.9528.34
ph-11255.5039.3497.8085.7117.559.53792.1014.1286.853.240.250.050.18247.802.230.213.401.080.367.9518.54
编号wB/10-6δEuδCe(La/Yb)N(La/Sm)N(Gd/Yb)N(Ce/Yb)N
PrNdSmEuGdTbDyHoErTmYbLu∑REE∑LREE∑HREE
ph-12.289.681.960.651.920.291.720.340.960.130.870.1449.0242.666.361.011.047.172.871.826.17
ph-21.858.661.910.631.950.281.710.360.990.140.950.1541.9835.466.520.981.075.072.261.704.59
ph-32.7312.522.760.872.710.402.310.461.300.171.170.1757.3548.678.680.970.985.732.191.914.84
ph-44.2419.283.621.122.980.402.190.401.140.140.960.1589.6081.238.361.010.8514.663.512.569.61
ph-52.2910.492.240.792.090.311.840.361.000.150.930.1450.3343.526.811.090.867.822.911.875.29
ph-62.3911.412.730.812.830.492.700.551.670.251.680.2657.0746.6410.430.881.163.491.941.393.49
ph-71.537.001.610.551.610.281.520.290.930.140.960.1633.9228.045.881.030.984.132.221.383.40
ph-83.5015.323.371.193.520.593.000.581.700.231.370.2266.3355.1411.201.050.776.092.222.134.10
ph-96.6128.486.111.956.460.975.100.962.810.372.220.34136.82117.6019.220.941.047.182.352.416.53
ph-103.7717.363.901.464.150.683.600.702.050.291.840.2980.3866.7913.591.111.034.661.981.874.28
ph-112.5712.373.061.173.090.533.020.581.690.231.350.2356.3845.6610.721.151.004.231.681.903.82
注:下标N表示用球粒陨石标准化;Mg#=100w(Mg2+)/((w(Mg2+)+w(Fe2+));σ=(w(Na2O+K2O))2/(w(SiO2)-43)。
4.2 稀土元素和微量元素地球化学

稀土及微量元素丰度列于表 2。稀土元素配分曲线分布图(图 4a)上,样品配分曲线均表现为向右下倾斜,轻、重稀土含量依次降低。稀土元素总量(∑REE)为(33.92~136.82)×10-6,平均为65.38×10-6。轻稀土总量(∑LREE)为(28.04~117.60)×10-6,平均为55.38×10-6;重稀土总量(∑HREE)为(5.88~19.22)×10-6,平均为9.80×10-6;∑LREE/∑HREE为4.26~9.71,平均5.76,显示二者明显分异。(Ce/Yb)N>1.00(3.40~9.61,平均5.10),(La/Yb)N值为3.49~14.66,平均6.39;因而配分曲线图具较平直并略为右倾的特征,属轻稀土富集型。(La/Sm)N值均大于1.00(1.68~3.51,平均值2.38),反映轻稀土之间分馏程度较好。(Gd/Yb)N值为1.38~2.56,平均1.90,说明重稀土之间分馏程度较差。异常系数δCe值为0.77~1.16,平均为0.98,Ce负异常不明显,表明火山岩受表生作用改造较弱;δEu值为0.88~1.15,平均为1.02,表现出微弱的Eu负异常,说明岩浆的斜长石结晶分离较弱[20]

a底图据文献[18];b底图据文献[19]。 图 3 哈尔加乌组火山岩Zr/TiO2-Nb/Y分类图解(a)和w(K2O)-w(SiO2)图解(b)

Fig. 3 Zr/TiO2-Nb/Y (a) and w(K2O)-w(SiO2) (b) diagram of volcanic rocks in Haerjiawu Formation from Qiada of west Junggar
球粒陨石和原始地幔标准化值据文献[21]。 图 4 西准噶尔恰达一带哈尔加乌组火山岩球粒陨石标准化的稀土元素配分模式(a)和原始地幔标准化的多元素蛛网图(b)

Fig. 4 Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized multi-elements spider diagram (b) of volcanic rocks in Haerjiawu Formation from Qiada of west Junggar

原始地幔标准化的微量元素比值蛛网图(图 4b)显示,大离子亲石元素(LILE)Ba、Th、K、Sr轻微富集,总体呈隆起型的微量元素分布形式。高场强元素Zr、Hf、Nb、Ta在蚀变和变质作用过程中具有良好的稳定性,是岩石成因和源区性质的良好示踪剂。样品高场强元素(HFSE)Nb、Ta相对亏损,Zr、Hf轻微富集,总体表现出与俯冲带相关的大陆或岛弧岩浆作用特征[22]。以上特征可能与岩浆上升过程中地幔楔形体等消减组分加入或陆壳混染作用有关。但是,陆壳混染作用往往会造成不相容元素(ICE)Gd、Tb、Dy、Y、Ho、Yb、Lu的升高,而研究区哈尔加乌组火山岩的ICE丰度相对较低;由此,样品的Nb、Ta亏损和Zr、Hf轻微富集与陆壳混染作用无关,而是岩浆上升过程中地幔楔形体等消减组分加入的结果。

研究区哈尔加乌组火山岩Nb的丰度为(0.91~9.84)×10-6,平均3.41×10-6,Ta的丰度为(0.04~0.65)×10-6,平均0.23×10-6,明显高于岛弧拉斑玄武岩Nb、Ta丰度(w(Nb)为(1.70~2.70)×10-6,w(Ta)为(0.10~0.18)×10-6),低于洋脊拉斑玄武岩(w(Nb)=4.46×10-6,w(Ta)=0.29×10-6);Nb/Ta值(13.35~21.60,平均15.45)低于原始地幔(Nb/Ta=17)[20]。Zr的丰度为(28.43~283.40)×10-6,平均103.53×10-6,Hf丰度为(0.86~5.78)×10-6,平均2.56×10-6,明显高于火山弧拉斑玄武岩、钙碱性玄武岩和钾玄岩Zr、Hf丰度(Zr丰度分别为40×10-6、71×10-6、87×10-6,Hf丰度分别为1.17×10-6、2.23×10-6、2.24×10-6);多数样品Zr/Hf值(33.17~49.00,平均38.66)接近原始地幔(Zr/Hf=36)[21]

5 构造环境分析

大陆地壳或岩石圈的混染作用可以给出似消减带信号,并导致将受到混染的大陆玄武岩误判为岛弧玄武岩。Zr和Y在大陆玄武岩遭到地壳或岩石圈混染时相对其他元素受到的影响较小,其浓度基本保持稳定;使用这两种元素作为判别因子的构造环境判别图解可有效规避由地壳或岩石圈混染造成的误判[23]。在Zr/Y-w(Zr)判别图解(图 5a)中,大部分点落在板内玄武岩区域内或附近,而与岛弧玄武岩和洋中脊玄武岩区域相距甚远。在Nb/U-w(Nb)判别图解(图 5b)中,大部分点落入大陆玄武岩范围内及其附近。以上表明,研究区哈尔加乌组火山岩具有板内大陆火山活动的特征。

a底图据文献[24];b底图据文献[25]。 图 5 哈尔加乌组火山岩Zr/Y-w(Zr)(a)和Nb/U-w(Nb)(b)判别图解

Fig. 5 Zr/Y-w(Zr) discrimination diagram (a) and Nb/U-w(Nb) discrimination diagram (b)

研究区火山岩样品的LILE富集和Nb、Ta亏损,表现出火山弧火山岩的部分特征。一般认为,岛弧岩浆主要受洋壳及其沉积物在俯冲过程中形成的流体或熔体交代过的上覆地幔楔发生部分熔融形成[26]。哈尔加乌组火山岩样品Th丰度较低((1.03~4.33)×10-6,平均为1.94×10-6),Ce/Th值(7.47~17.90,平均为13.06)和Ba/Th值(62.14~229.23,平均为164.83)总体高于消减沉积物(Ce/Th≈8,Ba/Th≈111),表明研究区火山岩岩浆源区基本没有消减沉积物的加入;Nb的丰度除1个样品外均小于7.0×10-6,明显区别于由俯冲板片部分熔融的玄武质火山岩(w(Nb)>7.0×10-6)。因此,研究区火山岩的弧火山岩特征可能与俯冲带流体交代过的岩石圈地幔参与岩浆形成有关。

在10Nb-Zr/4-Y构造环境图解(图 6a)中,样品落于板内碱性玄武岩及板内碱性玄武岩-板内拉斑玄武岩区;在TFeO-MgO-Al2O3构造环境判别图解(图 6b)中样品主要投于造山带环境区域内。

a底图据文献[27];b底图据文献[28]。AⅠ.板内碱性玄武岩;AⅡ.板内碱性玄武岩与板内拉斑玄武岩;B. E[CD*2]MORB(富集型洋中脊玄武岩);C. 板内拉斑玄武岩和钙碱性玄武岩;D. N[CD*2]MORB和火山弧玄武岩。1. 扩张中心岛屿;2. 造山带;3. 洋中脊及洋底;4. 大洋岛屿;5. 大陆板块内部。 图 6 10Nb-Zr/4-Y构造环境判别图解(a)及火山岩TFeO-MgO-Al2O3图解(b)

Fig. 6 10Nb-Zr/4-Y discrimination diagram (a) and TFeO-MgO-Al2O3 discrimination diagram (b)

研究区哈尔加乌组的沉积岩呈夹层分布于火山岩中,表现出明显的受间歇性火山活动控制的特点,主要岩性为凝灰质砂岩、长石岩屑砂岩、含砾砂岩及砾岩,陆源碎屑供给较充分,此外还有少量指示海相环境的灰岩出露。岩石中普遍发育平行层理,局部见有泥裂,表明沉积物形成过程中露出过水面,说明当时为滨浅海——海陆交互相环境。研究区哈尔加乌组的以上特点均表现出陆相火山沉积环境的特征。研究区周边还出露中二叠统库吉尔台组(P2k),为一套山前磨拉石建造,主要岩性为杂色厚层-块状砾岩、红褐色块状砾岩、含砾砂岩、钙质含砾不等粒岩屑砂岩、中细粒岩屑砂岩,总体为一套粗碎屑沉积岩,岩石发育韵律层理,并含有植物化石;故推测岩石的原生沉积环境为陆相、湖泊相。这一构造岩石组合记录了二叠纪之前挤压体制的结束,拉张体制的开始。因此,恰达一带在早二叠世已经处于板内构造环境,并逐步进入陆相沉积及板内造山阶段。

前人研究认为,西准噶尔晚古生代残余洋盆结束于早石炭世之前(>329 Ma),并于早二叠世开始陆内演化阶段[29]。从329 Ma残余洋盆整体隆升消亡至290 Ma成熟新陆壳最终形成,准噶尔地区相继发生了一系列构造-岩浆事件[3, 4, 8],包括三期陆相火山-沉积岩系形成,高侵位小型闪长岩、石英闪长岩、花岗闪长岩系列向大型富碱花岗岩深成岩A型系列转化,即新生花岗闪长质过渡型地壳向成熟花岗质大陆壳转化的复杂的深部作用过程[30]。研究区分布的二叠系哈尔加乌组就是在上述构造演化过程中陆相火山-沉积作用的产物。

综合上述信息认为,研究区发育的二叠系哈尔加乌组火山岩地球化学特征以板内大陆环境为主,兼有弧火山岩的部分特征,形成于与俯冲带有关的碰撞后陆内环境,一般出现在俯冲造山期后的伸展背景下,火山岩样品所表现出的岛弧特性是对碰撞前混染弧组分的继承,而非岛弧环境。

6 结论

1)西准噶尔恰达地区的二叠系哈尔加乌组火山岩主要岩性为灰绿色-紫红色(气孔)(杏仁)玄武岩-玄武安山岩-安山岩,属亚碱性系列。

2)LA-ICP-MS锆石U-Pb年龄为(296.6±8.1) Ma,MSWD=7.7(93%置信度),时代属早二叠世。

3)大离子亲石元素(LILE)Ba、Th、K、Sr相对富集;高场强元素(HFSE)Nb、Ta相对亏损,Zr、Hf轻微富集,不相容元素丰度整体相对较低,总体表现出与俯冲带相关的大陆岩浆作用的特征。

4)西准噶尔恰达一带哈尔加乌组火山岩地球化学特征以板内大陆环境为主,兼有部分岛弧特征,其形成环境不是岛弧,而是与俯冲带相关的碰撞后陆内环境。

参考文献
[1] 肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 2008, 26(1):4-8. Xiao Wenjiao, Shu Liangshu, Gao Jun, et al. Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny[J]. Xinjiang Geology, 2008, 26(1):4-8.
[2] 尹继元, 袁超, 王毓婧, 等. 新疆西准噶尔晚古生代大地构造演化的岩浆活动记录[J]. 大地构造与成矿学, 2011, 35(2):278-291. Yin Jiyuan, Yuan Chao, Wang Yujing, et al. Magmatic Records on the Late Paleozoic Tectonic Evolution of Western Junggar[J]. Geotectonica et Metallogenia, 2011, 35(2):278-291.
[3] 徐新, 周可法, 王煜. 西准噶尔晚古生代残余洋盆消亡时间与构造背景研究[J]. 岩石学报, 2010, 26(11):3206-3214. Xu Xin, Zhou Kefa, Wang Yu. Study on Extinction of the Remnant Oceanic Basin and Tectonic Setting of West Junggar During Late Paleozoic[J]. Acta Petrologica Sinica, 2010, 26(11):3206-3214.
[4] 王京彬, 徐新. 新疆北部后碰撞构造演化与成矿[J]. 地质学报, 2006, 80(1):23-31. Wang Jingbin, Xu Xin. Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1):23-31.
[5] 陈宣华, 陈正乐, 韩淑琴, 等. 中亚巴尔喀什成矿带晚古生代岩浆活动与斑岩铜矿成矿时代[J]. 吉林大学学报(地球科学版), 2013, 43(3):734-747. Chen Xuanhua, Chen Zhengle, Han Shuqin, et al. Late Paleozoic Magmatism and Porphyry Copper Metallogenesis in Balkhash Metallogenic Zone Kazakhstan Central Asia[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3):734-747.
[6] 杨高学, 李永军, 杨宝凯, 等. 西准噶尔巴尔雷克蛇绿混杂岩带中玄武岩地球化学特征及大地构造意义[J]. 地质学报, 2012, 86(1):188-197. Yang Gaoxue, Li Yongjun, Yang Baokai, et al. Geochemistry of Basalt From the Barleik Ophiolitic Mélange in West Junggar and Its Tectonic Implications[J]. Acta Geologica Sinica, 2012, 86(1):188-197.
[7] 李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 2009, 39(4):584-605. Li Jinyi, Zhang Jin, Yang Tiannan, et al. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(4):584-605.
[8] 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长:Ⅰ:后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5):1077-1086. Han Baofu, Ji Jianqing, Song Biao, et al. Late Paleozoic Vertical of Continental Crust Around the Junggar Basin, Xinjiang, China:PartⅠ:Timing of Post-Collisional Plutonism[J]. Acta Petrologica Sinica, 2006, 22(5):1077-1086.
[9] Windley B F, Alexeiev D, Xiao W, et al. Tectonic Models for Accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47.
[10] Xiao W, Kr ner A, Windley B. Geodynamic Evolution of Central Asia in the Paleozoic and Mesozoic[J]. International Journal of Earth Sciences, 2009, 98(6):1185-1188.
[11] 丁天府. 新疆火山岩分区及其地质意义[J]. 新疆地质, 1998, 16(1):39-48. Ding Tianfu. Division of Volcanic Rocks and Its Geological Significance in Xinjiang[J]. Xinjiang Geology, 1998, 16(1):39-48.
[12] 李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 2006, 80(1):148-168. Li Jinyi, He Guoqi, Xu Xin, et al. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation[J]. Acta Geologica Sinica, 2006, 80(1):148-168.
[13] 杨高学, 李永军, 杨宝凯, 等. 西准噶尔玛依勒蛇绿混杂岩锆石U-Pb年代学、地球化学及源区特征[J]. 岩石学报, 2013, 29(1):303-316. Yang Gaoxue, Li Yongjun, Yang Baokai, et al. Zircon U-Pb Geochronology and Geochemistry of the Mayile Ophiolitic Mélange in West Junggar and Implications for Source Nature[J]. Acta Petrologica Sinica, 2013, 29(1):303-316.
[14] 田陟贤, 阎军, 李永军, 等. 西准噶尔巴尔雷克一带石炭系黑山头组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及构造环境[J]. 地质学报, 2013, 87(3):343-352. Tian Zhixian, Yan Jun, Li Yongjun, et al. LA-ICP-MS Zircon U-Pb Age, Geochemistry and Tectonic Setting of the Volcanic Rocks in the Heishantou Formation from the Area of Barleik, West Junggar[J]. Acta Geologica Sinica, 2013, 87(3):343-352.
[15] Andersen T. Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb[J]. Chemical Geology, 2002, 192(1):59-79.
[16] Claesson S, Vetrin V, Bayanova T, et al. U-Pb Zircon Ages from a Devonian Carbonatite Dyke, Kola Peninsula, Russia:A Record of Geological Evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000, 51(1):95-108.
[17] Melson W, Vallier T, Wright T, et al. Chemical Diversity of Abyssal Volcanic Glass Erupted Along Pacific, Atlantic, and Indian Ocean Sea-Floor Spreading Centers[C]//The Geophysics of the Pacific Ocean Basin and Its Margin. Washington:Am Geophys Union, 1976:351-367.
[18] Winchester J A, Floyd P A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements[J]. Chemical Geology, 1977, 20:325-343.
[19] Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4):247-263.
[20] Rollison H R. Using Geochemical Data:Evaluation Presentation Interpretation[M]. London:Longman Group, 1993:1-352.
[21] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[22] 何国琦, 李茂松, 刘德权, 等. 中国新疆古生代地壳演化及成矿[M]. 香港:香港文化教育出版社, 1994:1-437. He Guoqi, Li Maosong, Liu Dequan, et al. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China[M]. Hongkong:Hongkong Education and Culture Publication House, 1994:1-437.
[23] 夏林圻, 夏祖春, 徐学义, 等. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 2007, 26(1):77-89. Xia Linqi, Xia Zuchun, Xu Xueyi, et al. The Discrimination Between Continental Basalt and Island Arc Basalt on Geochemical Method[J]. Acta Petrologica et Mineralogica, 2007, 26(1):77-89.
[24] Pearce J A, Norry M J. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1):33-47.
[25] Le Roex A P D H, Fisher R L. Petrology and Geochemistry of MORB From 25 E to 46 E Along the Southwest Indian Ridge:Evidence for Contrasting Styles of Mantle Enrichment[J]. Journal of Petrology, 1989, 30(4):947-986.
[26] 毛治国, 邹才能, 朱如凯, 等. 准噶尔盆地石炭纪火山岩岩石地球化学特征及其构造环境意义[J]. 岩石学报, 2010, 26(1):207-216. Mao Zhiguo, Zou Caineng, Zhu Rukai, et al. Geochemical Characteristics and Tectonic Settings of Carboniferous Volcanic Rocks in Junggar Basin[J]. Acta Petrologica Sinica, 2010, 26(1):207-216.
[27] Meschede M. A Method of Discriminating Between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram[J]. Chemical Geology, 1986, 56(3):207-218.
[28] Pearce T, Gorman B, Birkett T. The Relationship Between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks[J]. Earth and Planetary Science Letters, 1977, 36(1):121-132.
[29] 匡立春, 张越迁, 查明, 等. 新疆北部石炭纪构造背景及演化[J]. 地质学报, 2013, 87(3):311-320. Kuang Lichun, Zhang Yueqian, Zha Ming, et al. Carboniferous Tectonic Setting and Evolution in Northern Xinjiang, China[J]. Acta Geologica Sinica, 2013, 87(3):311-320.
[30] 周涛发, 袁峰, 杨文平, 等. 西准噶尔萨吾尔地区二叠纪火山活动规律[J]. 中国地质, 2006, 33(3):553-558. Zhou Taofa, Yuan Feng, Yang Wenping, et al. Permian Volcanism in the Sawu'er Area, Western Junggar[J]. Geology in China, 2006, 33(3):553-558.
http://dx.doi.org/10.13278/j.cnki.jjuese.201601112
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

田陟贤, 李永军, 田猛, 杨高学, 向坤鹏, 佟丽莉
Tian Zhixian, Li Yongjun, Tian Meng, Yang Gaoxue, Xiang Kunpeng, Tong Lili
西准噶尔恰达地区哈尔加乌组火山岩锆石U-Pb年代学、地球化学及地质意义
Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Volcanic Rocks of Haerjiawu Formation in Qiada, West Junggar
吉林大学学报(地球科学版), 2016, 46(1): 135-145
Journal of Jilin University(Earth Science Edition), 2016, 46(1): 135-145.
http://dx.doi.org/10.13278/j.cnki.jjuese.201601112

文章历史

收稿日期: 2015-04-25

相关文章

工作空间