0 前言
科尔沁右翼中旗地区中生代岩浆岩较发育,其中花岗岩出露较多,大致呈北东向展布。该区位于华北板块与西伯利亚板块构造拼贴带上,而两大板块之间的缝合位置和拼合时限一直存在争议。近年来一些学者倾向于将西拉木伦——长春——延吉一线作为西伯利亚板块与华北板块的碰撞缝合带[1, 2, 3, 4, 5, 6, 7],两大板块的拼合时间存在较大争议: 部分学者[8, 9]认为中泥盆世、晚泥盆世到早石炭世[10, 11],部分学者[2, 12, 13, 14, 15, 16]倾向于中晚二叠世至早中三叠世。近年来乌兰浩特及吉林等地已经进行了较多的锆石U-Pb年代学研究[17, 18, 19, 20, 21],内蒙古林西地区也有相关的花岗岩年代学报道[2, 14, 15]。科尔沁右翼中旗花岗岩年龄只有少量的报道,如该区孟恩陶勒盖岩体英云闪长岩黑云母K-Ar年龄281 Ma[22]、Rb-Sr年龄为246.79 Ma[23],花岗闪长岩的锆石U-Pb年龄(234±1) Ma、(224±1) Ma,白云母二长花岗岩的锆石U-Pb年龄(230±1) Ma[24]。研究区为兴蒙造山带的组成部分,花岗岩成因类型及年代学的研究对该区构造演化的探讨具有重要意义。笔者在前人研究工作的基础上,通过对科尔沁右翼中旗地区花岗岩锆石U-Pb的同位素年代学、地球化学研究,对该区岩体的年龄、地球化学特征及其可能的地质意义进行了探讨。
1 地质概况
科尔沁右翼中旗地区位于大兴安岭中南部,兴蒙造山带的东段、西伯利亚板块和华北板块的拼合部位(图 1)。研究区内主要发育早二叠世寿山沟组,岩性组合为灰黑色炭质板岩、红柱石黑云母角岩、变质中细粒长石砂岩、长石石英砂岩、杂砂岩、凝灰质砂岩等。近年来,据在该地区开展的1∶5万区域地质调查于该套地层中发现的疑源类化石,将该套地层划分为下寒武统[25];出露有中生代火山岩,主要为含角砾岩屑晶屑凝灰岩、角砾凝灰岩及流纹岩等[26]。
该区出露的岩体主要为黑云母花岗岩和花岗闪长岩,分布于科尔沁右翼中旗北东约20 km的代钦塔拉地区(图 1),出露面积约200 km2。前人将该区花岗岩称为孟恩陶勒盖岩体[24, 27]和孟恩岩基[22],本次研究沿用区域1∶5万地质调查资料中所用的孟恩陶勒盖岩体名称。岩石大多呈灰白色,具有中细粒半自形粒状结构,主要矿物为石英、钾长石和斜长石等,含有少量黑云母和白云母。岩体侵入到二叠纪的碎屑岩中,局部被晚侏罗世火山岩喷发不整合覆盖。
2 测年样品特征与分析测试方法
研究样品采于科尔沁右翼中旗代钦塔拉地区孟恩陶勒盖岩体的黑云母花岗岩和花岗闪长岩。采样位置:样品D4106为45°11′39″,121°33′34″;样品D4110为45°13′50″,121°30′23″,采集样品(D4106,D4110)为黑云母花岗岩,岩石为中细粒半自形粒状结构,矿物成分主要有钾长石、斜长石和石英等,暗色矿物为黑云母。钾长石呈半自形板粒状,粒度0.4~7.2 mm,条纹结构和格子双晶发育,体积分数约40%;斜长石呈半自形板状,粒度0.4~7.0 mm,聚片双晶发育,体积分数约22%;石英为他形粒状,团粒状分布,粒度0.4~4.0 mm,体积分数约30%;黑云母呈淡棕褐色,片状,粒度0.4~2.4 mm,体积分数约8%。
花岗闪长岩样品D4111(采样位置紧临D4110),具中细粒半自形粒状结构,主要由斜长石、钾长石、石英等组成。斜长石为半自形板状,聚片双晶发育,粒度0.4~5.0 mm,体积分数约55%;钾长石呈半自形板粒状,条纹结构发育,粒度0.4~4.2 mm,体积分数约18%;石英他形粒状,粒度0.1~4.0 mm,体积分数约20%;白云母呈无色片状,粒度0.4~1.0 mm,体积分数约2%;含有少量的黑云母。
锆石样品的破碎和选样在廊坊诚信地质服务有限公司完成。首先将岩石样品进行粉碎,分选出锆石,在双目镜下挑选出晶形较完好、透明度较高、内部无裂隙具有代表性的锆石,进行制靶。锆石制靶后,用阴极发光、透射、反射光对锆石样品进行了照相。锆石的制靶、阴极发光(CL)以及U-Pb同位素测年均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。通过反射光、透射光和阴极发光图像分析,选择晶型好、环带清晰的锆石,在锆石激光剥蚀等离子体质谱仪(LA-ICP-MS)上进行U-Pb同位素定年。测试所用仪器为Agilent 7500a电感耦合等离子体质谱计和GeoLas 2005准分子激光剥蚀系统,激光器为193nm ArF准分子激光器。激光剥蚀斑束直径32 μm,激光剥蚀样品深度为20~40 μm。在实验中采用He作为剥蚀物质的载气。锆石年龄计算采用国际标准锆石91500作为外标,元素含量采用美国国家标准物质局研制的人工合成硅酸盐玻璃NIST SRM610作为外标,29Si作为内标元素进行校正。实验原理和过程见文献[15, 28, 29, 30]。测试分析中同位素比值和年龄的标准误差为1σ,分析结果见表 1 。
测点号 | wB/10-6 | Th/ U |
同位素比值 | 年龄/Ma | |||||||||||
232Th | 238U | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ |
207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | ||
D4106TW-1 | 278.322 | 1 133.424 | 0.25 | 0.050 60 | 0.002 55 | 0.265 90 | 0.013 03 | 0.038 34 | 0.000 53 | 222 | 88 | 239 | 10 | 243 | 3 |
D4106TW-2 | 283.085 | 1 225.910 | 0.23 | 0.051 86 | 0.002 91 | 0.274 79 | 0.014 96 | 0.038 42 | 0.000 49 | 279 | 102 | 247 | 12 | 243 | 3 |
D4106TW-3 | 523.085 | 1 491.260 | 0.35 | 0.050 23 | 0.002 45 | 0.264 57 | 0.012 36 | 0.038 24 | 0.000 49 | 206 | 85 | 238 | 10 | 242 | 3 |
D4106TW-4 | 484.702 | 1 384.513 | 0.35 | 0.050 72 | 0.002 43 | 0.269 61 | 0.012 18 | 0.038 46 | 0.000 51 | 228 | 80 | 242 | 10 | 243 | 3 |
D4106TW-5 | 215.911 | 1 067.685 | 0.20 | 0.053 24 | 0.003 11 | 0.289 67 | 0.016 76 | 0.039 34 | 0.000 55 | 339 | 106 | 258 | 13 | 249 | 3 |
D4106TW-6 | 257.655 | 1 028.121 | 0.25 | 0.055 19 | 0.003 44 | 0.300 93 | 0.018 61 | 0.039 29 | 0.000 60 | 420 | 111 | 267 | 15 | 248 | 4 |
D4106TW-7 | 240.458 | 1 010.216 | 0.24 | 0.053 23 | 0.002 90 | 0.289 48 | 0.015 53 | 0.039 60 | 0.000 58 | 339 | 95 | 258 | 12 | 250 | 4 |
D4106TW-8 | 451.370 | 1 852.695 | 0.24 | 0.051 91 | 0.002 85 | 0.276 27 | 0.014 75 | 0.038 60 | 0.000 49 | 282 | 128 | 248 | 12 | 244 | 3 |
D4106TW-9 | 645.092 | 1 787.639 | 0.36 | 0.053 54 | 0.002 37 | 0.274 02 | 0.011 77 | 0.036 89 | 0.000 42 | 352 | 77 | 246 | 9 | 234 | 3 |
D4106TW-10 | 335.226 | 1 140.368 | 0.29 | 0.050 66 | 0.002 89 | 0.269 99 | 0.014 91 | 0.038 54 | 0.000 60 | 225 | 99 | 243 | 12 | 244 | 4 |
D4106TW-11 | 244.277 | 922.687 | 0.26 | 0.054 12 | 0.003 04 | 0.300 59 | 0.016 57 | 0.040 12 | 0.000 63 | 376 | 96 | 267 | 13 | 254 | 4 |
D4106TW-12 | 349.398 | 1 293.435 | 0.27 | 0.051 12 | 0.002 40 | 0.270 22 | 0.012 48 | 0.038 38 | 0.000 57 | 246 | 79 | 243 | 10 | 243 | 4 |
D4106TW-13 | 299.508 | 1 202.545 | 0.25 | 0.051 97 | 0.002 44 | 0.269 70 | 0.012 68 | 0.037 54 | 0.000 55 | 284 | 81 | 242 | 10 | 238 | 3 |
D4106TW-14 | 254.452 | 1 015.263 | 0.25 | 0.051 89 | 0.002 97 | 0.288 01 | 0.015 02 | 0.040 99 | 0.000 72 | 281 | 87 | 257 | 12 | 259 | 4 |
D4106TW-15 | 275.392 | 977.508 | 0.28 | 0.053 96 | 0.002 73 | 0.284 20 | 0.014 58 | 0.037 95 | 0.000 58 | 369 | 88 | 254 | 12 | 240 | 4 |
D4106TW-16 | 310.128 | 1 084.582 | 0.29 | 0.053 36 | 0.002 76 | 0.283 02 | 0.015 16 | 0.038 02 | 0.000 52 | 344 | 97 | 253 | 12 | 241 | 3 |
D4106TW-17 | 145.988 | 588.320 | 0.25 | 0.056 21 | 0.003 47 | 0.288 18 | 0.017 21 | 0.037 68 | 0.000 64 | 461 | 102 | 257 | 14 | 238 | 4 |
D4106TW-18 | 834.788 | 2 201.378 | 0.38 | 0.050 46 | 0.002 21 | 0.240 23 | 0.010 38 | 0.034 43 | 0.000 40 | 216 | 78 | 219 | 8 | 218 | 3 |
D4106TW-19 | 216.013 | 894.207 | 0.24 | 0.054 70 | 0.003 23 | 0.277 65 | 0.015 73 | 0.037 15 | 0.000 57 | 400 | 99 | 249 | 13 | 235 | 4 |
D4106TW-20 | 413.415 | 1 534.539 | 0.27 | 0.047 86 | 0.002 24 | 0.242 47 | 0.011 53 | 0.036 57 | 0.000 46 | 92 | 83 | 220 | 9 | 232 | 3 |
对孟恩陶勒盖岩体的形成时代有不同见解:研究者[22]依据为全岩K-Ar年龄281 Ma认为该岩体形成于晚古生代;还有依据Rb-Sr年龄246.79 Ma将该岩体形成时限定于早三叠世[23]的认识;张明等[24]报道该岩体锆石U-Pb年龄为(234±1)、(224±1)、(230±1)Ma,将该岩体划为中三叠世。
笔者研究的锆石U-Pb分析结果如表 1所示,用于年龄测定样品的岩性为黑云母花岗岩。锆石CL图像显示:锆石均较自形,呈长柱状,少数呈椭圆状以及不规则状产出;长轴粒径多为50~110 μm;具有清晰的岩浆震荡环带;Th/U为0.20~0.38。以上特征表明样品锆石均为岩浆成因锆石(图 2)。对该孟恩陶勒盖岩体的D4106TW样品进行锆石U-Pb测年分析,20颗锆石分析点的表面年龄基本位于谐和线上或其附近,去除年龄偏大的第14点,年龄偏小的18点,207Pb/235U年龄远小于206Pb/238U年龄的第20点,其余17个分析点206Pb/238U加权平均年龄为(242 .6±2.5) Ma(MSWD=2.2)(图 3)。结合上述分析可知,(242 .6±2.5) Ma代表了花岗岩岩体的形成年龄,该岩体为中三叠世侵入岩。
4 地球化学特征4.1 主量元素
岩石主量元素、稀土和微量元素分析结果见表 2。宋维民等[27]对孟恩陶勒盖岩体进行了年代学研究(表 2),且与笔者研究的花岗质岩时代基本吻合,同为中三叠世侵入体。该区花岗岩在TAS岩石图解(图 4)上落入流纹岩区域,显示为亚碱性系列;w(SiO2)-w(K2O)图解(图 5)上,花岗质岩主要落入高钾钙碱性系列。岩石SiO2质量分数为69.22%~75.38%,平均为72.35%;Al2O3质量分数为13.88%~15.41%,平均为14.60%;CaO的质量分数为0.16%~2.50%,平均值为1.01%;全碱的质量分数为6.92%~8.63%,平均为7.84%,Na2O/K2O为0.65~1.33,平均值为1.00;岩石铝饱和指数A/CNK值为1.022~1.395,平均为1.182,A/NK值为1.273~1.498,平均为1.375,上述数据表明岩石为过铝质岩石,且碱含量很高。这些特征表明,该花岗质岩体应为成熟地壳源物质的熔融侵位形成的。
样品 编号 | 岩性 | wB/% | |||||||||||
SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | 烧失量 | ||
D4110 GXW1 | 花岗岩 | 74.19 | 0.04 | 14.87 | 1.31 | 0.83 | 0.075 | 0.22 | 0.16 | 4.72 | 3.55 | 0.061 | 0.77 |
D4110 GXW2 | 花岗岩 | 75.38 | 0.04 | 13.88 | 1.39 | 0.81 | 0.041 | 0.25 | 0.32 | 4.15 | 3.77 | 0.077 | 0.66 |
D4111 GXW1 | 花岗闪 长岩 | 73.31 | 0.20 | 15.09 | 1.82 | 1.35 | 0.039 | 0.43 | 0.26 | 3.77 | 3.83 | 0.068 | 1.05 |
2-1 | 花岗闪 长岩 | 70.12 | 0.37 | 14.95 | 0.32 | 2.66 | 0.06 | 0.80 | 2.21 | 4.10 | 3.30 | 0.12 | 0.56 |
2-2 | 花岗闪 长岩 | 71.61 | 0.50 | 13.91 | 2.06 | 0.97 | 0.05 | 0.63 | 1.25 | 3.19 | 3.73 | 0.10 | 1.70 |
2-3 | 花岗闪 长岩 | 70.86 | 0.33 | 14.51 | 1.34 | 0.97 | 0.05 | 0.54 | 1.06 | 3.47 | 5.16 | 0.11 | 1.33 |
2-4 | 花岗闪 长岩 | 69.22 | 0.41 | 15.41 | 0.96 | 1.80 | 0.05 | 0.96 | 2.50 | 4.14 | 3.44 | 0.11 | 0.61 |
2-7 | 花岗闪 长岩 | 74.11 | 0.07 | 14.15 | 0.54 | 0.75 | 0.07 | 0.21 | 0.29 | 3.29 | 5.09 | 0.04 | 1.14 |
样品 编号 | 岩性 | wB/% 合计 | A/ CNK | A/ NK | wB/10-6 | ||||||||
Ba | Rb | Sr | Y | Zr | Nb | Th | Pb | Hf | |||||
D4110 GXW1 | 花岗岩 | 100.79 | 1.250 | 1.281 | 73.90 | 310.00 | 41.80 | 5.28 | 36.50 | 16.915 | 0.99 | 10.8 | 2.24 |
D4110 GXW2 | 花岗岩 | 100.77 | 1.208 | 1.273 | 75.40 | 226.00 | 44.20 | 4.91 | 17.10 | 13.18 | 0.89 | 19.5 | 0.97 |
D4111 GXW1 | 花岗闪长岩 | 101.22 | 1.395 | 1.458 | 522.00 | 224.00 | 129.00 | 8.94 | 118.00 | 4.85 | 1.89 | 19.9 | 4.24 |
2-1 | 花岗闪 长岩 | 99.57 | 1.043 | 1.449 | 596.24 | 129.75 | 268.30 | 12.80 | 176.70 | 5.79 | 9.40 | 4.98 | |
2-2 | 花岗闪 长岩 | 99.69 | 1.204 | 1.498 | 459.11 | 117.65 | 165.80 | 16.16 | 164.52 | 9.02 | 12.10 | 6.94 | |
2-3 | 花岗闪 长岩 | 99.72 | 1.098 | 1.285 | 722.97 | 191.17 | 192.10 | 10.87 | 202.72 | 7.24 | 25.50 | 5.06 | |
2-4 | 花岗闪 长岩 | 99.61 | 1.022 | 1.463 | 513.53 | 111.11 | 288.50 | 12.46 | 191.01 | 7.03 | 9.90 | 2.35 | |
2-7 | 花岗闪 长岩 | 99.76 | 1.236 | 1.296 | 178.56 | 260.87 | 50.49 | 17.64 | 58.24 | 13.03 | 7.00 | 1.67 | |
样品 编号 | 岩性 | wB/10-6 | |||||||||||
Ta | U | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | ||
D4110 GXW1 | 花岗岩 | 1.70 | 0.63 | 3.45 | 7.26 | 0.78 | 3.33 | 0.70 | 0.11 | 0.63 | 0.15 | 0.94 | 0.18 |
D4110 GXW2 | 花岗岩 | 0.96 | 0.62 | 2.50 | 3.31 | 0.58 | 2.08 | 0.53 | 0.21 | 0.51 | 0.13 | 0.88 | 0.17 |
D4111 GXW1 | 花岗 闪长岩 | 0.64 | 1.10 | 16.40 | 36.40 | 3.54 | 12.50 | 2.38 | 0.42 | 1.99 | 0.31 | 1.55 | 0.29 |
2-1 | 花岗闪 长岩 | 0.98 | 2.90 | 23.73 | 47.63 | 5.20 | 19.21 | 3.49 | 0.85 | 2.95 | 0.40 | 1.80 | 0.33 |
2-2 | 花岗闪 长岩 | 1.26 | 1.40 | 27.42 | 58.11 | 6.67 | 24.82 | 4.66 | 0.52 | 3.20 | 0.47 | 3.18 | 0.61 |
2-3 | 花岗闪 长岩 | 4.57 | 2.30 | 41.23 | 73.33 | 8.86 | 30.79 | 5.29 | 0.61 | 4.15 | 0.52 | 2.27 | 0.42 |
2-4 | 花岗闪 长岩 | 2.77 | 1.50 | 32.17 | 64.89 | 7.33 | 25.77 | 4.69 | 0.57 | 3.31 | 0.46 | 2.59 | 0.50 |
2-7 | 花岗闪 长岩 | 2.26 | 3.90 | 15.45 | 28.68 | 4.38 | 16.19 | 4.19 | 0.22 | 2.13 | 0.36 | 3.08 | 0.65 |
样品 编号 | 岩性 | wB/10-6 | LREE/ HREE | LaN/ YbN | δEu | δCe | |||||||
Er | Tm | Yb | Lu | ΣREE | LREE | HREE | |||||||
D4110 GXW1 | 花岗岩 | 0.47 | 0.10 | 0.78 | 0.11 | 18.99 | 15.63 | 3.36 | 4.652 | 3.173 | 0.496 | 1.042 | |
D4110 GXW2 | 花岗岩 | 0.41 | 0.09 | 0.66 | 0.10 | 12.16 | 9.21 | 2.95 | 3.122 | 2.717 | 1.218 | 0.650 | |
D4111 GXW1 | 花岗闪 长岩 | 0.74 | 0.12 | 0.78 | 0.12 | 77.54 | 71.64 | 5.90 | 12.142 | 15.082 | 0.574 | 1.117 | |
2-1 | 花岗闪 长岩 | 0.98 | 0.15 | 1.04 | 0.16 | 107.92 | 100.10 | 7.81 | 12.818 | 16.367 | 0.789 | 1.005 | |
2-2 | 花岗 闪长岩 | 1.61 | 0.27 | 1.56 | 0.25 | 133.35 | 122.20 | 11.15 | 10.960 | 12.608 | 0.390 | 1.021 | |
2-3 | 花岗闪 长岩 | 1.18 | 0.16 | 1.03 | 0.17 | 170.01 | 160.10 | 9.90 | 16.173 | 28.713 | 0.384 | 0.897 | |
2-4 | 花岗闪 长岩 | 1.18 | 0.19 | 1.13 | 0.19 | 144.97 | 135.40 | 9.55 | 14.180 | 20.421 | 0.420 | 0.996 | |
2-7 | 花岗闪 长岩 | 2.11 | 0.29 | 1.71 | 0.27 | 79.71 | 69.11 | 10.60 | 6.520 | 6.481 | 0.201 | 0.842 | |
注:主量元素数据是由沈阳地质矿产研究所实验室采用X-荧光光谱法(XRF)测定,稀土元素、微量元素数据由沈阳地质矿产研究所实验室 ICP-AES、ICP-MS方法测定,其中2-1、2-2、2-3、2-4、2-7数据引自文献[27]。 |
研究区花岗质岩石稀土元素标准化配分图总体呈轻稀土富集,重稀土亏损,稀土配分模式显示不同程度的右倾(图 6)。稀土元素总质量分数(∑REE)为(12.16~170.01)×10-6;LREE/HREE的值为3.122~16.173,轻重稀土分馏较明显;LaN/YbN为2.717~28.713;δCe为0.650~1.218;δEu具有负异常(除一个样品外),表明岩浆在结晶过程中可能有斜长石的结晶分离过程,斜长石可能作为岩浆源区的残留相,形成该岩体的岩浆可能为地壳岩石部分重熔形成的。
4.3 微量元素在微量元素标准化图上可以看到(图 7),岩石明显富集大离子亲石元素Rb、K、Pb,亏损高场强元素Nb、Ta、Zr、Ce、Ti。岩体中Ba、Sr较低,表明花岗质岩的物源可能是壳源物质部分熔融的产物。花岗岩中Sr质量分数为(41.80~288.50)×10-6,平均为147.51×10-6,小于400×10-6;Yb的质量分数为(0.66~1.71)×10-6,平均为1.09×10-6,都小于2×10-6。岩体的这一特征属于张旗等分类中的低Sr、低Yb花岗岩类型[31, 32]。具有中等程度的负Eu异常,残留相可能有斜长石和石榴石等,说明是在较大的压力下形成的,形成于压力较高的中地壳[31, 32, 33, 34]。
5 讨论
5.1 花岗质岩的形成时代
本次研究对科尔沁右翼中旗代钦塔拉地区花岗质岩体进行了U-Pb锆石测年分析,所采样品新鲜,未发生变质,锆石未见内外环带和变质环带,且岩浆震荡环带清晰,所测20个样品中有17个数据点均位于U-Pb谐和曲线上,表明此年龄代表岩浆侵位结晶的年龄。据此,可认为孟恩陶勒盖岩体的年龄值为(242 .6±2.5)Ma,侵位时代为中三叠世早期。本次获得的年代学资料在误差范围内可以与乌兰浩特及吉林、黑龙江地区的中生代岩浆活动年代学资料对比[17, 18, 19, 20, 21, 35]。
5.2 花岗质岩形成的构造背景
科尔沁右翼中旗位于华北板块和西伯利亚板块的碰撞拼合部位,有关华北板块与西伯利亚板块之间俯冲碰撞的时间、缝合带的具体位置、板块及微板块的渐次拼贴过程历来争议颇多。石玉若等[36]在内蒙古中部位于索伦山——贺根山构造带内的苏尼特左旗地区,测得A型花岗岩高精度锆石SHRIMP U-Pb的年龄为(222±4) Ma,认为其形成与西伯利亚板块、华北板块碰撞造山后的岩石圈伸展作用有关;张维等[37]在达茂旗地区识别出三叠纪岩浆岩,这些岩浆岩产于索伦山缝合带的南侧,其锆石SHRIMP U-Pb的年龄为(245~239) Ma,认为形成于古亚洲洋中晚二叠世闭合后,造山带的造山后演化;位于双井地区中生代花岗岩侵入体的锆石SHRIMP U-Pb年龄为(229. 2±4.1) Ma 和(237.2±2.7) Ma,为三叠纪侵入体,可能来源于造山带加厚地壳和相对古老的大陆边缘重熔,指出西伯利亚板块与华北板块之间沿西拉木伦缝合带的碰撞拼合始于二叠纪中期,在三叠纪中期碰撞结束[2];林西县双井镇的房框子沟村一带出露花岗质片麻岩,锆石 U-Pb年龄测试结果表明,岩浆于(271.9±1.6) Ma开始侵位,(264.8±1.8) Ma为岩体主体侵位时期,之后西伯利亚板块与华北板块的持续碰撞拼合,到(231±2) Ma碰撞基本结束[14];葛文春等[17]认为乌兰浩特地区三叠纪(235~225) Ma花岗岩的形成与古亚洲洋闭合后岩石圈的伸展体制有关;一些学者[19, 20, 38, 39, 40]依据造山后花岗岩及其年代学、沉积学特征、古生物特征及古地磁等认为,西伯利亚板块与华北板块之间的古亚洲洋最终闭合于二叠纪末期,在西拉木伦河——长春——延吉一线拼合。上述可见,内蒙古中东部地区伸展、碰撞型岩体的年龄主要介于晚二叠世到三叠纪之间。
研究区孟恩陶勒盖岩体为高钾钙碱性系列,岩石铝饱和指数A/CNK平均为1.18(1.022~1.395),A/NK平均为1.38(1.273~1.488),即为过铝质岩石,且岩石中发育白云母,个别可见有石榴石,具有S型花岗岩的特征。稀土配分曲线(图 6)可以看出,轻稀土分馏较强烈,重稀土分馏弱一些,总体来看轻重稀土分馏较明显,反映出造山带钙碱性花岗岩的特征。依据Sr、Yb质量分数,可将岩石划为低Sr(小于400×10-6)、低Yb(2×10-6)型,铕的负异常较弱,在花岗岩w(Sr)-w(Yb)分类图(图 8)上,样品都位于喜马拉雅型花岗岩区域内,说明该岩体形成的压力较高,可能形成于压力较高的加厚地壳[31, 32, 34]。微量元素Sr、Nb、Zr不同程度的亏损,与A型花岗岩相比,具有低的Zr、Y、Yb 等高场强元素和较弱的负Eu异常,且Ba、Nb 负异常较强烈,反映出S型花岗岩的特征[41, 42, 43]。采用w(Yb+Nb)-w(Rb)和w(Yb+Ta)-w(Rb)图解判断岩体形成的构造环境[44],由图 9可见,花岗岩样品均投影到同碰撞花岗岩和岛弧花岗岩区域内。综上可见,该花岗岩体很可能为碰撞造山区加厚地壳重熔形成的,是以碰撞造山演化时期的区域性挤压为主的构造背景,花岗岩的形成可能代表了碰撞造山作用的结束[2]。
前已叙述,孟恩陶勒盖岩体的年龄为(242 .6±2.5) Ma,侵位时代为中三叠世,为同碰撞型花岗岩,说明该区于242 Ma左右存在一俯冲碰撞造山的过程,花岗岩的形成可能与碰撞造山作用有关。这与邻区乌兰浩特报道的造山后花岗岩(形成年龄为230 Ma左右,可能为古亚洲洋碰撞拼合后岩石圈伸展作用的产物)的形成时限相吻合[17],说明242~230 Ma为古亚洲洋的碰撞、后碰撞阶段;并且与内蒙古中部苏尼特左旗等地区报道的造山后花岗岩年龄和所形成的构造背景的认识相一致[36, 37];李双林等[45]认为,所谓通常意义上的华北板块与西伯利亚板块的拼合实为位于两大板块之间的中小地块群所组成的黑龙江板块与华北板块的拼合,拼合带位于索伦-西拉木伦河——长春——延吉一线,依据碰撞花岗岩的年龄和古地磁资料,其拼合时限为二叠纪末——三叠纪,由此可知,古亚洲洋并非在二叠纪末闭合,也许一直延伸到三叠纪;李锦轶等[2]对林西双井地区中生代同碰撞型的S型花岗岩的研究表明,西伯利亚板块与华北板块之间沿西拉木伦缝合带的碰撞在三叠纪中期结束;李益龙等[14]对林西县地区发育的花岗质片麻岩进行了锆石U-Pb年龄测试,表明262~231 Ma为华北板块与西伯利亚板块持续碰撞的阶段,形成了一系列与俯冲碰撞有关的岩体。而此次于科尔沁右翼中旗地区所测的花岗岩年龄与李锦轶等[2]报道的年龄范围一致,且同属于S型花岗岩,与李益龙等[14]报道的晚二叠世——中三叠世碰撞型花岗岩年龄吻合。该花岗岩记录了科尔沁右翼中旗地区西伯利亚板块与华北板块的碰撞拼合时间。
6 结论
1)科尔沁右翼中旗孟恩陶勒盖岩体以黑云母花岗岩和花岗闪长岩为主,锆石U-Pb年龄为(242 .6±2.5) Ma,形成于中三叠世早期。
2)地球化学特征表明,孟恩陶勒盖岩体为S型花岗岩,形成于碰撞造山时期区域性挤压为主的构造背景,岩浆可能为西伯利亚板块与华北板块碰撞拼合过程中加厚地壳重熔形成的。
锆石U-Pb年龄测试过程中得到吉林大学王可勇教授与李剑锋博士的悉心指导与帮助,在此表示感谢。
[1] | 孙德有, 吴福元, 张艳斌, 等.西拉木伦河长春延吉板块缝合带的最后闭合时间:来自吉林大玉山花岗岩体的证据[J].吉林大学学报:地球科学版, 2004, 34(2):174-178. Sun Deyou, Wu Fuyuan, Zhang Yanbin, et al.The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone Evidence from the Dayushan Granitic Pluton, Jilin Province[J]. Journal of Jilin University: Earth Science Edition, 2004, 34(2):174-178. |
[2] | 李锦轶, 高立明, 孙桂华, 等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报, 2007, 23(3):565-582. Li Jinyi, Gao Liming, Sun Guihua, et al.Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision Between Siberian and Sino-Korean Paleo-Plates[J].Acta Petrologica Sinica, 2007, 23(3):565-582. |
[3] | Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions; Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J].Journal of Asian Earth Sciences, 2006, 26 (3/4):207-224. |
[4] | 张艳斌, 吴福元, 翟明国, 等.和龙地块的构造属性与华北地台北缘东段边界[J].中国科学:D辑:地球科学, 2004, 34(9):795-806. ZhangYanbin, Wu Fuyuan, Qu Mingguo, et al.The Tectonic Attribute of the Helong Block and Eastern Boundary on the Eastern Margin of the North China Platform[J]. Science in China: Series D: Earth Sciences, 2004, 34(9):795-806. |
[5] | 尚庆华.北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义[J].科学通报, 2004, 49(34):2574-2579. Shang Qinghua.The Discovery and Significance of the Permian Radiolaria in Northern Orogenic Belt of the Eastern Region of the in Inner Mongolia[J]. Science Bulletin, 2004, 49(34):2574-2579. |
[6] | Wu F Y, Sun D Y, Li H M, et al. A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis[J]. Chemical Geology, 2002, 187:143-173. |
[7] | Wu F Y, Wilde S A, Zhang G L, et al. Geochronology and Petrogenesis of the Post-Orogentic Cu Ni Sulfide-Bearing Maficultramafic Complexes in Jilin Province, NE China[J].Journal of Asian Earth Sci, 2004, 23:781-797. |
[8] | 徐备, 陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构与演化[J]. 中国科学:D 辑:地球科学, 1997, 27(3): 227-232. Xu Bei, Chen Bin.The Structure and Evolution of Mesozoic-Paleozoic Orogenic Belt Between the Huabei Plate and Siberia Plate in the Northern Inner Mongolia[J]. Science in China: Series D: Earth Sciences, 1997, 27(3): 227-232. |
[9] | Tang K D.Tectonic Development of Paleozoic Fold-belts at the North Margin of the Sino-Korean Craton[J]. Tectonics, 1990, 9(2): 249-260. |
[10] | 邵济安.中朝板块北缘中段地壳演化[M].北京: 北京大学出版社, 1991:1-136. Shao Ji'an. The Crustal Evolution in Northern Margin Middle Segment of the Sino-Korean Plate[M].Beijing: Peking University Press, 1991:1-136. |
[11] | Hong D W, Huang H Z, Xiao Y J, et al. Permian Alkaline Aranites in Central Inner Mongolia and Their Geodynamic Significance[J]. Acta Geol Sin, 1995, 8: 27-39. |
[12] | 韩国卿, 刘永江, 温泉波, 等.西拉木伦河缝合带北侧二叠纪砂岩碎屑锆石LA-ICP-MS U-Pb 年代学及其构造意义[J].地球科学:中国地质大学学报, 2011, 36(4):687-702. Han Guoqing, Liu Yongjiang, Wen Quanbo, et al. LA-ICP-MS U-Pb Dating of Detrital Zircons from the Permian Sandstones in North Side of Xar Moron River Suture Belt and Its Tectonic Implications[J]. Earth Science:Journal of China University of Geosciences, 2011, 36(4):687-702. |
[13] | 叶栩松, 廖群安, 葛梦春.内蒙古锡林浩特、林西地区三叠纪过铝质花岗岩的成因及构造意义[J].地质科技情报, 2011, 30(3):57-64. Ye Xusong, Liao Qun'an, Ge Mengchun. Petrogenesis and Tectonic Significance of Triassic Peraluminous Granitoids in Xilinhaote and Linxi Area, Inner Mongolia[J]. Geological Science and Technology Information, 2011, 30(3):57-64. |
[14] | 李益龙, 周汉文, 钟增球, 等.华北与西伯利亚板块的对接过程: 来自西拉木伦缝合带变形花岗岩锆石LA-ICP-MS U-Pb 年龄证据[J]. 地球科学:中国地质大学学报, 2009, 34(6):931-938. Li Yilong, Zhou Hanwen, Zhong Zengqiu, et al. Collision Processes of North China and Siberian Plates: Evidence from LA-ICP-MS Zircon U-Pb Age on Deformed Granite in Xar Moron Suture Zone[J]. Earth Science:Journal of China University of Geosciences, 2009, 34(6):931-938. |
[15] | 李益龙, 周汉文, 肖文交, 等.古亚洲构造域和西太平洋构造域在索伦缝合带东段的叠加:来自内蒙古林西县西拉木伦断裂带内变形闪长岩的岩石学、地球化学和年代学证据[J]. 地球科学:中国地质大学学报, 2012, 37(3):433-450. Li Yilong, Zhou Hanwen, Xiao Wenjiao, et al. Superposition of Paleo-Asian and West-Pacific Tectonic Domains in the Eastern Section of the Solonker Suture Zone:Insight from Petrology, Geochemistry and Geochronology of Deformde Diorite in Xar Moron Fault Zone, Inner Mongolia[J].Earth Science:Journal of China Univer sity of Geosciences, 2012, 37(3):433-450. |
[16] | 韩杰, 周建波, 张兴洲, 等.内蒙古林西地区上二叠统林西组砂岩碎屑锆石的年龄及其大地构造意义[J].地质通报, 2011, 30(2/3):258-269. Han Jie, Zhou Jianbo, Zhang Xingzhou, et al.Detrital Zircon U-Pb Dating from Sandstone of the Upper Permian Linxi Formation, Linxi Area, Inner Mongolia, China and Its Tectonic Implications[J].Geological Bulletin of China, 2011, 30(2/3):258-269. |
[17] | 葛文春, 吴福元, 周长勇, 等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报, 2005, 21(3):749-760. Ge Wenchun, Wu Fuyuan, Zhou Changyong, et al.Zircon U-Pb Ages and Its Significance of the Mesozoic Granites in the Wulanhaote Region, Central Da Hinggan Mountain[J].Acta Petrologica Sinica, 2005, 21(3):749-762. |
[18] | 孙德有, 吴福元, 高山, 等.吉林中部晚三叠世和早侏罗世两期铝质 A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘, 2005, 12(2):263-275. Sun Deyou, Wu Fuyuan, Gao Shan, et al. Confirmation of Two Episodes of A-Type Granite Emplacement During Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China[J].Earth Science Frontiers, 2005, 12(2): 263-275. |
[19] | 孙德有, 吴福元, 高山.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报, 2004, 25(2):213-218. Sun Deyou, Wu Fuyuan, Gao Shan.LA-ICP MS Zircon U-Pb Age of the Qingshui Pluton in the East Xiao Hinggan Mountains[J]. Acta Geoscientica Sinica, 2004, 25(2):213-218. |
[20] | 张艳斌, 吴福元, 孙德有, 等.延边"早海西期"棉田花岗岩体和仲坪紫苏辉石闪长岩的单颗粒锆石U-Pb定年[J].地质论评, 2002, 48(4): 424-429. Zhang Yanbin, Wu Fuyuan, Sun Deyou, et al.Single Grain Zircon U-Pb Ages of the"Early Hercynian"Miantian Granites and Zhongping HyPersthene Diorite in the Yanbian Area[J].Geological Review, 2002, 48(4): 424-429. |
[21] | 苗来成, 范蔚茗, 张福勤, 等.小兴安岭西北部新开岭科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报, 2003, 45(22):2315-2323. Miao Laicheng, Fu Weiming, Zhang Fuqin, et al. Study on The SHRIMP Dating and Significance of Zircon from Xinkailing-Keluo Complex in Northwest Xiao Hinggan Mountains[J]. Science Bulletin, 2003, 45(22):2315-2323. |
[22] | 朱笑青, 张乾, 何玉良, 等.内蒙古孟恩陶勒盖银铅锌铟矿床成因研究[J].矿床地质, 2004, 23(1):52-60. Zhu Xiaoqing, Zhang Qian, He Yuliang, et al.Genesis of Meng'entaolegai Ag-Pb-Zn in Polymetallic Deposit in Inner Mongolia[J].Mineral Deposits, 2004, 23(1):52-60. |
[23] | 盛继福, 李岩, 范书义.大兴安岭中段铜多金属矿床矿物微量元素研究[J].矿床地质, 1999, 18(2):153-160. Sheng Jifu, Li Yan, Fan Shuyi.A Study of Minor Elements in Minerals from Polymetallic Deposits in the Central Part of the Da Hinggan Mountains[J].Mineral Deposits, 1999, 18(2):153-160. |
[24] | 张明, 付俊彧, 肖剑伟.内蒙古孟恩陶勒盖岩体含矿性研究[J].西部资源, 2012, 9(4):133-135. Zhang Ming, Fu Junyu, Xiao Jianwei. Study on ore Potentiality of the Meng'entaolegai Pluton[J]. Western Resources, 2012, 9(4):133-135. |
[25] | 付俊彧, 宋维民, 庞雪娇, 等.内蒙古科尔沁右翼中旗地区古生界疑源类化石及其时代[J].地质通报, 2012, 31(9):1404-1409. Fu Junyu, Song Weimin, Pang Xuejiao, et al. The Acritarch Fossils of Paleozoic Strata in Horqing Right Wing Middle Banner Area of Inner Mongolia and Their Geological Age[J].Geological Bulletin of China, 2012, 31(9):1404-1409. |
[26] | 沈阳地质矿产研究所. 1:5 万孟恩套勒盖等五幅联测区域地质调查野外验收简报[R].沈阳:沈阳地质矿产研究所, 2011. Shenyang Institute of Geology and Mineral Resources. Acceptance Brief Report of Meng'entaolegai etc in 1:50000 Regional Geological Survey[R]. Shenyang: Shenyang Institute of Geology and Mineral Resources, 2011. |
[27] | 宋维民, 李之彤, 付俊彧, 等.内蒙古科尔沁右翼中旗地区孟恩陶勒盖岩体成因研究[J].地质科学, 2014, 49(4):1150-1168. Song Weimin, Li Zhitong, Fu Junyu, et al.Study on the Genesis of Mengentaolegai Pluton on Horqin Right Wing Middle Banner in Inner Mongolia[J].Chinese Journal of Geology, 2014, 49(4):1150-1168. |
[28] | 宋彪, 张拴宏, 王彦斌, 等.锆石SHRIMP年龄测定数据处理时系统偏差的避免:标准锆石分段校正的必要性[J].岩矿测试, 2006, 25(1):9-14. Song Biao, Zhang Shuanhong, Wang Yanbin, et al.Avoidance of Systematic Bias of SHRIMP Zircon U-Pb Dating:Necessity of Staged Calibrations[J].Rock and Mineral Analysis, 2006, 25(1):9-14. |
[29] | 邹瑜, 陈振林, 苗洪波, 等.伊通盆地基底火成岩的LA-ICP-MS锆石U-Pb定年及其地质意义[J].岩性油气藏, 2011, 23(6):73-78. Zou Yu, Chen Zhenlin, Miao Hongbo, et al.LA-ICP-MS U-Pb Dating of Zircon from Basement Igneous Rocks in Yitong Basin and Its Significance[J].Lithologic Reservoirs, 2011, 23(6):73-78. |
[30] | Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Re-Cycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Ele Ments in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51:537-571. |
[31] | 张旗, 王焰, 李承东, 等.花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9):2249-2269. Zhang Qi, Wang Yan, Li Chengdong, et al.Granite Classification on the Basis of Sr and Yb Contents and Its Implications[J].Acta Petrologica Sinia, 2006, 22(9):2249-2269. |
[32] | 张旗, 金惟俊, 李承东, 等.再论花岗岩按照Sr-Yb的分类:标志[J]. 岩石学报, 2010, 26(4):985-1015. Zhang Qi, Jin Weijun, Li Chengdong, et al.Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index[J].Acta Petrologica Sinia, 2010, 026(04):985-1015. |
[33] | 周漪, 葛文春, 王清海.大兴安岭中部乌兰浩特地区中生代花岗岩的成因:地球化学及 Sr-Nd-Hf同位素制约[J].岩石矿物学杂志, 2011, 30(5):901-923. Zhou Yi, Ge Wenchun, Wang Qinghai. Petrogenesis of Mesozoic Granite in Wulanhaote Region, Central Da Hinggan Mountains:Constraints from Geochemistry and Sr-Nd-Hf Isotope[J].Acta Petrologica et Mineralogical, 2011, 30(5):901-923. |
[34] | 隋振民, 葛文春, 吴福元, 等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报, 2007, 23(2):461-480. Sui Zhenmin, Ge Wenchun, Wu Fuyuan, et al.Zircon U-Pb Ages, Geochemistry and Its Petrogennesis of Jurassic Granites in Northeastern Part of the Da Hinggan Mts[J].Acta Petrologica Sinica, 2007, 23(2):461-480. |
[35] | 隋振民, 葛文春, 吴福元, 等.大兴安岭北部察哈彦岩体的Hf同位素特征及其地质意义[J]. 吉林大学学报:地球科学版, 2009, 39(5):849-867. Sui Zhenmin, Ge Wenchun, Wu Fuyuan, et al.Hf Isotopic Characteristics and Geological Significance of the Chahayan Pluton in Northern Daxing'anling Mountains[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(5):849-867. |
[36] | 石玉若, 刘敦一, 张旗, 等.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义[J].地质通报, 2007, 26(2):183-189. Shi Yuruo, Liu Dunyi, Zhang Qi, et al. SHRIMP U-Pb Zircon Dating of Triassic A-Type Granites in Sonid Zuoqi, Central Inner Mongolia, China and Its Tectonic Implications[J]. Geological Bulletin of China, 2007, 26(2): 183-189. |
[37] | 张维, 简平, 刘敦一, 等.内蒙古中部达茂旗地区三叠纪花岗岩和钾玄岩的地球化学、年代学和Hf 同位素特征[J].地质通报, 2010, 29(6):821-832. Zhang Wei, Jian Ping, Liu Dunyi, et al.Geochemistry, Geochronology and Hf Isotopic Compositions of Triassic Granodioritediorite and Shoshonite from the Damaoqi Area, Central Inner Mongolia, China[J]. Geological Bulletin of China, 2010, 29(7):821-832. |
[38] | 刘永江, 张兴洲, 金巍, 等.东北地区晚古生代区域构造演化[J].中国地质, 2010, 37(4):943-951. Liu Yongjiang, Zhang Xingzhou, Jin Wei, et al. Late Paleozoic Tectonic Evolution in Northeast China[J].Geology in China, 2010, 37(4):943-951. |
[39] | 邓胜微, 万传彪, 杨建国. 黑龙江阿城晚二叠世安加拉华夏混生植物群:兼述古亚洲洋的关闭问题[J]. 中国科学:D辑:地球科学, 2009, 39(12):1744-1752. Deng Shengwei, Wan Chanbiao, Yang Jianguo.The Angara Flora and Cathaysian Flora Mix Together of Late Permian in Acheng Heilongjiang Province and the Problem of the Ancient Ocean's Close[J]. Science in China: Series D: Earth Sciences, 2009, 39(12):1744-1752. |
[40] | 李朋武, 高锐, 管烨, 等.古亚洲洋和古特提斯洋的闭合时代:论二叠纪末生物灭绝事件的构造起因[J]. 吉林大学学报:地球科学版, 2009, 39(3):521-527. LI Pengwu, Gao Rui, Guan Ye, et al. The Closure Time of the Paleo-Asian Ocean and the Paleo-Tethys Ocean:Implication for the Tectonic Cause of the End-Permian Mass Extinction[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(3):521-527. |
[41] | 程瑞玉, 吴福元, 葛文春, 等.黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化[J]. 岩石学报, 2006, 22(2):353-376. Cheng Ruiyu, Wu Fuyuan, Ge Wenchun, et al.Emplacement Age of the Raohe Complex in Eastern Heilongjiang Province and the Tectonic Evolution of the Eastern Part of Northeastern China[J].Acta Petrologica Sinica, 2006, 22(2):353-376. |
[42] | 贺元凯, 吴泰然, 罗红玲, 等.华北板块北缘中段新太古代的陆-陆碰撞事件:来自合教S型花岗岩的证据[J].北京大学学报:自然科学版, 2010, 46(4):571-580. He Yuankai, Wu Tairan, Luo Hongling, et al.Late Archean Continent-Continent Collision Event of Middle Segment of North Margin of North China Plate: Evidence from S-Type Granite of Hejiao Area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(4):571-580. |
[43] | 杨永胜, 孙柏年, 康鸿杰, 等.内蒙古苏尼特左旗北达布锡勒图岩体主微量元素地球化学特征及成因探讨[J].中国地质, 2011, 38(2):301-316. Yang Yongsheng, Sun Bainian, Kang Hongjie, et al.Major and Trace Element Geochemical Characteristics and Petrogenesis of Dabuxiletu Pluton in the North Part of Sonid Left Banner, Inner Mongolia[J].Geology in China, 2011, 38(2):301-316. |
[44] | Pearce J A, Harris N B W, Tindle A G .Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology, 1984, 25:956-983. |
[45] | 李双林, 欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质, 1998, 18(3):45-58. Li Shuanglin, Ouyang Ziyuna.Tectonic Framework and Evolution of Xing'anling-Mongolian Orogenic Belt(XMOB) and Its Adjacent Region[J]. Marine Geology & Quaternary Geology, 1998, 18(3):45-58. |