文章快速检索  
  高级检索
大兴安岭扎兰屯地区格根敖包组碎屑锆石U-Pb年代学、地球化学特征及其地质意义
张渝金1,2, 吴新伟1,2, 江斌1,2, 郭威1,2, 杨雅军2, 刘世伟2, 崔天日2, 李伟2, 李林川2, 司秋亮2, 张超2    
1. 吉林大学地球科学学院, 长春 130061;
2. 沈阳地质矿产研究所/中国地质调查局沈阳地质调查中心, 沈阳 110034
摘要:格根敖包组广泛分布在大兴安岭中段扎兰屯地区,为一套偏中性的火山岩及碎屑岩组合,主要为安山岩、安山质火山碎屑岩、英安岩及细-粉砂岩,夹薄层泥岩。笔者对格根敖包组中细碎屑岩进行了锆石LA-ICP-MS U-Pb年代学及古生物地层学研究,结果表明:格根敖包组细碎屑岩形成于晚石炭世至早二叠世,锆石U-Pb年龄集中于348.9,385.8,428.0和507.3 Ma 4个峰值;粉砂岩中存在Artisia sp., Eusigillaris sp.等化石。格根敖包组碎屑岩主要以细粒杂砂岩和细粒长石(岩屑)砂岩为主,主量元素平均质量分数w(SiO2)=69.04%,w(Al2O3)=14.76%,w(MgO)=1.05%,w(CaO)=0.66%,w(Na2O)=2.34%,w(K2O)=2.65%;镁铝比值M为3.05~9.98,平均值7.18;稀土元素总量∑REE平均184.46×10-6((124.06~261.96)×10-6),δEu平均值0.71,δCe平均值0.99,LREE富集,HREE亏损。上述结果表明,格根敖包组地层形成于大陆岛弧-活动陆缘附近,古地理显示为温暖潮湿气候下的海陆交互相沉积环境。
关键词格根敖包组     碎屑锆石     地球化学     物源分析     扎兰屯地区     大兴安岭中段    
U-Pb Geochronology of Detrital Zircon and the Constraint of Geochemistry from the Gegen'aobao Formation in Middle of Zalantun Area of Da Hinggan Mountains and Its Tectonic Significance
Zhang Yujin1,2, Wu Xinwei1,2, Jiang Bin1,2, Guo Wei1,2, Yang Yajun2, Liu Shiwei2, Cui Tianri2, Li Wei2, Li Linchuan2, Si Qiuliang2, Zhang Chao2    
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Shenyang Institute of Geology and Mineral Resources/Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110034, China
Abstract:The Gegen'aobao Formation is widely exposed in the middle of Da Hinggan area. It is a combination of neutral partial volcanic and clastic rocks with main composition of andesite, andesitic pyroclastic rocks, dacite, fine-siltstone, and thin mudstone. We obtained the age of fine grained clastic rock in Gegen'aobao Formation by means of LA-ICP MS zircon U-Pb dating; and also discussed the paleontology stratigraphy of Gegen'aobao Formation. The results show that the fine clastic rock was formed in Late Carboniferous to Early Permian. Four main ages were observed, 348.9, 385.8, 428.0 and 507.3 Ma. Several fossils like Artisia sp., Eusigillaris sp. were found in siltstone. Fine-grained greywacke and feldspathic greywacke (debris) sandstones are the major clastic rocks in the Gegen'aobao Formation. The average bulk chemical composition of these rocks is SiO2 69.04%, Al2O3 14.76%, MgO 1.05%, CaO 0.66%, Na2O 2.34%, and K2O 2.65% in weight. Mg/Al ratio (M) is 3.05 to 9.98, with an average value of 7.18. The total weight of REE (∑REE) ranges from 124.06×10-6 to 261.96×10-6 with the average value of 184.46×10-6. The value for δEu and δCe are 0.71 and 0.99 respectively. The clastic rocks are characterized by LREE enrichment and HREE depletion. These results indicate that Gegen'aobao Formation was formed between the continental island arc and the active continental margin, under a warm and humid paleoclimate condition.
Key words: Gegen'aobao Formation     detrital zircons     geochemistry     provenance analysis     Zalantun area     Middle Part of the Da Hinggan Mountains    

0 引言

大兴安岭地区位于中亚造山带东段,古生代主要表现为多个微陆块之间的拼合和古亚洲洋的闭合,这些微陆块自北向南依次为额尔古纳地块、兴安地块和松嫩地块(图 1a)。特殊的大地构造位置、复杂的地质演化历史使得该区成为基础地质研究的热点之一。上述3个地块碰撞拼贴的时间学术界一直存在争议[1, 2, 3, 4, 5, 6, 7, 8],特别是兴安和松嫩地块碰撞拼贴的时间:一种观点认为兴安和松嫩地块于晚泥盆世——早石炭世末期闭合[9, 10, 11];另一种观点则认为兴安和松嫩地块于泥盆纪之前已经拼贴[12, 13];还有一种观点则认为兴安和松嫩地块于早中生代[14]拼贴。区内晚石炭世——早二叠世的海陆交互相格根敖包组发育,其成岩环境、物质来源和成岩时代的研究成为研究该地区构造环境的重要环节。

图 1 扎兰屯根多河地区地质简图

Fig. 1 Simplified geological map of Genduohe area in Zalantun

碎屑沉积岩源区与构造环境和地壳演化关系密切[15],碎屑锆石能较好地保存源区岩石组成的信息,碎屑锆石U-Pb同位素示踪是研究沉积物源区的有效方法。笔者对广泛出露于扎兰屯地区的格根敖包组砂岩样品进行了地球化学和U-Pb锆石年代学研究,旨在示踪物质源区,探讨晚石炭世——早二叠世沉积盆地性质。

1 地质概况及岩石学特征

研究区位于大兴安岭北部扎兰屯根多河地区,兴安地块和松嫩地块的结合部位附近(图 1)。区内晚古生代地层发育,包括大民山组(D2-3d)、红水泉组(C1h)和格根敖包组(C2-P1g)。泥盆系大民山组主要为一套海相火山-沉积建造。石炭系红水泉组为一套浅海相陆源碎屑岩沉积建造。晚石炭世——早二叠世格根敖包组,为一套海陆交互相火山-沉积建造。

本次研究对象为扎兰屯根多河地区的格根敖包组,格根敖包组在平面上呈断续的北东向条带状展布,出露面积54 km2,总厚度大于1 270 m。该套地层顶底多被中生代火山-侵入岩覆盖,地层内部多处被中生代侵入岩脉破坏,从而使得接触带外侧发育明显的蚀变作用。 地层层序具明显的两分性:下部为深灰色安山岩,火山碎屑岩;上部主要为一套黄绿色、灰绿色正常细碎屑岩夹少量火山碎屑岩,含海百合茎化石和Calamitis sp.,Artisia sp.,Eusigillaris sp. 等化石[16],其与下部层位呈整合接触。

本次测试样品采自格根敖包组上部沉积层位,采样点2011RZ09(121°48′20″N;47°47′30″E)和2011RZ1088(122°04′50″N;47°44′20″E)见图 1b。其中:前者岩性为细砂岩,黄褐色,中细粒砂状结构,块状构造;由长石、石英、岩屑组成;粒径为0.2~0.5 mm,除石英碎屑(体积分数20%)外,长石碎屑(体积分数30%±)绢云母化较强,岩屑(体积分数50%)黑云母化、绢云母化较强。岩石为颗粒支撑,泥质胶结,碎屑分选和磨圆较差,显示近源快速堆积的特征。后者岩性为粉砂岩,灰黑色,粉砂结构,块状构造;矿物成分为石英(体积分数70%)和长石(体积分数25%),长石多蚀变为绢云母,呈鳞片状。此外,含有5%±的鳞片状绿泥石;岩石为颗粒支撑,泥质胶结,石英磨圆度和分选度较好。

2 样品处理与测试方法

2.1 全岩分析

笔者对5件砂岩样品进行了主量、微量、稀土元素测试,测试结果见表 1。样品的测试在国土资源部东北矿产资源监督检测中心完成,整个过程均在无污染设备中进行。主量元素采用X 射线荧光光谱法(XRF),微量、稀土元素的分析则采用电感耦合等离子质谱法(ICP-MS)完成。主量元素分析精度和准确度优于5%,微量元素的分析精度和准确度优于10%。

表 1 研究区格根敖包组岩石地球化学分析结果 Table 1 Geochemical analytical results of Gegenaobao Formation in the study area
样品SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2O
RZ0969.080.5014.653.122.930.051.050.402.532.42
D01178.200.6411.111.311.530.040.890.211.851.97
D00466.520.4914.721.615.660.081.132.202.972.39
RZ108863.990.7116.634.342.640.051.660.432.672.39
P12167.410.4116.724.551.670.120.510.061.684.06
样品P2O5烧失量LaCePrNdSmEuGdTb
RZ090.142.6034.5890.019.3638.147.911.127.841.30
D0110.081.7330.0166.217.9832.306.251.866.520.97
D0040.151.2450.8997.8513.6055.9710.931.9311.341.75
RZ10880.133.8822.4150.156.9125.734.701.194.260.61
P1210.153.0430.9060.908.2835.207.612.116.020.97
样品DyHoErTmYbLuREEδEuRbSr
RZ096.001.223.180.503.080.51204.740.4380.68455.43
D0114.240.852.300.352.100.33162.270.8863.4585.13
D0047.541.503.950.583.570.56261.960.5399.19231.35
RZ10883.450.691.590.351.760.25124.060.8080.31122.56
P1217.261.562.930.754.060.71169.260.92111.00116.00
注:样品由国土资源部东北矿产资源监督检测中心分析;常量元素质量分数单位为%,稀土及微量元素质量分数单位为10-6;文中提到的2011RZ09与RZ09为同一个样品,2011RZ1088和RZ1088为同一个样品;RZ09、D011、D004、P121为细砂岩;RZ1088为粉砂岩。

成于活动性较大的构造地带。

2.2 锆石U-Pb定年分析

样品的破碎和锆石的分选工作由河北省廊坊市科大矿物分选技术股份有限公司完成。锆石阴极发光图像在中国地质科学院北京离子探针中心完成。样品制靶和LA-ICP-MS锆石U-Pb测年在中国地质科学院国家地质实验测试中心完成。本次实验所采用的仪器为Thermo Element II型MC-ICP-MS 及与之配套的New wave UP 213激光剥蚀系统。激光剥蚀所用斑束直径为30 μm,频率为10 Hz,能量密度为16~17 J/cm2,以He 为载气。普通铅校正采用Anderson(2002)的方法,并采样哈佛大学国际标准锆石91500作为外部校正,Plesovice作质量监控,年龄计算采用国际标准程序Isoplot(ver3.0),测试数据、加权平均年龄的误差均为1σ。对于所测锆石年龄> 1 000 Ma 的数据,采用207Pb/206Pb 年龄,而对于<1 000 Ma的数据,用206Pb/238U年龄[17, 18],以206Pb/238U年龄和207Pb/206Pb年龄的比值为标准筛选U-Pb年龄数据[17, 18, 19, 20, 21],谐和度在95%以上(包含95%)的数据为有效数据。

3 岩石地球化学特征

3.1 主量元素地球化学

表 1可以看出,岩石具有如下特征:SiO2质量分数为63.99%~78.20%,平均69.04%;Al2O3质量分数为11.11%~16.72%,平均14.76%;MgO质量分数较低,值为0.51%~1.66%,平均1.05%;CaO质量分数为0.06%~2.20%,平均为0.66%;Na2O质量分数为1.68%~2.97%,平均2.34%;K2O质量分数为1.97%~4.06%,平均2.65%。在SiO2/Al2O3-Na2O/K2O 图解(图 2)中,样品多落入杂砂岩和长石(岩屑)砂岩区,表明源区岩石没有经历充分的搬运与分选,成熟度较低,形岩石化学镁铝含量比值可表示为M=100×MgO/Al2O3,是根据沉积岩石中MgO 的亲海性和Al2O3的亲陆性建立起来的[22],在由淡水向海水过渡的沉积环境中,M值随沉积水体中盐度增加而增大,淡水沉积环境M<1,海陆过渡的沉积环境1<M<10,海水沉积环境10<M<500。本区格根敖包组细碎屑岩M值为3.05~9.98,平均值为7.18,显示为海陆交互相沉积环境。

图 2 SiO2/Al2O3-Na2O/K2O图解

Fig. 2 SiO2/Al2O3-Na2O/K2O diagram

3.2 微量元素岩石化学

沉积岩的稀土元素特征主要受控于物源区类型和沉积作用过程,REE 受风化作用和成岩及变质作用的影响很小[23, 24, 25],其携带的物源区信息一般不会丢失,因此,稀土元素可以作为良好的地球化学演化指示剂,通过对比岩石中的轻、重稀土比值以及整体的分配特征,可以准确判断沉积物源及演化特征。

扎兰屯地区的格根敖包组砂岩稀土总量较高,w(∑REE)=(124.06~261.96)×10-6,平均为184.46×10-6,球粒陨石标准化配分曲线[26]表现出总体右倾的特点(图 3),LREE 富集,HREE 亏损,轻重稀土分馏明显,具有明显的负Eu异常,δEu=0.43~0.92,平均0.71,与上地壳平均负Eu异常值0.71一致[27]δCe=0.88~1.10,平均0.99,Ce 基本无异常。据现代海洋沉积物及深海钻探表明,在边缘海、浅海及被大陆封闭的海水环境中,Ce浓度基本正常,而在开阔海水环境中Ce亏损严重[28]。因此,本区当时沉积水盆处于边缘海,形成环境应属较温暖、潮湿的气候条件,这样利于Ce的迁入[29]

图 3 格根敖包组砂岩稀土元素配分曲线图

Fig. 3 REE chondritic standardization plot for sandstones of Gegen’aobao Formation

4 锆石U-Pb测年及沉积时限

4.1 锆石U-Pb测试结果

样品2011RZ09和2011RZ1088的锆石分析结果见表 2,代表锆石CL图像见图 4,锆石谐和图和相对频率图见图 56

表 2 研究区砂岩锆石 LA-ICP-MS U-Pb年代学测试结果 Table 2 Zircon LA-ICP-MS U-Pb dating results of reasearch area sample
点号Th/U同位素比值t/Ma
207Pb/
206Pb
±1σ207Pb/
235U
±1σ206Pb/
238U
±1σ 207Pb/
206Pb
±1σ207Pb/
235U
±1σ206Pb/
238U
±1σ
2011RZ09_11.090.055 170.001 720.420 550.015 340.055 510.001 03419.067.49356.410.96348.26.29
2011RZ09_20.540.054 770.001 660.517 570.019 090.068 280.001 26402.765.92423.512.77425.87.62
2011RZ09_30.770.055 860.001 740.378 140.013 500.051 510.000 95446.467.67325.79.95323.85.85
2011RZ09_40.340.051 590.001 730.404 980.016 120.058 760.001 10267.275.23345.311.65368.16.69
2011RZ09_50.440.052 960.002 490.379 760.022 020.053 200.001 07327.1103.01326.916.2334.26.55
2011RZ09_60.540.057 480.002 270.430 170.021 010.057 420.001 12509.684.70363.314.92359.96.82
2011RZ09_70.680.054 510.001 810.394 400.015 450.054 310.001 02392.372.14337.611.25340.96.23
2011RZ09_80.730.055 240.001 940.392 320.016 440.052 730.001 00421.976.05336.111.99331.36.12
2011RZ09_90.470.057 400.001 550.644 790.020 970.080 810.001 48506.658.65505.312.95501.08.81
2011RZ09_100.810.053 870.001 690.417 600.015 420.056 900.001 06365.469.11354.311.05356.76.45
2011RZ09_110.910.055 650.001 870.404 010.016 230.053 970.001 02438.273.18344.611.74338.96.22
2011RZ09_120.240.054 480.001 670.453 410.016 480.061 980.001 15391.067.15379.711.51387.66.97
2011RZ09_130.520.056 660.001 620.400 080.012 920.054 140.000 99477.861.91341.79.37339.96.08
2011RZ09_140.910.054 020.001 690.430 330.015 960.056 960.001 06371.968.95363.411.33357.16.46
2011RZ09_150.480.054 290.002 780.465 520.031 070.061 380.001 27382.9110.59388.121.53384.07.70
2011RZ09_160.620.058 700.002 120.436 660.019 430.056 870.001 09555.976.87367.913.73356.66.65
2011RZ09_170.590.067 880.002 570.450 820.021 190.053 150.001 04864.976.59377.914.83333.86.35
2011RZ09_180.780.060 310.002 240.435 140.020 010.055 980.001 08614.778.35366.814.15351.16.59
2011RZ09_190.750.051 790.002 680.367 160.023 240.054 760.001 10276.2114.26317.517.26343.76.72
2011RZ09_201.100.064 920.002 380.581 090.027 900.067 620.001 31771.775.45465.217.92421.87.90
2011RZ09_210.530.056 950.001 790.537 200.021 060.070 800.001 32489.168.68436.613.91441.07.95
2011RZ09_220.470.055 240.001 950.440 330.019 050.058 840.001 12421.676.59370.513.43368.56.81
2011RZ09_230.590.053 440.002 100.465 660.023 230.061 570.001 18347.686.34388.216.09385.27.16
2011RZ09_240.860.054 700.001 540.393 710.012 600.054 770.001 01382.262.25337.19.18343.86.15
2011RZ09_250.670.058 000.001 350.649 870.016 440.082 780.001 49529.450.56508.410.12512.78.86
2011RZ09_260.460.057 840.001 330.603 280.014 780.079 360.001 43523.649.99479.39.36492.38.52
2011RZ09_270.530.055 740.001 660.604 580.022 380.079 280.001 47441.764.98480.114.16491.88.75
2011RZ09_280.530.057 730.001 590.637 350.021 160.083 800.001 53519.359.55500.713.13518.89.13
2011RZ09_290.540.057 560.002 690.531 230.032 950.065 770.001 34512.8100.01432.621.85410.68.10
2011RZ09_300.620.055 630.001 810.520 350.020 940.069 040.001 29437.470.57425.413.98430.47.76
2011RZ09_310.680.059 830.002 600.661 830.039 870.082 280.001 65597.591.56515.724.36509.79.82
2011RZ09_320.730.056 010.001 680.424 250.014 800.056 300.001 04452.565.33359.110.55353.16.36
2011RZ09_330.700.053 410.001 560.439 110.014 830.061 450.001 13346.264.71369.610.47384.46.87
2011RZ09_340.620.054 740.002 350.400 910.021 140.056 050.001 10401.692.75342.315.32351.66.72
2011RZ09_350.690.058 580.002 410.534 950.028 570.072 020.001 41551.787.20435.118.90448.38.50
2011RZ09_360.880.053 410.001 440.424 120.012 750.058 050.001 06346.359.81359.09.09363.76.45
2011RZ09_370.680.052 700.002 440.422 260.024 890.061 640.001 24315.8101.78357.717.77385.67.54
2011RZ09_380.700.058 980.001 700.495 500.016 840.063 250.001 17566.461.54408.711.44395.47.08
2011RZ09_390.950.065 530.002 180.499 030.020 250.056 690.001 07791.368.44411.013.72355.56.53
2011RZ09_400.540.053 910.002 740.478 970.031 510.065 750.001 31367.0109.91397.421.63410.57.91
2011RZ09_410.600.055 040.002 320.397 450.020 650.053 260.001 05413.791.11339.815.00334.56.42
2011RZ09_420.460.053 480.001 370.450 670.012 750.067 490.001 23349.356.93377.78.92421.07.41
2011RZ09_430.400.055 290.001 680.495 800.018 200.065 310.001 21424.066.01408.912.35407.87.35
2011RZ09_440.710.057 450.001 780.430 200.015 660.056 370.001 05508.367.14363.311.12353.56.41
2011RZ09_451.420.054 890.001 830.434 710.017 230.062 180.001 17407.972.09366.512.19388.97.09
2011RZ09_460.660.053 430.001 800.382 330.015 090.055 860.001 05347.074.33328.811.09350.46.40
2011RZ09_470.440.054 130.001 570.356 330.011 590.049 900.000 92376.263.86309.58.68313.95.65
2011RZ09_480.490.055 110.002 000.364 050.015 670.049 890.000 95416.678.58315.211.66313.85.83
2011RZ09_490.480.052 880.001 620.346 390.012 070.050 800.000 94323.568.25302.09.10319.45.78
2011RZ09_500.620.054 960.002 320.428 880.022 320.057 950.001 13410.491.47362.415.86363.16.86
2011RZ09_511.410.054 700.002 230.385 530.019 120.058 100.001 16400.187.92331.114.02364.07.04
2011RZ09_520.520.055 480.002 630.389 680.022 700.055 080.001 12431.2102.02334.116.59345.76.87
2011RZ09_530.710.062 000.002 080.406 930.016 300.051 470.000 99674.070.15346.711.76323.66.07
2011RZ09_540.510.057 810.001 700.423 240.014 580.057 300.001 08522.463.59358.410.41359.26.62
2011RZ09_550.630.050 610.001 660.361 130.013 560.055 870.001 06223.274.11313.110.12350.56.45
2011RZ09_560.370.062 220.002 680.412 490.022 050.053 440.001 08681.689.32350.715.85335.66.58
2011RZ09_570.530.052 120.002 560.453 140.028 620.067 450.001 35290.5108.65379.520.00420.88.15
2011RZ09_581.110.061 470.002 001.110 970.057 320.124 750.002 40655.968.18758.627.57757.913.70
2011RZ09_590.500.055 740.002 280.442 220.022 500.063 830.001 26441.688.51371.815.84398.97.62
2011RZ09_600.480.059 230.002 460.478 010.024 970.068 640.001 36575.687.66396.717.15428.08.22
2011RZ09_610.460.050 260.002 440.440 270.026 450.067 960.001 34207.1108.83370.418.65423.88.08
2011RZ09_620.510.058 030.002 340.385 100.018 840.054 390.001 07530.486.56330.813.81341.46.52
2011RZ09_630.660.051 860.001 290.392 240.010 540.059 540.001 10279.255.87336.07.69372.86.68
2011RZ09_640.600.052 790.001 400.383 740.011 280.057 030.001 06319.659.02329.88.28357.66.46
2011RZ09_650.550.056 240.001 630.476 160.016 350.065 120.001 22460.963.55395.411.25406.77.38
2011RZ1088_10.460.164 330.003 209.471 250.216 260.458 300.008 332 500.032.422 384.020.972 432.036.80
2011RZ1088_22.550.053 640.002 310.378 000.019 680.053 660.001 06355.794.05325.614.50337.06.49
2011RZ1088_30.800.054 180.001 460.426 040.013 040.060 330.001 12378.559.30360.49.28377.76.80
2011RZ1088_40.510.061 970.002 580.602 570.034 230.074 460.001 50673.086.48478.921.69463.08.99
2011RZ1088_51.580.072 710.002 270.534 450.020 770.060 220.001 151 006.062.17434.813.75377.06.98
2011RZ1088_60.380.058 680.001 940.647 670.029 250.080 810.001 55555.370.51507.018.02500.99.26
2011RZ1088_70.540.074 740.001 830.555 050.015 650.058 120.001 081 061.448.37448.310.22364.26.57
2011RZ1088_80.870.059 170.002 690.458 680.026 010.059 280.001 16573.296.00383.318.10371.27.08
2011RZ1088_92.040.053 530.001 590.395 370.013 330.056 670.001 05351.465.56338.39.70355.46.44
2011RZ1088_101.090.050 370.002 830.377 210.026 990.053 590.001 15212.3125.00325.019.90336.57.01
2011RZ1088_110.390.062 030.002 170.521 250.023 690.064 550.001 26675.173.08426.015.81403.27.65
2011RZ1088_121.160.061 060.002 720.522 200.030 500.061 470.001 22641.592.91426.620.35384.57.43
2011RZ1088_130.710.063 110.001 811.167 780.053 290.134 590.002 55711.959.66785.624.9681414.48
2011RZ1088_144.460.053 060.001 910.453 380.020 570.066 980.001 29331.479.48379.614.37417.97.82
2011RZ1088_150.600.059 950.002 260.512 340.024 500.064 260.001 25601.879.55420.016.45401.57.57
2011RZ1088_161.060.053 980.001 280.469 150.012 540.060 700.001 11370.152.42390.68.67379.96.76
2011RZ1088_170.770.058 680.001 440.468 560.013 180.060 330.001 11555.352.73390.29.11377.66.75
2011RZ1088_180.630.050 940.001 670.506 180.021 120.067 360.001 27238.073.91415.914.24420.27.66
2011RZ1088_190.910.058 570.002 500.423 230.023 060.055 290.001 11551.190.41358.416.45346.96.78
2011RZ1088_201.190.055 390.001 830.427 800.017 690.056 190.001 08427.771.90361.612.58352.46.60
2011RZ1088_210.960.096 760.002 920.842 940.036 120.059 740.001 171 562.755.59620.819.90374.17.11
2011RZ1088_221.000.054 920.001 480.548 600.018 370.070 740.001 32409.058.43444.112.05440.67.92
2011RZ1088_230.170.119 680.002 416.121 640.226 180.364 050.006 681 951.535.591 993.332.252 001.331.55
2011RZ1088_241.030.050 690.003 220.407 320.034 230.058 620.001 35226.6140.54346.924.70367.28.25
2011RZ1088_250.430.053 600.001 380.643 940.020 930.083 590.001 55354.157.07504.712.93517.59.20
2011RZ1088_260.970.054 120.003 180.437 690.033 980.055 930.001 25376.0126.54368.624.00350.87.61
2011RZ1088_270.300.064 960.001 751.033 870.040 610.121 540.002 29773.055.79720.920.28739.413.14
2011RZ1088_281.050.053 740.001 600.476 690.017 730.062 160.001 17360.065.75395.812.19388.87.09
2011RZ1088_290.880.059 320.001 670.498 320.017 450.059 960.001 12578.960.15410.611.82375.46.83
2011RZ1088_300.900.054 950.001 520.458 340.015 330.060 130.001 12410.260.10383.110.68376.46.79
2011RZ1088_310.470.046 290.001 780.499 480.024 500.070 150.001 3212.889.91411.416.59437.17.96
2011RZ1088_321.120.046 860.001 680.613 200.029 950.083 560.001 5741.783.81485.618.85517.49.33
2011RZ1088_330.830.060 230.001 460.507 100.014 630.057 810.001 06611.951.57416.59.86362.36.47
2011RZ1088_340.610.061 710.003 490.472 780.035 810.060 960.001 36664.0116.87393.124.69381.58.24
2011RZ1088_350.500.054 590.001 930.658 710.032 580.081 160.001 56395.676.65513.819.95503.19.29
2011RZ1088_360.760.056 050.001 270.662 540.018 320.083 970.001 53453.849.50516.211.19519.89.09
2011RZ1088_371.580.055 470.002 780.468 980.028 630.060 530.001 20430.8107.77390.519.79378.97.27
2011RZ1088_380.630.052 720.002 090.489 470.025 490.062 950.001 23316.887.59404.517.37393.57.47
2011RZ1088_392.110.054 420.001 410.475 720.014 940.060 140.001 11388.356.76395.110.28376.56.74
2011RZ1088_400.410.051 650.001 340.457 260.014 320.060 730.001 12270.158.38382.49.98380.16.79
2011RZ1088_410.660.049 270.001 390.431 590.014 880.056 900.001 04160.764.61364.310.56356.76.37
2011RZ1088_421.010.046 450.001 490.412 400.015 850.059 040.001 0920.874.22350.611.39369.86.62
2011RZ1088_430.990.045 100.001 500.407 830.016 510.060 540.001 130.128.16347.311.91378.96.85
2011RZ1088_440.680.048 510.001 460.414 020.015 070.057 610.001 06124.169.55351.810.82361.16.48
2011RZ1088_450.620.051 750.001 390.520 690.017 430.065 980.001 22274.260.41425.611.64411.97.36
2011RZ1088_460.610.044 970.002 140.405 320.023 550.059 670.001 160.154.36345.517.02373.67.07
2011RZ1088_470.900.058 530.001 890.510 060.021 460.062 830.001 20549.569.10418.514.43392.87.28
2011RZ1088_480.780.052 170.001 440.433 210.014 650.055 460.001 02293.061.92365.510.38348.06.25
2011RZ1088_490.410.039 260.003 590.429 800.049 030.060 060.001 250.1-363.034.82376.07.57
2011RZ1088_500.890.054 060.001 360.431 570.013 030.056 280.001 03373.455.52364.39.24353.06.29
2011RZ1088_510.560.054 260.002 260.531 200.029 780.067 710.001 36381.690.27432.619.75422.48.20
2011RZ1088_520.730.045 700.002 600.397 370.028 600.055 880.001 160.1114.02339.720.78350.57.09
2011RZ1088_530.970.049 500.001 670.569 410.025 890.073 050.001 38171.776.92457.616.75454.58.30
2011RZ1088_540.650.049 040.001 100.457 480.012 080.062 830.001 14149.651.65382.58.41392.86.89
2011RZ1088_550.870.065 340.001 621.352 450.055 450.126 460.002 34785.251.32868.623.93767.613.38
2011RZ1088_560.820.049 700.001 650.395 420.016 460.053 720.001 02181.175.38338.311.97337.36.23
2011RZ1088_570.930.046 060.002 240.412 990.025 730.055 920.001 130.1113.91351.018.49350.86.88
2011RZ1088_580.890.053 680.001 940.574 780.028 450.074 270.001 44357.479.57461.118.34461.88.64
2011RZ1088_590.980.073 000.003 761.190 750.117 130.121 740.002 531 013.8101.12796.354.29740.614.52
2011RZ1088_600.740.042 970.001 620.382 700.017 510.054 500.001 020.1-329.012.86342.16.24
2011RZ1088_610.950.050 580.001 410.549 180.020 020.067 430.001 25221.763.32444.513.12420.77.53
2011RZ1088_620.820.048 930.002 880.488 270.038 940.063 090.001 37144.4132.73403.726.57394.48.32
2011RZ1088_630.740.049 530.001 560.429 590.017 130.056 000.001 05172.871.96362.912.17351.36.41
2011RZ1088_640.750.047 280.000 980.419 900.010 090.055 710.001 0063.049.01356.07.22349.56.10
2011RZ1088_650.860.052 300.001 570.487 310.019 040.060 760.001 14298.667.09403.113.00380.36.92
图 4 格根敖包组砂岩样品2011RZ09和2011RZ1088的碎屑锆石CL图像

Fig. 4 Representative CL images for zircons from sample 2011RZ09 and 2011RZ1088 of Gegen’aobao Formation
图 5 砂岩样品2011RZ09碎屑锆石U-Pb谐和年龄和年龄样品频率图

Fig. 5 U-Pb Concordia diagram and relative probability plot of detrital zircons from sample 2011RZ09
图 6 砂岩样品2011RZ1088碎屑锆石U-Pb谐和年龄和年龄样品频率图

Fig. 6 U-Pb Concordia diagram and relative probability plot of detrital zircons from sample 2011RZ1088

对样品2011RZ09进行了65个测试点分析,CL图像显示锆石均呈自形——半自形,多呈短柱状,少量呈长柱状,粒径90~160 μm,长宽比值多为2∶1,具有清晰的振荡环带,具有较高的Th/U值(0.24~1.42),反映了岩浆成因锆石的特点。测试结果显示,6个测试点的数据偏离谐和线,其余均在谐和线上及其附近。按照年龄及频率分布特征大致可以划分出4组:第1组206Pb/238U年龄集中在323.6~368.5 Ma,峰值年龄为(348.5±4.5)Ma,(n=31,MSWD=3.70);第2组206Pb/238U年龄集中在384.4~398.9 Ma,峰值年龄为(388.7±5.0)Ma,(n=9,MSWD=0.56);第3组206Pb/238U年龄集中在406.7~448.3 Ma,峰值年龄为(422.2±8.2) Ma,(n=12,MSWD=2.70);第4组206Pb/238U年龄集中在491.8~518.8 Ma,峰值年龄为(504.0±12.0) Ma,(n=6,MSWD=1.60)。此外,还存在1个测试点757.9Ma(图 4a-58)。

对样品2011RZ1088进行了65个测试点分析,CL图像显示锆石晶形完好,多呈短柱状,少量呈长柱状,粒径80~100 μm,长宽比值多为2∶1,内部结构清晰,发育典型的振荡环带,Th/U值为0.17~4.46,反映了岩浆成因锆石的特点。测试结果显示,5个测试点的数据偏离谐和线,其余均在谐和线上及其附近。按照年龄及频率分布特征大致可以划分出5组:第1组206Pb/238U年龄集中在336.5~369.8 Ma,峰值年龄为(350.5±4.5) Ma,(n=18,MSWD=1.90);第2组206Pb/238U年龄集中在375.5~411.9 Ma,峰值年龄为(384.8±4.5)Ma,(n=22,MSWD=2.00);第3组206Pb/238U年龄集中在417.9~422.4 Ma,峰值年龄为(420.3±7.6) Ma,(n=4,MSWD=0.05);第4组206Pb/238U年龄集中在437.1~463.0 Ma,峰值年龄为(450.0±15.0) Ma,(n=5,MSWD=2.10);第5组206Pb/238U年龄集中在500.9~519.8 Ma,峰值年龄为(511.8±8.1) Ma,(n=5,MSWD=0.95)。还存在(750±40) Ma(n=3,MSWD = 1.40),1个测试点814.0 Ma(图 4b-13)。此外,2个测试点207Pb/206Pb年龄分别为2 500.7 Ma(图 4b-23)和1 951.5 Ma(图 4b-1),锆石具有环带结构,可能为古老的捕获锆石。

4.2 格根敖包组沉积岩沉积时限

本区格根敖包组砂岩中最年轻的碎屑年龄为323.6 Ma,表明该组的最大沉积年龄不早于早石炭世谢尔普霍夫阶。

在工作区根多河林场东6 km 6686高地采到Artisia sp.,Eusigillaris sp.等化石,其中Artisia见于苏联顿巴斯的下石炭统和库兹巴斯上石炭统、德国和英国的上石炭统,Eusigillaris见于苏联顿巴斯的上石炭统中下部 黑龙江省区测二队.1:20万华安公社幅区调报告.哈尔滨:黑龙江省地质调查院,1976. 。此外,1:20万华安公社幅内与该套地质体相当的蘑菇气、尕拉城、哈多河一带原宝力高庙组剖面下部为火山熔岩,上部为凝灰岩、细砂岩及粉砂质板岩等,含Angaropteridium cordiopteroides (Schm.)Zal.,Neuropteris sp.,Angaridium cf. mongolicum,Dicranophyllum sp.,Noeggerathiopsis derzavinii等,时代置于晚石炭世至早二叠世。综上所述,格根敖包组细碎屑岩应形成于晚石炭世至早二叠世。

5 讨论

5.1 岩石地球化学特征反映的物源信息和构造背景

与在各类构造背景下的砂岩岩石地球化学成分进行对比(表 3),扎兰屯地区格根敖包组砂岩的样品除个别比值与大洋岛弧和被动大陆边缘类似外,总体相当于大陆岛弧-活动陆缘的化学成分,显示了活动大陆边缘构造环境下砂岩特点,并且砂岩M值为3.05~9.98,显示为海陆交互相沉积环境。

表 3 研究区含砂粉砂泥岩样品与不同构造背景砂岩元素特征值 Table 3 Comparison of characteristics between arenaceous and silty mudstone samples in the study area and those in different tectonic backgrounds
构造背景SiO2Al2O3Na2OK2OFe2O3+
MgO
Al2O3/
(Na2O+CaO)
Al2O3/
SiO2
LaCe
大洋岛弧58.8317.114.101.6011.731.720.298.00±1.719.00±3.7
大陆岛弧70.6914.043.121.896.792.420.227.00±4.559.00±8.2
活动大陆边缘73.8612.892.772.904.602.560.1837.0078.00
被动大陆边缘81.958.411.071.712.894.150.1039.0085.00
本区69.0414.772.342.644.044.920.2133.7673.02
构造背景∑REELREE/HREEδEu(Gd/Yb)NLa/Yb(La/Yb)NLa/YRb/Sr
大洋岛弧58.003.80±0.91.04±0.111.314.20±1.34.20±1.30.48±0.120.05±0.05
大陆岛弧146.007.70±1.70.79±0.131.4911.00±3.67.50±2.51.02±0.070.65±0.33
活动大陆边缘186.009.100.601.2612.508.501.33±0.090.89±0.24
被动大陆边缘210.008.500.562.7515.9010.801.31±0.261.19±0.40
本区184.467.580.711.2212.028.101.110.59
注:常量元素质量分数单位为%,稀土及微量元素质量分数单位为10-6。不同构造背景砂岩元素特征值引自文献[17]

在SiO2/Al2O3-Na2O/K2O 图解(图 2)中,样品多落入杂砂岩和长石(岩屑)砂岩区;稀土配分曲线显示,LREE 富集,HREE 亏损,轻重稀土分馏明显,具有明显的负Eu异常,可以判断该区格根敖包组沉积碎屑岩物源主要为长英质岩石。

综合分析岩石主、微量元素地球化学特征,扎兰屯地区格根敖包组细碎屑岩物源构造背景主要为大陆岛弧-活动陆缘环境,极少数样品的个别参数显示了大洋岛弧和被动陆缘特点。

5.2 碎屑锆石年龄谱及其物源区信息

格根敖包组砂岩的碎屑锆石LA-ICP-MS U-Pb年代学研究显示,样品2011RZ09和2011RZ1088的碎屑锆石年龄具有相似的年龄区间,但锆石所占比例不同,暗示物源区既有相似性又有差异性。同时时代跨度较大,反映了沉积物源区岩石组成的复杂性和多样性。

对2个样品共130颗锆石的年龄研究显示,主要集中在4个年龄群(图 7),反映了古生代的年龄信息:

图 7 格根敖包组砂岩样品碎屑锆石年龄分布图

Fig. 7 Relative probability plot of detrital zircons from all samples of Gegen’aobao Formation

1)491.8~519.8 Ma,峰值年龄为(507.3±7.1)Ma。这组年龄在额尔古纳地块和兴安地块内普遍存在,它们在早古生代早期同时经历了强烈的区域变质作用和花岗质岩浆侵入作用,为一次重要的造山(造陆)事件[30],与额尔古纳地块和兴安地块的拼贴作用有关[8, 31]

2)406.7~463 Ma,峰值年龄为(428.0±7.4) Ma。这组年龄与阿尔山地区出露445~450 Ma花岗岩[32, 33],及新林地区出露的438 Ma的碰撞花岗岩[34]一致,区域上岩浆活动与多宝山——伊尔斯洋盆板块碰撞和隆升阶段变质作用有关[35]

3)375.5~411.9 Ma,峰值年龄为(385.8±3.5)Ma,该组年龄与小兴安岭西北部洪湖吐河组粉砂岩的碎屑锆石峰值年龄385.0 Ma[36]一致,与大兴安岭北部——东乌旗一带发育的弧火山岩年龄(365.0~373.0 Ma)[37]相近。该时期额尔古纳与兴安地块地块已经拼贴为一起,在其南部发生了新的弧火山作用[35]

4)323.6~369.0 Ma,峰值年龄为(348.9±3.2) Ma,这组年龄跟额尔古纳——兴安地块与松嫩地块拼贴事件一致[35],在小兴安岭嫩江——黑河地区普遍发育352~355 Ma的火山岩[36],博克图——扎兰屯一带出露(347.4±1.1) Ma的碰撞花岗岩[35]以及与大兴安岭乌奴尔地区碰撞花岗岩(354 Ma)[35, 38]相吻合。

因此,格根敖包组沉积物物源具有复杂性及多样性,物源区既有古老地块物质,也有年轻的火山喷发物,与大陆岛弧-活动陆源环境相符。这也与额尔古纳——兴安地块与松嫩地块于早石炭世末期完成碰撞拼合[35]吻合。

6 结论

综合岩石学、地球化学以及年代学系统研究,可得出以下结论:

1)扎兰屯地区格根敖包组砂岩中最年轻的碎屑年龄为323.6 Ma,表明该组的最大沉积年龄不早于早石炭世谢尔普霍夫阶,结合古生物地层学研究,格根敖包组细碎屑岩应形成于晚石炭至早二叠世。

2)格根敖包组源岩物质以长英质岩石为主,形成于大陆岛弧-活动陆缘环境,古地理显示为较温暖潮湿气候下的海陆交互相沉积环境。

3)格根敖包组锆石U-Pb年龄集中于348.9,385.8,428.0和507.3 Ma 等4个峰值,显示出其沉积物物源具有复杂性及多样性,物源区既有古老地块物质,也有年轻的火山喷发物。

参考文献
[1] 李锦轶. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, 1998, 44(4):339-347. Li Jinyi. Some New Ideas on Tectonic of NE China and Its Neighboring Areas[J]. Geological Review, 1998, 44(4):339-347.
[2] 吴福元, 曹林. 东北亚地区的若干重要基础地质问题[J]. 世界地质, 1999, 18(2):1-13. Wu Fuyuan, Cao Lin. Some Important Problem of Geology in Northeastern Asia[J]. World Geology, 1999, 18(2):1-13.
[3] 孙德有, 吴福元, 李惠民, 等. 小兴安岭西北部造山后A型花岗岩的时代及与索伦山贺根山扎赉特碰撞拼合带东延的关系[J]. 科学通报, 2000, 45(20):2217-2222. Sun Deyou, Wu Fuyuan, Li Huimin, et al. Emplacement Age of the Post-Orogenic A-Type Granites in Northwestern Lesser Xing'an Ranges, and Its Relationship to the Eastward Extension of Suolunshan-Hegenshan-Zhalaite Collissional Suture Zone[J].Chinese Science Bulletin, 2001, 46(5):427-432.
[4] Wu Fuyuan, Sun Deyou, Li Huimin, et al. The Nature of Basement Beneath the Songliao Basin in NE China: Geochenical and Isotopic Constraints[J]. Physics and Chemistry of the Earth: Part A, 2001, 26(9/10):793-803.
[5] Wu Fuyuan, Sun Deyou, Li Huimin, et al. A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143-173.
[6] 周长勇, 吴福元, 葛文春, 等. 大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J]. 岩石学报, 2005, 21(3):763-775. Zhou Changyong, Wu Fuyuan, Ge Wenchun, et al. Age, Geochemlstry and Petrogenesls of the Cumulate Gabbro in Tahe, Northern Da Hinggan Mountain[J]. Acta Petrologlca Sinica, 2005, 21(3):763-775.
[7] 葛文春, 吴福元, 周长勇, 等. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 2005, 50(12):1239-1247. Ge Wenchun, Wu Fuyuan, Zhou Changyong, et al. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Mts[J]. Chinese Science Bulletin, 2005, 50(18):2097-2105.
[8] Wu Fuyuan, Sun Deyou, Ge Wenchun, et al. Geochronology of the Phanerozoic Granitoids in Nor-theastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30.
[9] 李双林, 欧阳自远. 兴蒙造山带及邻区的构造格局与构造演化[J]. 海洋地质与第四纪地质, 1998, 18(3):45-54. Li Shuanglin, Ouyang Ziyuan. Tectonic Framework and Evolution of Xing'an Ling-Mongolian Orogenic Belt and Its Adjacent Region[J]. Marine Geology and Quaternary Geology, 1998, 18(3):45-54.
[10] 张梅生, 彭向东, 孙晓猛. 中国东北古生代构造古地理格局[J]. 辽宁地质, 1998(2):91-96. Zhang Meisheng, Peng Xiangdong, Sun Xiaomeng. The Paleozoic Tectonic Geographical Pattern of Northeast China[J].Liaoning Geology, 1998(2):91-96.
[11] Li Jinyi. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26: 207-224.
[12] 王成文, 金巍, 张兴洲, 等. 东北及邻区晚古生代大地构造属性新认识[J]. 地层学杂志, 2008, 32(2):119-136. Wang Chengwen, Jin Wei, Zhang Xingzhou, et al. New Conception of the Late Paleozoic Tectonics in the Northeatern China and Adjacent Areas[J].Journal of Stratigraphy, 2008, 32(2):119-136.
[13] 王成文, 孙跃武, 李宁, 等. 中国东北及邻区晚古生代地层分布规律的大地构造意义[J]. 中国科学:D辑, 2009, 39(10):1429-1477. Wang Chengwen, Sun Yuewu, Li Ning, et al. Tectonic Implications of Late Paleozoic Stratigraphic Distribution in Northeast China and Adjacent Region[J].Science in China: Series D, 2009, 52(5):619-626.
[14] 苗来成, 范蔚茗, 张福勤, 等. 小兴安岭西北部新开岭科洛杂岩锆石SHRIMP年代学研究及其意义[J]. 科学通报, 2003, 48(22):2315-2323. Miao Laicheng, Fan Weiming, Zhang Fuqin, et al. SHRIMP Zircon Geochronology from Xinkailing-Kele Complex in Northwestern Xiao Hinggan Mts and Its Significance[J]. Chinese Science Bulletin, 2003, 48(22):2315-2323.
[15] 李秋根, 刘树文, 王宗起, 等. 中条山绛县群碎屑错石LA-ICP-MS U-Pb测年及其地质意义[J].岩石学报, 2008, 24(6):1359-1368. Li Qiugen, Liu Shuwen, Wang Zongqi, et al. LA-ICP-MS U-Pb Geochronology of the Detrital Zircons from the Jiangxian Group in the Zhongtiao Mountain and Its Tectonic Significance[J]. Acta Petrologlca Sinica, 2008, 24(6):1359-1368.
[16] 张渝金, 吴新伟, 杨雅军, 等. 内蒙古扎兰屯地区晚古生代格根敖包组地层的发现及其地质意义[J].地质与资源, 2014, 23(3):272-275. Zhang Yujin, Wu Xinwei, Yang Yajun, et al. The Discovery of Late Palaeozoic Gegenaobao Formation in Zhalantun District of Inner Mongolia and Its Geological Significance[J]. Geology And Resources, 2014, 23(3):272-275.
[17] Gehrels G J, Johnsson M J, Howell D G. Detrital Zircon Geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, USA[J]. Journal of Sedimentary Research, 1999, 69:135-144.
[18] Sircombe K N. Tracing Provenance Through the Isotope Ages of Littoral and Sedimentary Detrital Zircon, Eastern Australia[J]. Sedimentary Geology, 1999, 124: 47-67.
[19] Nelson J, Gehrels G. Detrital Zircon Geochronology and Provenance of the Southeastern Yukon-Tanana Terran[J]. Canadian Journal of Earth Sciences, 2007, 44: 297-316.
[20] Kalsbeek F, Frei D, Affaton P. Constraints on Pro-venance, Stratigraphic Correlation and Structural Context of the Volta Basin, Ghana, from Detrital Zircon Geochronology: An Amazonian Connection[J]. Sedimentary Geology, 2008, 212: 86-95.
[21] Gonzáleòz Len C M, Valencia V A, Lawton T F, et al. The Lower Mesozoic Record of Detrital Zircon U-Pb Geochronology of Sonora, Mexico and Its Paleogeographic Implications[J]. Revista Mexicana de Ciencias, 2009, 26: 301-314.
[22] 邱家骧, 林景仟. 岩石化学[M]. 武汉:中国地质大学出版社, 1991:253-254. Qiu Jiaxiang, Lin Jingqian. Petrochemistry[M].Wuhan:China University of Geosciences Press, 1991:253-254.
[23] Bhatia M R, Taylor S R. Trace-Element Geochemistry and Sedimentary Provinces:A Study from the Tasman Geosyncline[J].Chemical Geology, 1981, 33(1/2/3/4):115-125.
[24] Bhatia M R.Composition and Classification of Palaeozoic Flysch Mudrocks of Eastern Australia: Implications in Provenance and Tectonic Setting Interpretation[J]. Sedimentary Geology, 1985, 41:249-268.
[25] McLennan S M, Hemming S, McDanial D K, et al. Geochemical Approaches to Sedimentation, Provenance, and Tectonics[J]. Geological Society of American Special Paper, 1993, 284:21-40.
[26] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies[M]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984: 63-114.
[27] Ru Dnick R L, Gao S. Composition of the Continental Crust[M]//Rudnick R L. Treatise on Geochemistry: The Crust. Oxford: Elsevier-Pergamon, 2003, 3:1-64.
[28] 陈松, 桂和荣, 孙林华, 等. 安微宿州寒武纪猴家山组灰岩微量元素地球化学特征[J]. 矿物岩石, 2013, 32(1):69-76. Chen Song, Gui Herong, Sun Linhua, et al. Geochemical Characteristics of Trace Elements in Limestone of Houjiashan Formation from Suzhou, Anhui Province[J]. J Mineral Petrol, 2013, 32(1):69-76.
[29] 李仰春, 汪岩, 吴淦国, 等. 大兴安岭北段扎兰屯地区铜山组源区特征:地球化学及碎屑锆石U-Pb年代学制约[J]. 中国地质, 2013, 40(2):391-402. Li Yangchun, Wang Yan, Wu Ganguo, et al. The Provenance Characteristics of Tongshan Formation in North Zalantun Area of the Da Hinggan Mountains:The Constraint of Geochemistry and LA-MC-ICPMS U-Pb Dating of Detrital Zircons[J]. Geology in China, 2013, 40(2):391-402.
[30] 张兴洲, 马玉霞, 迟效国, 等. 东北及内蒙古东部地区显生宙构造演化的有关问题[J]. 吉林大学学报:地球科学版, 2012, 42(5):1269-1285. Zhang Xingzhou, Ma Yuxia, Chi Xiaoguo, et al. Discussion on Phanerozoic Tectonic Evolution in Nor-theastern China[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(5):1269-1285.
[31] 隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因[J]. 世界地质, 2006, 25(3):229-236. Sui Zhenmin, Ge Wenchun, Wu Fuyuan, et al. U-Pb Chronology in Zircon from Harabaqi Pluton in Northeastern Da Hinggan Mts and Its Origin[J]. Global Geology, 2006, 25(3):229-236.
[32] 罗毅, 王正邦, 周德安. 额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景[J]. 华东地质学院学报, 1997, 20(1):1-10. Luo Yi, Wang Zhengbang, Zhou De'an. The Geologic Characteristics and Prospecting of Ergun Super-Large Volcanic Hydrothemal Type Uranium Metallogenic Belt[J]. Journal of East China Geological Institute, 1997, 20(1):1-10.
[33] 武广. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D]. 长春:吉林大学, 2006. Wu Guang. Metallogenic Setting and Metallogenesis of Nonferrous Precious Metals in Northern Da Hinggan Mountain[D]. Changchun: Jilin University, 2006.
[34] 苗来成, 刘敦一, 张福勤, 等. 大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J]. 科学通报, 2007, 52(5):591-601. Miao Laichang, Liu Dunyi, Zhang Fuqin, et al. Zircon SHRIMP U-Pb Ages of the "Xinghuadukou Group"in Hanjiayuanzi and Xinlin Areas and the "Zhalantun Group" in Inner Mongolia, Great Xing'an Rang[J].Chinese Science Bulletin, 2007, 52(8):1112-1134.
[35] 佘宏全, 李进文, 向安平, 等. 大兴安岭中北段原岩锆石U-Pb 测年及其与区域构造演化关系[J]. 岩石学报, 2012, 28(2):571-594. She Hongquan, Li Jinwen, Xiang Anping, et al. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxinganling and Its Implications to Geotectonic Evolution[J]. Acta Petrologica Sinica, 2012, 28(2):571-594.
[36] 赵芝, 迟效国, 潘世语, 等. 小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J]. 岩石学报, 2010, 26(8):2452-2464. Zhao Zhi, Chi Xiaoguo, Pan Shiyu, et al. The Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanic and Its Geological Singnificance in the Northwestern Lesser Xing'an Range[J]. Acta Petrologica Sinica, 2010, 26(8):2452-2464.
[37] 赵芝, 迟效国, 刘建峰, 等. 内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J]. 岩石学报, 2010, 26(11):3245-3258. Zhao Zhi, Chi Xiaoguo, Liu Jianfeng, et al. Late Paleozoic Arc-Related Magmatism in Yakeshi Region, Inner Mongolia: Chronological and Geochemical Evidence[J]. Acta Petrologica Sinica, 2010, 26(11):3245-3258.
[38] 许文良, 孙德有, 尹秀英. 大兴安岭海西期造山带的演化:来自花岗质岩石的证据[J]. 长春科技大学学报, 1999, 26(4):319-323. Xu Wenliang, Sun Deyou, Yin Xiuying. Evolution of Hercynian Orogenic Belt in Da Hinggan Mts: Evidence from Granitic Rocks[J].Journal of Changchun University of Science and Technology, 1999, 29(4):319-323.
http://dx.doi.org/10.13278/j.cnki.jjuese.201502106
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

张渝金, 吴新伟, 江斌, 郭威, 杨雅军, 刘世伟, 崔天日, 李伟, 李林川, 司秋亮, 张超
Zhang Yujin, Wu Xinwei, Jiang Bin, Guo Wei, Yang Yajun, Liu Shiwei, Cui Tianri, Li Wei, Li Linchuan, Si Qiuliang, Zhang Chao
大兴安岭扎兰屯地区格根敖包组碎屑锆石U-Pb年代学、地球化学特征及其地质意义
U-Pb Geochronology of Detrital Zircon and the Constraint of Geochemistry from the Gegen'aobao Formation in Middle of Zalantun Area of Da Hinggan Mountains and Its Tectonic Significance
吉林大学学报(地球科学版), 2015, 45(2): 404-416
Journal of Jilin University(Earth Science Edition), 2015, 45(2): 404-416.
http://dx.doi.org/10.13278/j.cnki.jjuese.201502106

文章历史

收稿: 2014-06-06

相关文章

工作空间