2. 西南石油大学地球科学与技术学院, 成都 610500;
3. 吉林大学学报编辑部, 长春 130026;
4. 吉林大学地球科学学院, 长春 130061
2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
3. Editorial Department of Journal, Jilin University, Changchun 130026, China;
4. College of Earth Science, Jilin University, Changchun 130061, China
0 引言
中亚造山带从哈萨克斯坦延伸至中国天山及华北板块北缘[1],其形成与古亚洲洋演化、相邻板块间相互作用密不可分[2, 3],即古亚洲洋闭合,西伯利亚板块与塔里木——华北板块碰撞造山,形成中亚造山带[4],与华北板块北缘毗邻的中亚造山带即为兴蒙造山带[5]。中亚造山带是全球显生宙大陆增生最显著的地区,同时也是全球最大的增生造山带[6],兴蒙造山带是中亚造山带重要的一部分[7]。造山带是岩浆活动最为显著的地带。在该造山带及华北板块北缘,发育大量近东西向的古生代岩浆岩带[8],其中以晚古生代火成岩最为显著[9, 10, 11, 12, 13, 14]。
华北板块北边界线为赤峰——白云鄂博断裂[1, 4, 15]。察哈尔右翼后旗二长花岗岩岩体位于该断裂以南,集宁——隆化断裂以北(图 1),主要由元山洼、察汗脑包和高木匠村岩体组成(图 1)。张臣等[10]2007年报道了该岩体的锆石SHRIMP U-Pb 定年((342.5±4.9) Ma) 和其主量元素特征,但其痕量元素及岩浆源区特征等关键问题目前尚未被研究过。且目前报道的华北板块北缘中段晚古生代岩浆岩时代集中在晚石炭世——二叠纪[5, 19, 20],而早石炭世岩浆岩的报道较少。鉴于此,本文在1∶25万集宁市幅 吉林大学地质调查研究院. 1∶25万集宁市幅地质图.长春:吉林大学,2012. 区调修测基础上,结合察哈尔右翼后旗二长花岗岩岩体的野外产状、矿物特征、地球化学特征,进一步探讨了其成因及形成的构造环境。
1 地质背景及岩体特征察哈尔右翼后旗二长花岗岩岩体出露面积约109.54 km2,整体呈北东向产出,侵入到新元古界埃迪卡拉系什那干群和早泥盆世石英二长岩之中,后被大面积新生界新近系上新统宝格达乌拉组砂砾黏土及少量中新统汉诺坝组玄武岩覆盖,早白垩世花岗斑岩侵入其中(图 1)。见少量斜长角闪片麻岩捕掳体。
察哈尔右翼后旗二长花岗岩风化面灰色,新鲜面肉红色,大部分为斑状结构(图 2a、b),少量为含斑结构和细粒花岗结构,块状构造为主,局部石英拉长、黑云母不连续定向形成片麻理构造(图 2c、d)。片麻理走向近东西向,可能受后期岩浆作用及区域挤压作用形成。斑晶体积分数为2%~10%,主要为条纹长石。基质为中细粒结构,主要矿物(体积分数)为:条纹长石(40%~45%,弱高岭土化)、斜长石(30%~35%,绢云母化)、石英(25%)和黑云母(2%~5%,褪色析铁);副矿物为磁铁矿,细双锥状、粒状锆石,柱状、粒状磷灰石,榍石和钛铁矿。高木匠村南1 km处为该岩体的中心相,中心相面积不大,岩性为浅肉红色细粒含斑黑云母钾长花岗岩,主要矿物为条纹长石(体积分数小于60%),石英(体积分数25%),斜长石(体积分数大于10%),黑云母(体积分数5%)。张臣等[10]2007年报道的定年样品采自该岩体的中心相。
2 样品采集及实验方法在高木匠村附近采集了5块新鲜二长花岗岩样品进行全岩主量和痕量元素分析。岩石化学分析在国家地质实验测试中心完成,主量元素采用ICP-AES(原子发射光谱),烧失量为1 000 ℃烧失;稀土元素中La、Ce采用ICP-AES,其他元素采用ICP-MS;微量元素中Sc、Sr、Ba采用ICP-AES,Nb、Rb、Zr、Cr、V、Co、Th、Hf、Ta、U采用ICP-MS。
3 地球化学特征 3.1 主量元素察哈尔右翼后旗二长花岗岩的主量元素和稀土微量元素分析结果见表 1。从表 1易见,花岗岩高SiO2(w(SiO2)=68.96%~71.25%)、富K、富碱(w(K2O)=4.31%~5.24%,w(K2O+Na2O)=9.13%~10.65%),低Ca(w(CaO)=0.73%~1.12%)和P(w(P2O5)=0.028%~0.044%),贫Fe(w(TFeO)=1.14%~2.02%)和Mg(w(MgO)=0.08%~0.16%)。在TAS侵入岩分类图(图 3a)中主要落在花岗岩范围内,少量落在石英二长岩范围内;铝指数(A/CNK)为0.96~1.15,属准铝质——弱过铝质花岗岩类(图 3b)。
样品编号 | wB/% | ||||||||||||
SiO2 | Al2O3 | Fe2O3 | FeO | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO | 烧失量 | K2O+Na2O | |
P32b6-1 | 71.00 | 16.11 | 1.41 | 0.25 | 1.03 | 0.16 | 5.08 | 4.05 | 0.13 | 0.044 | 0.014 | 0.6 | 9.13 |
P32b10-1 | 71.09 | 16.03 | 1.39 | 0.12 | 0.73 | 0.13 | 5.24 | 4.56 | 0.12 | 0.036 | 0.026 | 0.42 | 9.80 |
P32b15-1 | 68.96 | 16.30 | 2.20 | 0.04 | 1.04 | 0.08 | 4.40 | 6.25 | 0.20 | 0.043 | 0.026 | 0.36 | 10.65 |
P32b16-1 | 69.60 | 17.27 | 1.43 | 0.16 | 1.12 | 0.09 | 4.48 | 5.38 | 0.16 | 0.034 | 0.048 | 0.13 | 9.86 |
P32b27-2 | 71.25 | 16.21 | 1.20 | 0.06 | 0.95 | 0.08 | 4.31 | 5.28 | 0.12 | 0.028 | 0.031 | 0.38 | 9.59 |
样品编号 | Na2O/ K2O | A/ CNK | Mg# | wB/10-6 | |||||||||
Cr | Ni | Co | Rb | Cs | Sr | Ba | V | Sc | Nb | ||||
P32b6-1 | 0.80 | 1.15 | 15.81 | 3.02 | 2.54 | 1.70 | 76.5 | 0.92 | 632 | 1 650 | 24.0 | 0.33 | 1.60 |
P32b10-1 | 0.87 | 1.11 | 14.46 | 2.74 | 2.07 | 1.52 | 67.3 | 0.99 | 649 | 1 200 | 13.3 | 5.52 | 4.90 |
P32b15-1 | 1.42 | 0.96 | 6.60 | 3.38 | 4.06 | 1.14 | 55.9 | 0.48 | 554 | 885 | 13.4 | 7.11 | 7.17 |
P32b16-1 | 1.20 | 1.10 | 9.48 | 5.04 | 3.39 | 1.06 | 86.6 | 1.96 | 887 | 1 590 | 18.0 | 6.00 | 9.42 |
P32b27-2 | 1.23 | 1.08 | 11.00 | 3.43 | 3.92 | 1.12 | 68.4 | 0.17 | 683 | 1 110 | 12.0 | 4.72 | 4.64 |
样品编号 | wB/10-6 | ||||||||||||
Ta | Zr | Hf | U | Th | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | |
P32b6-1 | 0.10 | 164 | 4.10 | 0.32 | 2.39 | 16.0 | 24.9 | 2.18 | 6.45 | 0.76 | 0.97 | 0.94 | 0.08 |
P32b10-1 | 0.30 | 134 | 3.38 | 0.31 | 1.94 | 13.1 | 24.9 | 2.78 | 9.76 | 1.64 | 0.81 | 1.43 | 0.21 |
P32b15-1 | 0.54 | 194 | 4.80 | 0.39 | 1.85 | 17.2 | 36.8 | 4.92 | 19.00 | 3.91 | 0.96 | 2.92 | 0.54 |
P32b16-1 | 0.56 | 210 | 5.34 | 0.36 | 2.26 | 14.3 | 31.1 | 3.17 | 11.1 | 1.96 | 1.03 | 1.71 | 0.27 |
P32b27-2 | 0.22 | 154 | 3.77 | 0.27 | 1.74 | 10.8 | 20.8 | 2.00 | 7.03 | 1.29 | 0.79 | 1.10 | 0.17 |
样品编号 | wB/10-6 | ∑LREE/ ∑HREE | δEu | (La/Yb)N | |||||||||
Dy | Ho | Er | Tm | Yb | Lu | Y | ∑REE | ∑LREE | ∑HREE | ||||
P32b6-1 | 0.42 | 0.09 | 0.28 | 0.05 | 0.38 | 0.08 | 4.40 | 53.6 | 51.30 | 2.31 | 22.16 | 3.51 | 28.39 |
P32b10-1 | 1.22 | 0.27 | 0.77 | 0.12 | 0.90 | 0.14 | 9.86 | 58.1 | 53.00 | 5.06 | 10.47 | 1.58 | 9.81 |
P32b15-1 | 3.34 | 0.71 | 1.79 | 0.28 | 1.78 | 0.25 | 19.00 | 94.4 | 82.80 | 11.61 | 7.13 | 0.83 | 6.52 |
P32b16-1 | 1.54 | 0.34 | 0.99 | 0.18 | 1.28 | 0.21 | 13.10 | 69.2 | 62.70 | 6.52 | 9.61 | 1.68 | 7.53 |
P32b27-2 | 0.95 | 0.21 | 0.64 | 0.11 | 0.81 | 0.14 | 8.23 | 46.8 | 42.70 | 4.13 | 10.30 | 1.98 | 8.99 |
察哈尔右翼后旗二长花岗岩具相对富集轻稀土(w(∑LREE)=(42.70~82.80)×10-6)、亏损重稀土元素(w(∑HREE)=(2.31~11.61)×10-6)的右倾型稀土元素配分曲线(图 4a)。稀土元素总量低(w(∑REE)=(46.8~ 94.4)×10-6),轻重稀土分馏程度强(∑LREE/∑HREE=7.13~22.16,(La/Yb)N=6.52~28.39)。轻稀土分馏强((La/Sm)N=2.77~13.24),重稀土分馏较弱((Gd/Lu)N=0.98~1.56)。Eu以正异常为主(δEu=0.83~3.51)。相对位于岩体边部的样品P32b6-1(图 1)正Eu异常显著(δEu=3.51),重稀土总量低(w(∑HREE)=2.31×10-6),轻稀土分馏强((La/Sm)N=13.24),可能是受到了围岩(早泥盆世石英二长岩)的混染。
微量元素原始地幔标准化蛛网图(图 4b)中,察哈尔右翼后旗二长花岗岩富集大离子亲石元素(LILEs,Cs、Rb、Ba和K),亏损高场强元素(HFSEs,Nb、Ta、P和Ti),较明显的Sr正异常。
4 讨论 4.1 成因类型岩浆分异指数为90.36~92.96,固结指数为0.62~1.47,亲铁元素质量分数低(w(V)=(12.0~24.0)×10-6,w(Co)=(1.06~1.70)×10-6),P2O5质量分数很低(w(P2O5)=0.028%~0.044%),富硅贫铁、镁、钙和钛,反映了岩体经历了高度分异演化作用[22]。岩浆经历了高分异作用,为岩浆演化的晚期产物,矿物组成和化学成分都趋于低共结的花岗岩,因此很难区分花岗岩是I型、S型或A型,相对P2O5、Th和Rb等元素是判断I、S型花岗岩较为可靠的标志[23, 24]。察哈尔右翼后旗二长花岗岩w(P2O5)随w(SiO2)增高而降低(图 5a),w(Th)随w(Rb)升高而升高(图 5b),显示出I型花岗岩岩浆的演化趋势;而S型花岗岩的w(P2O5)与w(SiO2)呈正相关,w(Th)与w(Rb)呈负相关[24, 25]。在(Na2O+K2O)/CaO-w(Zr+Nb+Ce+Y)图解(图 6a)中,样品位于分异型花岗岩范围内;在主量元素判别图解(图 6b)中,样品落在高分异钙碱性岩范围内。二长花岗岩不发育铁镁质碱性矿物,较低质量分数的Zr、Nb、Y、La和Ce也反映了其为I型花岗岩并非A型[28]。
4.2 源区性质在微量元素蛛网图(图 4b)上,察哈尔右翼后旗二长花岗岩明显亏损高场强元素Nb、Ta、P和Ti,富集Eu,w(Th)和w(U)较低。若岩浆源区残留金红石,会致使岩浆亏损Nb、Ta、Ti、Zr、Hf等高场强元素[29],但二长花岗岩只亏损Nb、Ta和Ti并不亏损Zr、Hf,因此二长花岗岩亏损Nb、Ta、Ti与岩浆源区是否残留金红石无关。岩浆源区或者岩浆演化中陆壳物质的加入,也会使岩浆亏损Nb、Ta。二长花岗岩低的稀土总量和w(Th)、w(U)表明,岩浆演化早期可能不存在大规模的陆壳物质混染。那么该岩体Nb、Ta亏损应该是俯冲流体或者熔体交代作用所致[30]。Ti负异常主要是钛铁矿和角闪石分异所致。二长花岗岩经历了高程度的结晶分异作用,磷灰石一般在岩浆作用的早期结晶,磷灰石的结晶分异使熔体Eu富集,P亏损[31]。磷灰石富集REE、Th和U[25],其结晶分异,可能也导致了二长花岗岩w(∑REE)、w(Th)和w(U)偏低。斜长石结晶分异会导致Sr、Eu亏损,钾长石结晶分异致使Eu、Ba亏损[28],但二长花岗岩的Sr、Eu和Ba富集,显然岩浆演化过程中斜长石和钾长石结晶分异不显著。
岩浆分异作用的晚期,稀土元素易保留在残余液相中[31]。二长花岗岩经历了强烈的分异结晶,那么其稀土总量应该比源区岩石的稀土总量更高。而二长花岗岩的w(∑REE)=(46.8~94.4)×10-6,部分样品的稀土总量比下地壳(56.55×10-6[32])的还要低;w(Th)=(1.74~2.39)×10-6、w(U)=(0.27~0.39)×10-6,接近下地壳(w(Th)=1.2×10-6,w(U)=0.2×10-6[32]),暗示二长花岗岩源区可能为下地壳,源岩可能为岩石圈地幔,这与承德一带晚石炭世花岗岩类具有类似的源区[11]。
4.3 地质意义在w(Nb)-w(Y)图解(图 7a)中,察哈尔右翼后旗二长花岗岩落在火山弧+同碰撞范围内;w(Rb)-w(Y+Nb)图解(图 7b)中,样品落在火山弧范围内,据Pearce[33]对花岗岩源区和成岩途径的分析,二长花岗岩源区可能是富集地幔和俯冲带流体的混合;Rb/30-Hf-3Ta图解(图 7c)中,样品落在火山弧花岗岩范围内,反映了二长花岗岩形成于岛弧或者活动大陆边缘弧环境。二长花岗岩相对富集大离子亲石元素(LILEs,Cs、Rb、Ba和K),亏损高场强元素(HFSEs,Nb、Ta、P和Ti),也反映了其类似俯冲带岩浆岩的特征[34]。结合察哈尔右翼后旗二长花岗岩位于赤峰——白云鄂博断裂以南(图 1),侵入新元古界埃迪卡拉系什那干群中这种特征,表明二长花岗岩形成于活动大陆边缘弧环境。
中亚造山带作为古生代以来大陆地壳生长最重要的地带[35],80年代至今,众多学者对其进行了大量研究,最初的研究对象主要为古生物学、地层学和古地磁,近几年报道了大量的侵入岩及地震剖面相关的证据。关于两大板块最终碰撞形成索伦缝合带的时间目前主要有以下几种观点:晚志留世——泥盆纪[36];中——晚泥盆世[3, 37];晚泥盆世——晚石炭世[38, 39, 40];二叠纪——早三叠世[1, 2, 9, 15, 16, 19, 41, 42, 43, 44, 45]。察哈尔右翼后旗二长花岗岩的侵位表明华北板块北缘中段在早石炭世为活动大陆边缘弧环境,古亚洲洋处于俯冲状态,显然其闭合时间肯定在早石炭世之后。满都拉南部推喇嘛庙一带发育327、330 Ma的花岗闪长岩,其形成与洋壳俯冲有关[9];固阳——满都拉地区晚石炭世本巴图组火山岩显示岛弧或活动大陆边缘弧的特征[16];四子王旗活佛滩闪长岩侵位年龄为(331±4)Ma,是古亚洲洋俯冲的产物[16];苏尼特右旗晚石炭世本巴图组安山岩成岩时代为(300.9±1.6) Ma,其形成与古亚洲洋的俯冲作用有关[18];Zhang[11]报道了大量滦平——承德——隆化地区晚石炭世闪长岩,形成于安第斯型活动大陆边缘弧环境,侵位时代集中为(324±6)~(302±4) Ma;吉林省安图县海沟岩体于322~328 Ma侵位,其成因与古亚洲洋俯冲作用有关[46];这些火成岩构造构成了华北板块北缘早石炭世——晚石炭世火山弧。察哈尔右翼中旗具活动大陆边缘弧特征的辉长岩于(297.2±1.7) Ma侵位(待发表数据);察哈尔右翼后旗北至温都尔庙南地区,发育大面积早——中二叠世石英闪长岩和花岗闪长岩岩基,都具活动大陆边缘弧特征[13]。童英[19]和张拴宏[5]总结了华北板块北缘晚古生代弧岩浆岩时空展布等特征,其中岩浆活动的高峰期为二叠纪,分布在靠近索伦缝合带的南侧;石炭纪岩浆活动相对较弱,多分布在靠近华北板块北缘内陆一侧。上述表明:早石炭世——晚石炭世古亚洲洋向华北板块北缘俯冲,在靠近板块内侧形成了早石炭世——晚石炭世火山弧;二叠纪的俯冲作用形成了靠近索伦缝合带的二叠纪弧岩浆岩带。
5 结论本文通过对察哈尔右翼后旗二长花岗岩的岩相学、主量、痕量元素研究,得出以下几点结论:
1)二长花岗岩主要造岩矿物为条纹长石、斜长石和石英,铁镁矿物主要为黑云母,副矿物为锆石、磁铁矿、磷灰石、榍石和钛铁矿;富SiO2、K和(K2O+Na2O),贫Ca、P、TFeO和Mg,铝指数(A/CNK)为0.96~1.15,分异指数为90.36~92.96,属高分异钙碱性I型花岗岩。
2)经历高分异作用的二长花岗岩w(∑REE)、w(Th)和w(U)低,结合w(Rb)-w(Y+Nb)图解,表明岩浆源区可能为下地壳,源岩为岩石圈地幔,俯冲带流体作用显著。Eu以正异常为主,Sr和Ba富集,表明岩浆结晶分异过程中斜长石和钾长石分异不显著。
3)岩体富集大离子亲石元素(LILEs,Cs、Rb、Ba和K),亏损高场强元素(HFSEs,Nb、Ta、P和Ti),显示火山弧岩浆岩特征;样品在花岗岩构造环境判别图解中均落入火山弧范围内,且察哈尔右翼后旗二长花岗岩位于赤峰——集宁断裂以南,侵入新元古界埃迪卡拉系什那干群,这种地质特征表明岩体形成于活动大陆边缘弧环境。
4)具有活动大陆边缘弧特征的二长花岗岩的侵位,表明早石炭世((342.5±4.9) Ma)存在古亚洲洋向华北板块北缘的俯冲事件。
[1] | Xiao Wenjiao, Windly Brian F, Hao Jie, et al. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6): 1069-1089. |
[2] | Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364: 299-307. |
[3] | Tang Kedong. Tectonic Development of Paleozoic Fol-dbelts at the North Margin of the Sino-Korean Craton[J]. Tectonics, 1990, 9(2): 249-260. |
[4] | 陈衍景, 翟明国, 蒋少涌. 华北大陆边缘造山过程与成矿研究的重要进展和问题[J]. 岩石学报, 2009, 25(11): 2695-2726. Chen Yanjing,Zhai Mingguo,Jiang Shaoyong.Significant Achievements and Open Issues in Study of Orogenesis and Metallogenesis Surrounding the North China Continent[J]. Acta Petrologica Sinica, 2009, 25(11): 2695-2726. |
[5] | 张拴宏, 赵越, 刘建民, 等. 华北地块北缘晚古生代早中生代岩浆活动期次、特征及构造背景[J]. 岩石矿物学杂志, 2010, 29(6): 824-842. Zhang Shuanhong, Zhao Yue, Liu Jianmin, et al.Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block: A Preliminary Review[J]. Acta Petrologica et Mineralogica,2010, 29(6): 824-842. |
[6] | 肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 2008, 26(1): 5-8. Xiao Wenjiao, Shu Liangshu, Gao Jun, et al. Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny[J]. Xinjiang Geology, 2008, 26(1): 5-8. |
[7] | Jahn Borming, Capdevila R, Liu Dunyi, et al. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth[J]. Journal of Asian Earth Sciences, 2004, 23: 629-653. |
[8] | 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991: 351-458. Bureau Geology and Mineral Resources of Inner Mongolia Autonomous Region. Regional Geology of Inner Mongolia Autonomous Region[M].Beijing:Geological Publishing House, 1991: 351-458. |
[9] | 许立权. 内蒙古白云鄂博满都拉地区加里东期华力西期印支期岩浆岩特征与大地构造演化探讨[D]. 北京: 中国地质大学, 2005: 8-86. Xu Liquan. The Characteristics of Magmatic Rocks and Discussion of Geotectonics Evolution from Caledonian Through Hercynian to Indosinian Stage in the Baiyun'ebo-Mandula Region, Inner Mongolia[D]. Beijing: China University of Geosciences, 2005: 8-86. |
[10] | 张臣, 刘树文, 韩宝福, 等. 内蒙古商都大石沟花岗岩体锆石SHRIMP U-Pb 年龄及其意义[J]. 岩石学报, 2007, 23(3): 591-596. Zhang Chen, Liu Shuwen, Han Baofu, et al. SHRIMP U-Pb Dating of Dashigou Biotite-K-Felspar Granites in Shangdu, Inner Mongolia, and Its Significance[J]. Acta Petrologica Sinica, 2007, 23(3): 591-596. |
[11] | Zhang Shuanhong, Zhao Yue, Song Biao, et al. Carboniferous Granitic Plutons from the Northern Margin of the North China Block: Implications for a Late Palaeozoic Active Continental Margin[J]. Journal of the Geological Society, 2007, 164: 451-463. |
[12] | Zhang Shuanhong, Zhao Yue, Liu Xiaochun, et al. Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block: Constraints on the Composition and Evolution of the Lithospheric Mantle[J]. Lithos, 2009, 110: 229-246. |
[13] | 王挽琼, 刘正宏, 王兴安, 等. 内蒙古乌拉特中旗海西期黑云母二长花岗岩锆石SHRIMP U-Pb年龄及其地质意义[J]. 吉林大学学报:地球科学版, 2012, 42(6): 1771-1782. Wang Wanqiong, Liu Zhenghong, Wang Xing'an, et al. SHRIMP U-Pb Dating of the Zircon from the Hercynian Biotile Monzontic Granites in Urad Zhongqi, Inner Mongolia, and Its Geological Significance[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(6): 1171-1782. |
[14] | 王挽琼, 徐仲元, 刘正宏, 等. 华北板块北缘中段早中二叠世的构造属性: 来自花岗岩类锆石U-Pb年代学及地球化学的制约[J]. 岩石学报, 2013, 29(9): 2987-3003. Wang Wanqiong, Xu Zhongyuan, Liu Zhenghong, et al. Early-Minddle Permian Tectonic Evolution of the Central-Northern Margin of the North China Craton: Constraints from Zircon U-Pb Ages and Geochemistry of the Granitoids[J]. Acta Petrologica Siniaca, 2013, 29(9): 2987-3003. |
[15] | Jian Ping, Liu Dunyi, Kröner Alfred, et al. Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118: 169-190. |
[16] | 柳长峰. 内蒙古四子王旗地区古生代早中生代岩浆岩带及其构造意义[D]. 北京: 中国地质大学, 2010: 111-117. Liu Changfeng. Paleozoic-Early Mesozoic Magmatic Belts and Tectonic Significance in Siziwangqi Area, Inner Mongolia[D]. Beijing: China University of Geosiences, 2010: 111-117. |
[17] | 陈志勇. 内蒙古固阳满都拉地区中元古代古生代地质构造演化[D]. 北京: 中国地质大学, 2005: 102-124. Chen Zhiyong. Tectonic Evolution from Middle-Proterozoic to Paleozic in Guyang-Mandula Area, Inner Monglia[D]. Beijing: China University of Geosciences, 2005: 102-124. |
[18] | 潘世语,迟效国,孙巍,等. 内蒙古苏尼特右旗晚石炭世本巴图组火山岩地球化学特征及构造意义[J]. 世界地质, 2012, 31(1): 40-50. Pan Shiyu, Chi Xiaoguo, Sun Wei, et al. Geochemical Characteristics and Tectonic Significance of Late Carboniferous Volcanic Rocks in Benbatu Formation of Sonid Youqi, Inner Mongolia[J]. Global Geology, 2012, 31(1): 40-50. |
[19] | 童英,洪大卫,王涛,等. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 2010, 31(3): 395-412. Tong Ying, Hong Dawei, Wang Tao, et al. Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications[J]. Acta Geos-cientica Sinica, 2010, 31(3): 395-412. |
[20] | Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies//Henderson P.Rare Earth Element Geochemistry.Amsterdam:Elservier, 1984: 63-114. |
[21] | Sun S S, McDonough W F. Chemical and Isotopic Systematic of Oceanic Basalts: Implication for Mantle Compositions and Processes[C]//Saunder A D, Norry M J. Magmatism in the Ocean Basins.[S.I.]: Geological Society Special Publication,1989: 313-345. |
[22] | 魏庆国, 高昕宇, 赵太平, 等. 大别北麓汤家坪花岗斑岩锆石LA-ICPMS U-Pb定年和岩石地球化学特征及其对岩石成因的制约[J]. 岩石学报, 2010, 26(5): 1550-1562. Wei Qingguo, Gao Xinyu, Zhao Taiping, et al. Petrogenesis of Tangjiaping Granite Porphyry in Northern Dabie: Evidence from Zircon LA-ICPMS U-Pb Dating and Geochemical Characteristics[J]. Acta Petrologica Siniaca, 2010, 26(5): 1550-1562. |
[23] | 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. Wu Fuyuan, Li Xianhua, Yang Jinhui, et al. Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Siniaca, 2007, 23(6): 1217-1238. |
[24] | Chappell B W. Aluminium Saturation in I and S-Type Granites and the Characterization of Fractionated Haplogranites[J]. Lithos, 1999, 46: 535-551. |
[25] | 李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9): 981-991. Li Xianhua, Li Wuxian, Li Zhengxiang. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China[J]. Chinese Science Bulletin, 2007, 52(9): 981-991. |
[26] | Whalen J B, Currie K L, Chappell B W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. |
[27] | Sylvester P J. Post-Collisional Alkaline Granites[J]. Journal of Geology, 1989, 97(3): 261-280. |
[28] | Wu Fuyuan, Jahn Borming, Wiled S A, et al. Highly Fractionated I-Type Granites in NE China(I): Geochronology and Petrogenesis[J]. Lithos, 2003, 66: 541-573. |
[29] | Ionov D A,Gregoire M, Prikhod'ko V S. Feldspar-Ti-Oxide Metasomatism in Off-Cratonic Continental and Oceanic Upper Mantle[J]. Earth and Planetary Science Letters,1999, 165: 37-44. |
[30] | Gill J B. Orogenic Andesites and Plate Tectonics[M]. New York: Springer Verlag,1981: 385. |
[31] | 李昌年. 火成岩微量元素岩石学[M]. 武汉: 中国地质大学出版社, 1992: 134-135. Li Changnian. Trace Element Petrology of Igneous Rocks[M]. Wuhan: China University of Geosciences Press, 1992: 134-135. |
[32] | Rudnick R L, Gao S. Composition of the Continental Crust[C]//Rudniek R L. The Crust. Treatise on Ceochemistry Oxford: Elsevier Pergamon, 2003: 1-64. |
[33] | Pearce J A. Source and Settings of Granitic Rocks[J]. Episodes, 1996, 19(4): 120-125. |
[34] | Kelmen P B, Hangh K, Greenem A R. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust[C]//Rudnick R L. Treatise on Geochemistry. Oxford: Elsevier Pergamon, 2003: 593-689. |
[35] | 洪大卫, 王式洸, 谢锡林, 等. 从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系[J]. 地质学报, 2003, 77(2): 203-209. Hong Dawei, Wang Shiguang, Xie Xilin, et al. Correlation Between Continental Crustal Growth and the Supercontinental Cycle: Evidence from the Granites with Positive εNd in the Central Asian Orogenic Belt[J]. Acta Geologica Sinica, 2003, 77(2): 203-209. |
[36] | Yue Yongjun, Liou J G, Graham S A. Tectonic Correlation of Beishan and Inner Mongolia Orogens and Its Implications for the Palinspastic Reconstruction of North China[J]. Geological Society of America Menoirs, 2001, 194:101-116. |
[37] | 徐备,陈斌.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学:D辑, 1997, 27(3): 227-232. Xu Bei, Chen Bin. The Structure and Evolution of a Middle Paleozoic Orogenic Belt Between the North China and Siberian Blocks, Northern Inner Mongolia, China[J].Science in China: Series D, 1997, 27(3): 227-232. |
[38] | 郭胜哲. 中朝板块与西伯利亚板块拼合时限的确定及其生物地层学依据[J]. 中国地质科学院沈阳地质矿产研究所, 1986, 14: 127-136. Guo Shengzhe. On Determination of Convergence Time Between Siberian Plate and Sino-Korean Plate and Its Biostratigraphic Evidence[J]. Shenyang Institute of Geology and Mineral Resources Chinese Academy of Geological Sciences,1986,14:127-136. |
[39] | Hong Dawei, Huang Huaizeng, Xiao Yijun, et al. Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance[J]. Acta Geologica Sinica, 1995, 8(1): 27-39. |
[40] | Zhang Xiaohui, Zhang Hongfu, Tang Yanjie, et al. Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, North China: Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt[J]. Chemical Geology, 2008, 249: 262-281. |
[41] | Xiao Wenjiao, Windley B F, Huang B C, et al. End-Permian to Mid-Triassic Termination of Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98: 1189-1217. |
[42] | 孙德有, 吴福元, 张艳斌, 等. 西拉木伦河长春延吉板块缝合带的最后闭合时间:来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报:地球科学版, 2004, 34(2): 174-181. Sun Deyou, Wu Fuyuan, Zhang Yanbin, et al. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone:Evidence from the Dayushan Granite Pluton, Jilin Province[J]. Journal of Jilin University:Earth Science Edition, 2004, 34(2): 174-181. |
[43] | Li Jinyi. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26: 207-224. |
[44] | 赵越,陈斌,张拴宏,等. 华北克拉通北缘及邻区前燕山期主要地质事件[J]. 中国地质, 2010, 37(4): 900-915. Zhao Yue, Chen Bin, Zhang Shuanhong, et al. Pre-Yanshanian Geological Events in the Northern Margin of North China Craton and Its Adjacent Areas[J]. Geology China, 2010, 37(4): 900-915. |
[45] | 陈斌. 内蒙古兴安地区二叠系沉积特征及构造背景[D]. 北京: 中国地质大学, 2011:30-53. Chen Bin. Sedimentary Characteristics and Tectonic Setting of Permian in Xing'an Region of Inner Mongolian Autonomous Region[D]. Beijing: China University of Geosciences, 2011: 30-53. |
[46] | 范振华,李绪俊,梁本胜,等. 吉林安图海沟岩体岩石地球化学特征及其成岩构造环境[J]. 世界地质,2012, 31(1): 9-19. Fan Zhenhua, Li Xujun, Liang Bensheng, et al. Geochemical Characteristics and Tectonic Setting of Haigou Intrusion od Antu Jilin[J]. Global Geology, 2012, 31(1): 9-19. |