2. 吉林大学地球科学学院, 长春 130061
2. College of Earth Sciences, Jilin University, Changchun 130061, China
0 引言
研究区大地构造位置为华北板块北缘中段早古生代造山带内[1],属于中亚造山带的中东部,岩浆活动复杂。中亚造山带是我国显生宙以来演化历史最长、构造岩浆活动最复杂的造山带之一[2, 3, 4, 5, 6, 7],也是世界上最重要的稀有金属(锂、铍、铌、钽)成矿带之一[8]。在早古生代造山带中出露多种早古生代侵入岩,其成因多与古亚洲洋的俯冲消减作用有关[9, 10]。很多学者[10, 11]认为,正是由于古亚洲洋板块向南俯冲到华北板块之下,形成了包括蛇绿岩带、俯冲-增生杂岩和岛弧岩浆岩的中亚造山带的中东段,但俯冲时限仍存在争议。
最近在苏尼特右旗温都尔庙以南吉布胡楞土地区识别出一套石榴石白云母花岗岩。笔者在前人区域研究的基础上,采用野外地质调查和室内综合研究相结合的方法,通过岩石的主、微量元素及U-Pb同位素对该套花岗岩的源岩物质、成岩机理和成岩时代进行研究,试讨论该套花岗岩的形成对区域早古生代演化的意义。
1 地质背景和岩体地质特征
吉布胡楞土岩体出露于徐尼乌苏断裂以北,温都尔庙断裂以南,白乃庙岛弧岩浆活动带中(图 1a)。区域内最老的地层单元为白云鄂博群,主要分布在徐尼乌苏断裂以南;出露面积最大的地层单元为温都尔庙群,分布在温都尔庙断裂以北地区,因其锆石来源复杂年龄差异较大,前人对其形成时代有不同的认识[12, 13, 14];出露于白乃庙岛弧岩浆活动带中的白乃庙群为一套原岩由中基性-酸性火山岩夹泥岩组成的弧后火山沉积建造。研究区内的侵入岩主要分布在白乃庙岛弧岩浆活动带中。该岩浆岛弧带形成于早古生代,延续到晚古生代,很多专家和学者都对该岛弧岩浆活动带中的岩浆岩进行过研究,研究对象包括出露在吉布胡楞土岩体北部的变质辉长岩、斜长花岗岩和埃达克质岩,以及西部的石英闪长岩等:Jian 等[10]在该区的变质辉长岩和斜长花岗岩中得到锆石SHRIMP年龄为497~477 Ma;刘敦一等[9]在图林凯地区发现的埃达克质英安岩的年龄为458 Ma;Zhang等[15]测定石英闪长岩的年龄为(419±10) Ma,并侵入白乃庙群之中。这些侵入岩的形成均与俯冲作用相关。
地理位置上,该岩体主体分布在白乃庙地区白银哈尔北15 km处的吉布胡楞土附近,岩性为石榴石白云母花岗岩,呈岩株状产出,出露总面积为6.10 km2(图 1b)。吉布胡楞土岩体是研究区内已发现的最古老的地质体,被奥陶纪白乃庙岛弧侵入岩和早二叠世闪长玢岩侵入,寒武——奥陶系白乃庙群和石炭系阿木山组角度不整合覆盖其上,晚侏罗世玛尼吐组火山岩、石英脉和早白垩世花岗斑岩与其呈北东向断层接触。
石榴石白云母花岗岩野外露头较差,风化破碎强烈(图 2a),色率较低(小于5%),为浅色花岗岩(图 2b),细粒花岗结构,块状构造。主要矿物:微斜长石(35%)、斜长石(25%左右,轻微绢云母化)、石英(30%)、白云母(5%)和石榴石(5%)。微斜长石发育格子双晶;斜长石呈板柱状,部分发育聚片双晶;石英多呈不规则粒状;白云母呈片状,且颗粒较大,发育在长石颗粒之间,多为原生白云母;石榴石半自形,显均质性(图 2c)。可以大致判断结晶顺序为石榴石、斜长石、微斜长石、白云母,最后结晶的为石英。此外,岩石中常见磷灰石、锆石等副矿物。
2 锆石U-Pb年龄测定
在吉布胡楞土石榴石白云母花岗岩岩体中采集了4块新鲜全岩分析样品,样品编号分别为P20b17-1、P20b19-1、P20b21-1和P20bz-1。对样品P20b19-1(采样位置113°00′54″E,42°15′03″N)进行年龄测定,分析流程如下。
锆石的分选工作在河北省廊坊市区域地质调查研究所实验室完成,之后在中国地质科学研究所北京离子探针中心完成了锆石制靶、反射光、透射光和阴极发光(CL)的显微照相。锆石 U-Pb 年龄分析在天津地质矿产研究所进行,采用激光烧蚀多接收器等离子体质谱仪( LA-MC-ICP-MS) 进行U-Pb同位素测定,具体仪器配置和实验流程参照文献[16]。采用GJ-1作为外部锆石年龄标准进行U-Pb同位素分馏校正[17],采用中国地质大学刘勇胜[18]研发的ICPMSDataCal 程序和Ludwid[19]的Isoplot 程序进行数据处理,利用NIST612 玻璃标样作为外标计算锆石样品Pb、U、Th的质量分数。
石榴石白云母花岗岩的锆石多为无色,呈自形——半自形长柱状,多大于100 μm,具有明显的岩浆振荡环带和高的Th/U值(大于0.4),反映了岩浆锆石的特点[20]。共测试20个点,测得的年龄值较为一致(表 1),仅8号锆石年龄值偏差较大,年龄为234 Ma,观察其锆石特征(图 3),认为其为变质锆石,故将其舍去。将其余锆石年龄进行统计,其206Pb/238U加权平均年龄为(500.8±2.4)Ma(图 4,MSWD=1.3),该年龄代表石榴石白云母花岗岩岩体的成岩年龄。
样品号 | wB/10-6 | 232Th/ 238U | 同位素比值 | 年龄/Ma | |||||||||
Pb | U | 206Pb/ 238U | ±1σ | 207Pb/ 235U | ±1σ | 207Pb/ 206Pb | ±1σ |
206Pb/ 238U | ± 1σ | 207Pb/ 235U | ± 1σ | ||
P20b19-1 | 11 | 133 | 0.517 4 | 0.080 7 | 0.000 8 | 0.643 6 | 0.019 1 | 0.057 8 | 0.001 6 | 500 | 5 | 505 | 15 |
P20b19-2 | 14 | 141 | 1.074 9 | 0.081 9 | 0.000 9 | 0.660 5 | 0.019 3 | 0.058 5 | 0.001 5 | 507 | 6 | 515 | 15 |
P20b19-3 | 13 | 154 | 0.508 9 | 0.079 5 | 0.000 7 | 0.664 5 | 0.013 7 | 0.060 6 | 0.001 2 | 493 | 4 | 517 | 11 |
P20b19-4 | 11 | 134 | 0.490 6 | 0.081 0 | 0.000 7 | 0.659 5 | 0.017 9 | 0.059 0 | 0.001 4 | 502 | 5 | 514 | 14 |
P20b19-5 | 10 | 121 | 0.478 7 | 0.080 9 | 0.000 7 | 0.642 5 | 0.016 4 | 0.057 6 | 0.001 5 | 501 | 4 | 504 | 13 |
P20b19-6 | 14 | 161 | 0.498 7 | 0.080 0 | 0.000 7 | 0.662 6 | 0.012 2 | 0.060 0 | 0.001 1 | 496 | 4 | 516 | 10 |
P20b19-7 | 22 | 263 | 0.338 9 | 0.081 7 | 0.000 6 | 0.650 2 | 0.008 7 | 0.057 7 | 0.000 8 | 506 | 4 | 509 | 7 |
P20b19-8 | 92 | 2397 | 0.406 6 | 0.036 9 | 0.000 3 | 0.348 3 | 0.003 9 | 0.068 5 | 0.000 8 | 234 | 2 | 303 | 3 |
P20b19-9 | 76 | 920 | 0.414 8 | 0.081 1 | 0.000 8 | 0.657 2 | 0.007 1 | 0.058 8 | 0.000 6 | 503 | 5 | 513 | 6 |
P20b19-10 | 25 | 297 | 0.560 9 | 0.079 6 | 0.000 7 | 0.622 3 | 0.007 1 | 0.056 7 | 0.000 6 | 494 | 4 | 491 | 6 |
P20b19-11 | 17 | 204 | 0.471 8 | 0.082 4 | 0.000 7 | 0.623 7 | 0.010 2 | 0.054 9 | 0.000 9 | 511 | 4 | 492 | 8 |
P20b19-12 | 14 | 166 | 0.531 6 | 0.080 5 | 0.000 6 | 0.649 7 | 0.014 6 | 0.058 6 | 0.001 3 | 499 | 4 | 508 | 11 |
P20b19-13 | 16 | 185 | 0.554 8 | 0.081 2 | 0.000 6 | 0.646 8 | 0.011 5 | 0.057 7 | 0.001 0 | 504 | 4 | 506 | 9 |
P20b19-14 | 20 | 228 | 0.550 1 | 0.081 0 | 0.000 7 | 0.652 7 | 0.009 3 | 0.058 5 | 0.000 8 | 502 | 5 | 510 | 7 |
P20b19-15 | 16 | 172 | 0.823 6 | 0.080 7 | 0.000 7 | 0.656 5 | 0.012 0 | 0.059 0 | 0.001 1 | 500 | 5 | 512 | 9 |
P20b19-16 | 13 | 150 | 0.610 9 | 0.082 1 | 0.000 8 | 0.697 7 | 0.012 6 | 0.061 6 | 0.001 1 | 509 | 5 | 537 | 10 |
P20b19-17 | 12 | 134 | 0.556 6 | 0.080 0 | 0.000 7 | 0.668 6 | 0.027 9 | 0.060 6 | 0.002 4 | 496 | 4 | 520 | 22 |
P20b19-18 | 15 | 173 | 0.658 8 | 0.079 5 | 0.000 7 | 0.674 1 | 0.019 3 | 0.061 5 | 0.001 7 | 493 | 5 | 523 | 15 |
P20b19-19 | 33 | 372 | 0.542 4 | 0.081 2 | 0.000 7 | 0.631 9 | 0.007 8 | 0.056 4 | 0.000 7 | 503 | 4 | 497 | 6 |
P20b19-20 | 25 | 285 | 0.623 0 | 0.080 5 | 0.000 5 | 0.642 9 | 0.008 8 | 0.057 9 | 0.000 7 | 499 | 3 | 504 | 7 |
3 地球化学特征
对采集的4个岩石样品进行主量元素、微量元素和稀土元素的测定,分析测试工作均在天津地质调查中心实验室完成。主量元素采用X射线荧光光谱仪(XRF)测定,微量元素和稀土元素采用电感耦合等离子体质谱仪(TJA-PQ-ExCell ICP-MS)测定。具体的主量和微量元素分析数据见表 2、表 3。
wB/% | ||||||||||||||
样品号 | SiO2 | Al2O3 | Fe2O3 | FeO | TFeO | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO | 烧失量 | 总计 |
P20b17-1 | 74.11 | 14.73 | 0.06 | 1.06 | 1.11 | 0.36 | 0.09 | 3.76 | 4.17 | 0.01 | 0.08 | 0.50 | 0.84 | 99.78 |
P20b19-1 | 72.50 | 16.43 | 0.34 | 0.36 | 0.67 | 0.61 | 0.09 | 2.98 | 5.51 | 0.02 | 0.11 | 0.11 | 0.81 | 99.87 |
P20b21-1 | 73.09 | 15.55 | 0.30 | 0.46 | 0.73 | 0.55 | 0.09 | 3.99 | 4.70 | 0.01 | 0.10 | 0.24 | 0.77 | 99.85 |
P20bz-1 | 74.11 | 14.88 | 0.28 | 0.89 | 1.14 | 0.30 | 0.09 | 1.31 | 5.95 | 0.01 | 0.11 | 0.52 | 0.76 | 99.21 |
样品号 | Cr | Ni | Co | Rb | Cs | Sr | Ba | V | Sc | Nb | Ta | Zr | Hf | Ga | U |
P20b17-1 | 1.20 | 1.04 | 0.33 | 342.00 | 4.33 | 14.30 | 16.50 | 7.51 | 4.77 | 70.30 | 32.20 | 22.50 | 2.08 | - | 0.94 |
P20b19-1 | 2.49 | 2.19 | 0.21 | 212.00 | 3.40 | 11.50 | 10.40 | 2.43 | 6.23 | 23.50 | 7.23 | 21.20 | 1.68 | - | 1.58 |
P20b21-1 | 2.04 | 1.62 | 0.27 | 221.00 | 5.25 | 21.10 | 37.20 | 1.26 | 7.05 | 11.30 | 1.05 | 38.20 | 2.37 | - | 1.24 |
P20bz-1 | 20.00 | 1.50 | 0.40 | 238.00 | 5.28 | 26.40 | 32.90 | 5.00 | 0.60 | 25.60 | 3.90 | 35.00 | 2.70 | 21.40 | 1.02 |
样品号 | Th | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
P20b17-1 | 6.14 | 4.82 | 10.80 | 1.30 | 4.76 | 1.69 | 0.04 | 1.39 | 0.45 | 3.05 | 0.58 | 1.53 | 0.26 | 1.78 | 0.27 |
P20b19-1 | 3.97 | 2.98 | 5.90 | 0.82 | 3.02 | 1.22 | 0.04 | 0.84 | 0.26 | 1.90 | 0.39 | 1.13 | 0.22 | 1.65 | 0.26 |
P20b21-1 | 9.05 | 9.79 | 19.50 | 2.38 | 8.64 | 2.50 | 0.10 | 1.78 | 0.47 | 3.44 | 0.76 | 2.14 | 0.39 | 2.84 | 0.43 |
P20bz-1 | 5.60 | 1.50 | 3.80 | 0.49 | 1.90 | 0.87 | 0.03 | 1.03 | 0.22 | 1.24 | 0.20 | 0.49 | 0.07 | 0.59 | 0.09 |
样品号 | Y | K/Rb | K/Ba | Zr/Hf | Nb/Ta | La/Ta | Y/Ho | Ce/Ce* | Pr/Pr* | TE1 | Tb/Tb* | Dy/Dy* | TE3 | TE1,3 | Eu/Eu* |
P20b17-1 | 19.20 | 91.27 | 1 891 | 10.82 | 2.18 | 0.15 | 33.10 | 1.08 | 1.07 | 1.07 | 1.54 | 1.34 | 1.44 | 1.24 | 0.09 |
P20b19-1 | 12.20 | 116.69 | 2 378 | 12.62 | 3.25 | 0.41 | 31.28 | 0.94 | 1.08 | 1.01 | 1.42 | 1.29 | 1.36 | 1.17 | 0.13 |
P20b21-1 | 23.20 | 149.88 | 890 | 16.12 | 10.76 | 9.32 | 30.53 | 0.99 | 1.04 | 1.02 | 1.25 | 1.17 | 1.21 | 1.11 | 0.14 |
P20bz-1 | 7.20 | 45.69 | 330 | 12.96 | 6.56 | 0.38 | 36.00 | 1.12 | 1.10 | 1.11 | 1.31 | 1.23 | 1.27 | 1.19 | 0.10 |
注:微量元素质量分数单位为10-6。Ce/Ce*=CeN/(LaN2/3·NdN1/3),Pr/Pr*=PrN/(LaN1/3·NdN2/3),TE1=(Ce*·Pr*)1/2,Tb/Tb*=TbN/(GdN2/3·HoN1/3),Dy/Dy*=DyN/(GdN1/3·HoN2/3),TE3=(Tb*·Dy*)1/2,TE1,3=(TE1·TE3)1/2,Eu/Eu*=EuN/(SmN·GdN)1/2。 |
该岩体SiO2质量分数较高,w(SiO2)=72.50%~74.11%,属于酸性岩;富铝,w(Al2O3)=14.73%~16.43%;贫铁、镁、钙,w(TFeO)=0.67%~1.14%,w(MgO)=0.09%,w(CaO)=0.30%~0.61%。w(K2O)=1.31%~3.99%,w(Na2O)=4.17%~5.95%(表 2),在TAS图解中位于花岗岩的区域中(图 5a);岩石的里特曼指数为2.02~2.51(仅K质量分数低的一块样品为1.14),属于钙碱性岩石(图 5b);铝饱和指数A/CNK为1.14~1.29,为强过铝质岩石(图 5c)。该岩体的分异指数(DI)为91.99~93.20,为高分异花岗岩。综合其特征,该石榴石白云母花岗岩是一套富铝、贫铁镁钙的高分异钙碱性花岗岩。
3.2 微量元素特征该石榴石白云母花岗岩样品的稀土总量变化较大(w(∑REE)=(12.52~55.16)×10-6),平均值为30.26×10-6,这个数值远远低于世界上酸性岩的平均丰度(288×10-6)。这可能与该石榴石白云母花岗岩中缺乏类似黑云母等暗色矿物及一些稀土元素载体副矿物(如磷钇矿、独居石、萤石等)有关[23]。w(∑LREE)为(13.98~42.91)×10-6,w(∑HREE为(6.65~12.25)×10-6,∑LREE/∑HREE=2.10~3.50。
4个样品的轻重稀土分馏不是很明显,表现为强烈Eu负异常的“V”字型曲线(图 6a),δEu为0.09~0.14,可能为源区在部分熔融过程中基性斜长石作为残留相的结果。(La/Yb)N为1.09~2.09,(La/Sm)N为0.95~2.15,(Gd/Lu)N为0.41~1.40。在稀土元素配分模式上均表现出明显的四分组效应(图 6a)。
在微量元素原始地幔标准化蛛网图(图 6b)中,其表现为明显的Rb、Ta正异常和Ba、Sr和Ti等的负异常。Nb、Ta的相对富集说明该岩浆并非来源于地壳;Ba和Sr一般富集于斜长石中,其亏损指示了斜长石可能作为残留相或源区缺乏斜长石。
4 讨论
4.1 形成时代
吉布胡楞土石榴石白云母花岗岩(样品编号P20b19-1)锆石多为无色,呈自形——半自形长柱状,表现出典型的岩浆锆石特征,测得的年龄值非常稳定(表 1),206Pb/238U加权平均年龄为(500.8±2.4)Ma(图 4,MSWD=1.3),代表石榴石白云母花岗岩岩体的成岩年龄。该年龄早于区域中其他白乃庙岛弧岩浆带中的岩浆岩[9, 10, 15]。
4.2 岩体形成的温压条件
锆石饱和温度计算是获得岩浆初始温度的主要方法之一,锆石中Zr的分配系数对温度十分敏感,其在岩浆中的含量与温度存在相关性,而其他因素对其没有明显影响[26]。全岩中Zr与岩浆温度之间的关系[27, 28]为TZr=129 000/[2.95+0.85M+ln(496 000/wmelt(Zr))]。其中:M=(n(Na)+n(K)+2n(Ca))/(n(Al)n(Si))(计算中,令n(Si)+n(Al)+n(Fe)+n(Mg)+n(Ca)+n(Na)+n(K)+n(P)=1(摩尔数));TZr为绝对温度;wmelt(Zr)为熔体中Zr的质量分数,可用全岩中Zr的质量分数近似代表。计算得到该岩体的形成温度为645~685 ℃,平均值为667 ℃,为低温花岗岩,其形成可能与流体的加入有关[28]。
4.3 四分组效应
Chappell和White等[29, 30]提出,判别S型花岗岩需存在岩浆成因的堇青石,并且铝饱和指数较高(>1.1)。仅靠白云母和石榴石的出现并不能判断为S型花岗岩,因为过铝的I型花岗岩也会有白云母和石榴石的出现[31, 32, 33]。岩石样品在判别图解中位于I型花岗岩的区域中(图 7,一个岩石样品的钾质量分数过低)。
笔者报道的吉布胡楞土岩体为高分异钙碱性花岗岩,铝饱和指数较高,稀土元素表现出明显的四分组效应(图 6)。Jahn 等[34]认为稀土元素的四分组效应常见于强热液交代的岩浆晚期阶段,包括高度演化的淡色花岗岩、伟晶岩和矿化花岗岩。
该岩体与Wu 等[35]报道的东北地区的东清岩体的特征极为相似,强烈地亏损Ba、Sr、Ti等元素,且具有四分组效应;一些学者[36, 37]研究证实稀土元素四分组效应往往伴随着其他元素的异常行为。这种现象在笔者研究的石榴石白云母花岗岩中表现明显(图 8),与正常花岗岩相比,其K/Rb、La/Nb、La/Ta值明显偏低,K/Ba值明显偏高。大部分火成岩中的Zr/Hf值的变化范围很小,为38±2,本次测定的Zr/Hf的值分别为10.82、12.62、16.12、12.96,明显低于38,且与表征稀土元素四分组效应的参数TE1,3表现为一定的负相关性;Y/Ho值多落入正常岩浆岩区,与参数TE1,3表现为正相关性;Eu/Eu*值很低,分别为0.09、0.13、0.14、0.10,这不能仅仅用斜长石的结晶分离来解释,后期强烈的熔体相互作用加剧了Eu的负异常。这些地球化学特征表明其是岩浆-流体相互作用的产物[35, 38]。
4.4 地质意义笔者研究的石榴石白云母花岗岩中1个岩石样品(编号P20b17-1)的w(Nb)=70.30×10-6、w(Ta)=32.20×10-6。而参照稀有金属的品位(我国所规定的钽铌矿床边界品位指标为(Ta,Nb)2O5=0.012%~0.015%)[39],前人[38]研究认为,具有稀土元素四分组效应的花岗岩一般与成矿相关,都是花岗岩浆作用最晚阶段残余熔体结晶的产物,强烈的分离结晶作用可导致Nb、Ta、Zr等稀有金属的富集。因此,笔者认为吉布胡楞土岩体的形成可能有漫长的过程,而Nb、Ta质量分数较高的样品应该为更晚期阶段的产物,该岩体为稀有金属矿床的形成提供了必要的物质基础。
4.5 构造环境
华北板块在中新元古代进入了相对稳定的演化时期[40, 41],华北板块北缘的大地构造属性为被动大陆边缘。进入早寒武世之后,随着古亚洲洋洋中脊的不断扩张,大洋板块自北向南俯冲到大陆板块之下,华北板块北缘的构造属性由被动大陆边缘转变为活动大陆边缘[42],附近出露的白乃庙群变质火山岩就形成于活动大陆边缘弧环境中[43]。自此,华北板块北缘进入了漫长的古亚洲洋俯冲消减造山阶段[7]。
笔者报道的石榴石白云母花岗岩是高分异的受热液流体影响的I型花岗岩,因此,基于正常花岗岩的构造判别图解,并不适用于该岩体。该岩体锆石饱和温度计算得到的667 ℃的成岩温度、微量元素的四分组效应和其他元素的异常行为均暗示该岩体的形成与岩浆-流体的相互作用有关。
吉布胡楞土岩体出露于白乃庙岛弧岩浆带中,出露面积较小,锆石SHRIMP U-Pb定年显示温都尔庙地区德言其庙斜长角闪岩(原岩为辉长岩)形成年龄为(490.3±4.6) Ma(未正式发表数据);Jian等[10]测得图林凯奥长花岗岩的年龄为(471.6±1.7) Ma,并认为俯冲开始于498~461 Ma。而本文报道的石榴石白云母花岗岩成岩年龄为(500.8±2.4) Ma,且应该与岩浆-流体的相互作用有关,这些特点均暗示形成该岩体俯冲事件是独立的。因此,吉布胡楞土岩体的形成可能代表古亚洲洋向华北板块的一次俯冲事件,且俯冲的开始时间早于晚寒武世。
5 结论
1)高精度LA-ICP-MS锆石U-Pb测年结果显示,吉布胡楞土石榴石白云母花岗岩的年龄为(500.8±2.4)Ma,即形成于晚寒武世。
2)吉布胡楞土岩体为具有稀土元素四分组效应的高分异花岗岩,为岩浆晚期阶段残余熔体结晶的产物,部分样品富集Nb、Ta,为稀有金属矿床的形成提供了必要的物质基础。
3)吉布胡楞土岩体并非S型花岗岩,而是高分异的具有四分组效应的I型花岗岩;根据计算得到岩体的形成温度约为667 ℃,为低温花岗岩。这两种特征都暗示吉布胡楞土岩体的形成与岩浆-流体的加入有关,暗示了古亚洲洋向华北板块的俯冲活动早于晚寒武世。
[1] | 陈琦, 仇甘霖, 薛林福, 等.内蒙造山带南部古板块构造演化[J].地质评论, 1993, 39(6):477-483. Chen Qi, Qiu Ganlin, Xue Linfu, et al. Palaeoplate Evolution in the Southern Part of the Inner Monglian Orogenic Belt[J]. Geological Review, 1993, 39(6): 477-483. |
[2] | 任纪舜.论中国大陆岩石圈构造的基本特征[J].中国区域地质, 1991(4):289-293. Ren Jishun. The Basic Characteristics of the Tectonic Evolution of the Continental Lithosphere in China[J]. Regional Geology of China, 1991(4): 289-293. |
[3] | 李双林, 欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质, 1998, 18(3):45-54. Li Shuanglin, Ouyang Ziyuan. Tectonic Framework and Evolution of Xing'anling-Mongolian Orogenic Belt (XMOB) and Its Adjacent Region[J]. Marine Geology & Quaternary Geology, 1998, 18(3): 45-54. |
[4] | 肖文交, 舒良树, 高俊, 等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质, 2008, 26(1):4-8. Xiao Wenjiao, Shu Liangshu, Gao Jun, et al. Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny[J]. Xinjiang Geology, 2008, 26(1): 4-8. |
[5] | 刘建峰.内蒙古林西东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D].长春:吉林大学, 2009:1-7. Liu Jianfeng. Late Paleozoic Magmatism and Its Constraints on Regional Tectonic Evolution in Linxi-Dongwuqi Area, Inner Mongolia[D]. Changchun: Jilin University, 2009:1-7. |
[6] | 李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报:地球科学版, 2009, 39(4):584-605. Li Jinyi, Zhang Jin, Yang Tiannan, et al. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas[J]. Journal of Jilin University:Earth Science Edition, 2009, 39(4): 584-605. |
[7] | 王兴安.华北板块北缘中段早古生代泥盆纪构造演化[D].长春:吉林大学, 2014:20-52. Wang Xing'an. Tectonic Evolution in the Central Segment of the Northern Margin of the North China Plate from Early Paleozoic to Devonian[D]. Changchun: Jilin University, 2014:20-52. |
[8] | 洪大卫, 王式洸, 谢锡林, 等.试析地幔来源物质成矿域:以中亚造山带为例[J].矿床地质, 2003, 22(1):41-55. Hong Dawei, Wang Shiguang, Xie Xilin, et al. Metallogenic Province Derived from Mantle Sources: A Case Study of Central Asian Orogenic Belt[J]. Mineral Deposits, 2003, 22(1): 41-55. |
[9] | 刘敦一, 简平, 张旗, 等.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP 测年:早古生代洋壳消减的证据[J].地质学报, 2003, 77(3):317-327. Liu Dunyi, Jian Ping, Zhang Qi, et al. SHRIMP Dating of Adakites in the Tulinkai Ophiolite, Inner Mongolia: Evidence for the Early Paleozoic Subduction[J]. Acta Geologica Sinica, 2003, 77(3): 317-327. |
[10] | Jian Ping, Liu Dunyi, Alfred K, et al. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth[J]. Lithos, 2008, 101: 233-259. |
[11] | Xiao W J, Windly B F, Hao J, et al. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6): 1069-1089. |
[12] | 徐备, 陈斌, 张臣, 等.华北板块北缘中段含铁变质岩系的时代和构造环境初探[J].地质评论, 1994, 40(4):307-331. Xu Bei, Chen Bin, Zhang Chen, et al. The Age and Tectonic Significance of Ferrian Metamorphic Series in the Middle Segment of the Northern Margin of the North China Plate[J]. Geological Review, 1994, 40(4): 307-331. |
[13] | 李承东, 冉皞, 赵利刚, 等.温都尔庙群锆石的LA-MC-ICPMS U-Pb 年龄及构造意义[J]. 岩石学报, 2012, 28(11):3705-3714. Li Chengdong, Ran Hao, Zhao Ligang, et al. LA-MC-ICPMS U-Pb Geochronology of Zircons from the Wenduermiao Group and Its Tectonic Significance[J]. Acta Petrologica Sinica, 2012, 28(11): 3705-3714. |
[14] | 初航, 张晋瑞, 魏春景, 等.内蒙古温都尔庙群变质基性火山岩构造环境及年代新解[J].科学通报, 2013, 58:2958-2965. Chu Hang, Zhang Jinrui, Wei Chunjing, et al. A New Interpretation of the Tectonic Setting and Age of Meta-Basic Volcanics in the Ondor Sum Group, Inner Mongolia[J]. Chinese Science Bulletin, 2013, 58: 2958-2965. |
[15] | Zhang W, Jian P, Alfred K, et al. Magmatic and Metamorphic Development of an Early to Mid-Paleozoic Continental Margin Arc in the Southernmost Central Asian Orogenic Belt, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2013, 72: 63-74. |
[16] | 李怀坤, 朱士兴, 相振群, 等.北京延庆高于庄组凝灰岩的锆石U-Pb 定年研究及其对华北北部中元古界划分新方案的进一步约束[J].岩石学报, 2010, 26(7):2131-2140. Li Huaikun, Zhu Shixing, Xiang Zhenqun, et al. Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7): 2131-2140. |
[17] | Jackson S E, Pearson N J, Griffin W L, et al. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to Insitu U-Pb Zircon Geochronology[J]. Chemical Geology, 2004, 211 (1/2): 47-69. |
[18] | Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 537-571. |
[19] | Ludwig K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Centre Special Publication, 2003, 4(9): 1-71. |
[20] | Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon[J]. Journal of Microscopy, 1993, 171: 223-232. |
[21] | Irvine T H, Baragar W. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548. |
[22] | Rickwood P C.Boundary Lines with Petrologic Dia-grams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4): 247-263. |
[23] | 童劲松, 钟华明, 夏军, 等.藏南洛扎地区过铝质花岗岩的地球化学特征及构造背景[J].地质通报, 2003, 22(5):308-318. Tong Jinsong, Zhong Huaming, Xia Jun, et al. Geochemical Features and Tectonic Setting of Peraluminous Granite in the Lhozag Area, Southern Tibet[J]. Geological Bulletin of China, 2003, 22(5): 308-318. |
[24] | Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985. |
[25] | Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geological Society Special Publications, 1989: 313-345. |
[26] | Calvin F M, Mcdowell S M, Mapes R W, et al. Granites? Implication of Zircon Saturation Temperatures and Preservation of Inhertance[J]. Geology, 2003, 31(6): 529-532. |
[27] | Watson E B, Harrison T M. Zircon Saturation Revi-sited: Temperature and Composition Effect in Avariety of Crustal Magmas Types[J]. Earth and Planetary Science Letters, 1983, 64: 295-304. |
[28] | Miller C F, Mcdowell S M, Mapes R W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance[J]. Geology, 2003, 31(6): 529-532. |
[29] | White A J R, Clemens J D, Holloway J R, et al. S-Type Granites and Their Probable Absence in Southwestern North America[J]. Geology, 1986, 14: 115-118. |
[30] | Chappell B W, White A J R. I and S-Type Granites in the Lachan Fold Belt[J]. Earth Sci, 1992, 83: 1-26. |
[31] | 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. Wu Fuyuan, Li Xianhua, Yang Jinhui, et al. Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238. |
[32] | Miller C F.Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources?[J]. Journal of Geology, 1985, 93: 673-689. |
[33] | Zen E A. Phase Ralations of Peraluminous Granitic Rocks and Their Petrogenetic Implications[J]. Annual Review of Earth and Planetary Sciences, 1988, 16: 21-51. |
[34] | Jahn B M, Wu F Y, Capdevila R, et al. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China[J]. Lithos, 2001, 59:171-198. |
[35] | Wu F Y, Sun D Y, Jahn B, et al. A Jurassic Garnet-Bearing Granitic Pluton from NE China Showing Tetrad REE Patterns[J]. Journal of Asian Earth Sciences, 2004, 23: 731-744. |
[36] | Peppard D F, Mason G W, Lewey S. A Tetrad Effect in the Liquid-Liquid Extraction Ordering of Lanthanides[J]. J Inorg Nucl Chem, 1969, 31: 339-343. |
[37] | Bau M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect[J]. Contributions to Mineralogy and Petrology, 1996, 123: 323-333. |
[38] | 赵振华, 熊小林, 韩小东.花岗岩稀土元素四分组效应形成机理探讨:以千里山和巴尔哲花岗岩为例[J].中国科学:D辑, 1999, 29(4):331-338. Zhao Zhenhua, Xiong Xiaolin, Han Xiaodong. REE Tetrad Effect Granite Formation Mechanism: A Case Study of Qianlishan and Baerzhe Granites[J]. Science in China: Series D, 1999, 29(4): 331-338. |
[39] | 《矿产资源工业要求手册》编委会.矿产资源工业要求手册[M].北京:地质出版社, 2014:217-225. Editorial Board of "Mineral Resources Industry Requires Manual". Mineral Resources Industry Requirements Handbook[M]. Beijing: Geological Publishing House, 2014: 217-225. |
[40] | Zhao G C, Sun M, Wilde S A. Major Tectonic Units of the North China Craton and Their Paleoproterozoic Assembly[J]. Science in China :Series D, 2003, 46(1): 23-38. |
[41] | Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic Evolution of the North China Craton Key Issues Revisited[J]. Precambrian Research, 2005, 136: 177-202. |
[42] | 张臣, 吴泰然.内蒙古温都尔庙群变质基性火山岩Sm-Nb、Rb-Sr 同位素年代研究[J]. 地质科学, 1998, 33(1): 25-30. Zhang Chen, Wu Tairan. Sm-Nd, Rb-Sr Isotopic Isochron of Metamorphic Volcanic Rochs of Ondor Sun Group, Inner Mongolia[J]. Scientia Geologica Sinica, 1998, 33(1): 25-30. |
[43] | 张超.内蒙古苏尼特右旗地区白乃庙群的岩石组合、锆石U-Pb 年代学特征及地质意义[D].长春:吉林大学, 2013:43-47. Zhang Chao. Rock Association, Zircon U-Pb Geochronology of Bainaimiao Group in Sonid Youqi, Inner Mongolia Its Geological Signficance[D]. Changchun: Jilin University, 2013:43-47. |