文章快速检索  
  高级检索
大兴安岭中段柴河地区玛尼吐组火山岩年代学、地球化学及岩石成因
司秋亮1,2, 崔天日2, 唐振2,3, 李伟2, 吴新伟2,3, 江斌2,3, 李林川2,3    
1. 东北大学资源与土木工程学院, 沈阳 110819;
2. 沈阳地质矿产研究所/中国地质调查局沈阳地质调查中心, 沈阳 110034;
3. 吉林大学地球科学学院, 长春 130061
摘要:对大兴安岭中段柴河地区玛尼吐组火山岩进行了锆石LA-ICP-MS U-Pb年代学和岩石地球化学研究,以了解其形成时代、岩石成因及其所揭示的区域构造背景。玛尼吐组火山岩岩相学鉴定结果为安山岩、英安岩,化学成分显示其为粗面英安岩、粗面岩和英安岩。玛尼吐组火山岩锆石多呈自形半自形晶,振荡环带发育,Th/U=0.33~2.08,指示其岩浆成因。定年结果显示,玛尼吐组火山岩形成于139~148 Ma的晚侏罗世。岩石地球化学研究表明,玛尼吐组火山岩的w(SiO2)为64.87%~68.65%,w(Al2O3)为15.53%~16.72%,全碱w(Na2O+K2O)为6.75%~9.22%,K2O/Na2O=0.63~1.57,属于高钾钙碱性系列。所有样品的稀土配分曲线具有相似的特征,稀土丰度总量w(∑REE)为(124.95~208.57)×10-6,轻重稀土分馏明显,(La/Yb)N=11.50~14.88, Eu负异常(0.45~1.17),微量元素以富集Rb、Ba、K,亏损Nb、P、Ti为特征。玛尼吐组火山岩原始岩浆来源于地壳岩石的部分熔融,形成于蒙古-鄂霍茨克缝合带闭合后的岩石圈伸展构造环境。
关键词LA-ICP-MS锆石U-Pb定年     地球化学     火山岩     玛尼吐组     柴河地区     大兴安岭中段    
Chronology,Geochemistry and Petrogenesis of the Volcanic Rocks in Manitu Formation in Chaihe Area, Central Great Xing'an Range
Si Qiuliang1,2, Cui Tianri2, Tang Zhen2,3, Li Wei2, Wu Xinwei2,3, Jiang Bin2,3, Li Linchuan2,3    
1. College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China;
2. Shenyang Institute of Geology and Mineral Resources/Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110034, China;
3. College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract:The zircon LA-ICP-MS U-Pb dating and geochemistry are reported for the volcanic rocks in Manitu Formation in Chaihe, central Great Xing'an Range in order to discover its formation time, petrogenesis and the regional tectonic setting Petrographically.The volcanic rocks in Manitu Formation are composed of andesite and dacite,but they are trachyte, trachydacite, and dacite based on its chemical composition. Zircon from these volcanic rocks are euhedral-subhedral in shape, with fine-scale oscillatory growing ring. The Th/U ratio of (0.33-2.08) indicates a magmatic origin. The dating results show that the volcanic rocks in Manitu Formation are formed in Late Jurassic from 139 to 148 Ma. The geochemical study shows that the SiO2 of the andesite is between 64.87%-68.65%,Al2O3 is between 15.53%-16.72%,Na2O+K2O is between 6.75%-9.22%,K2O/Na2O is between 0.63-1.57, falling in the series of high-potassium calc-alkaline. All samples have a similar REE pattern with a significant fractionation of LREE from HREE((La/Yb)N =11.50-14.88)and negative Eu anomalies(δEu=0.45-1.17). The total rare earth element is from 124.95×10-6 to 208.57×10-6. The trace element geochemistry is characterized evidently by enrichment of Rb, Ba, K, depletion of Nb, P, Ti. Its original magma is derived from the partial melting of the crust,during an extension after the closure of the Mongol-Okhotsk Ocean.
Key words: LA-ICP-MS zircon U-Pb dating     geochemistry     volcanic rocks     Manitu Formation     Chaihe area     Central Great Xing'an Range    

0 引言

大兴安岭火山岩带是我国东部中生代巨型火山岩带的重要组成部分,该火山岩带呈北北东向横亘于西伯利亚板块和华北板块及其缝合带之上。该区晚中生代火山岩分布面积广、岩石类型多样、地球化学特征及形成构造背景复杂。研究区位于大兴安岭中段,晚侏罗世到早白垩世火山岩分布广泛。玛尼吐组火山岩是晚中生代火山岩的重要组成部分,代表了一次重要的岩浆活动事件。虽然前人对大兴安岭晚中生代火山岩做过一些研究,积累了大量的资料,主要为大兴安岭北段[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]和少量大兴安岭中南段火山岩的资料[16, 17, 18, 19, 20, 21],而针对大兴安岭中段玛尼吐组火山岩的年代学和地球化学研究相对较少[2, 3, 21]。因此,关于大兴安岭中段玛尼吐组火山岩时代归属问题,至今意见尚不一致。由此看来,对玛尼吐组火山岩开展更多的年代学和地球化学研究已十分必要。笔者通过对大兴安岭中段柴河地区玛尼吐组火山岩开展锆石U-Pb年代学及地球化学研究,探讨其形成时代、岩石成因和构造背景。

1 地质背景及岩石学特征

研究区大地构造位置位于兴蒙造山带东段、大兴安岭主断裂中段,中生代隶属于滨西太平洋中——新生代巨型火山岩带大兴安岭火山岩带次一级柴河——济沁河火山喷发带。区内大面积分布中生代火山岩和侵入岩(图 1),前中生代地层出露很少,仅有小面积上泥盆统大民山组和中奥陶统多宝山组,此外,在绰尔河沿岸有第四系大黑沟组玄武岩出露。区内侵入岩形成时代为白垩纪、侏罗纪和二叠纪,岩性主要为碱长花岗岩、二长花岗岩和石英二长闪长岩。研究区晚中生代火山活动强烈,分布面积广,但是地层划分并不统一,同一套地层在内蒙古自治区、冀北——辽西地区、黑龙江省有着不同的命名。1996年,在全国地层清理过程中,内蒙古自治区地质矿产局将大兴安岭全区晚中生代火山岩地层进行了统一厘定,由老到新划分为塔木兰沟组、满克头鄂博组、玛尼吐组、白音高老组和梅勒图组。塔木兰沟组主要为玄武安山岩、安山岩,满克头鄂博组主要为流纹岩和流纹质凝灰岩,玛尼吐组主要为粗面英安岩、粗面岩、英安岩,白音高老组主要为流纹岩和流纹质凝灰岩。

图 1 研究区地质简图(a)及大地构造位置图(b)

Fig. 1 Geological sketch map(a) and tectonic map (b)of the studied area

玛尼吐组主要分布在研究区中部,北东向展布,多喷发不整合覆盖在上侏罗统满克头鄂博组之上,被白音高老组和大黑沟组不整合覆盖。玛尼吐组火山岩岩性主要为粗面英安岩、粗面岩、英安岩。

粗面英安岩(PM211b36) 斑状结构,基质微晶粗面结构,块状构造。斑晶:斜长石,无色,自形——半自形板柱状并具溶蚀结构,干涉色一级灰白至一级黄,常见聚片双晶,个别较大斑晶可见环带构造,应用⊥(010)切面最大消光角法测定斜长石号码An为25,为更长石;粒径0.3~3.0 mm,体积分数为15%;普遍绿帘石化及局部绿泥石化蚀变;部分斑晶可见石英穿插生长其间形成蠕虫结构。透长石,无色,自形——半自形板柱状并具溶蚀结构,横向裂纹发育,负低突起,干涉色一级灰至一级灰白,常见卡氏双晶,偶见十字双晶;粒径0.2~2.0 mm,体积分数为5%;具轻微绿帘石化及绿泥石化蚀变,强度不及斜长石;部分斑晶中可见与石英交生成显微文象结构。石英,无色,少见半自形粒状斑晶,多为蠕虫状或液滴状与长石、角闪石斑晶交生构成蠕虫结构或显微文象结构;正低突起,干涉色一级灰至一级黄白,波状消光;粒径0.2~0.5 mm,体积分数为5%。角闪石,自形柱状,暗化边结构及溶蚀结构,横截面具角闪石式节理,与石英构成显微文象结构;粒径0.5~1.5 mm,体积分数为2%~3%。副矿物:磷灰石,无色,自形针状,横截面六边形,平行消光,干涉色一级灰,粒径0.1 mm左右,体积分数不足1%。不透明矿物:褐铁矿,不透明,自形立方体或他形,边缘较薄可透光部位呈红色——红褐色。自形晶可能由黄铁矿氧化而成,呈黄铁矿假象;他形晶可能为角闪石暗化反应形成的铁镁矿物氧化而成;粒径0.1~0.5 mm,体积分数为3%。基质:由长英质微晶组成,长石微晶定向排列构成粗面结构(图 2)。

图 2 玛尼吐组火山岩野外露头照片及显微照片

Fig. 2 Outcrop photograph and microphotograph of the volcanic rocks in Manitu Formation

粗面岩(PM211b40) 斑状结构,基质微晶粗面结构,块状构造。斑晶:斜长石,无色,自形——半自形板柱状并具溶蚀结构,干涉色一级灰白,可见聚片双晶,由于斑晶少无法找到合适切面测定斜长石;粒径0.3~1.5 mm,体积分数为1%;普遍绿帘石化及局部绿泥石化蚀变。透长石,无色,自形——半自形板柱状并具溶蚀结构,横向裂纹发育,负低突起,干涉色一级灰至一级灰白,可见卡氏双晶;粒径0.2~1.5 mm,体积分数为3%;具绿帘石化及绿泥石化蚀变。角闪石,自形长柱状,晶体边部或小晶体全部暗化并具溶蚀结构;粒径0.2~1.5 mm,体积分数为5%。基质:由长英质及角闪石微晶组成,针柱状微晶定向排列构成粗面结构,整体轻微绿泥石化。

英安岩(PM211b3) 斑状结构,块状构造。斑晶:斜长石,灰白色,呈自形、半自形板状,板柱状;粒径0.5~2.0 mm,体积分数为10%;不同程度绢云母化,晶体表面泥化;具聚片双晶、卡钠双晶,为中长石,个别具环带结构。暗色矿物:呈自形柱状,横切面呈菱形,粒径0.3~1.3 mm,体积分数为3%;大部分为绿帘石、绿泥石交代,呈假象出现,并析出较多的铁矿物,个别见有少量褐色柱状残晶;C∧Ng=16°,正延性,为角闪石,少量可能由黑云母蚀变而成,含有磷灰石。基质:呈交织结构,主要由微条状斜长石(为主)和微粒状石英或长英质颗粒构成,含有微粒状铁矿物。

2 锆石年龄U-Pb测定 2.1 分析方法

对选自柴河地区玛尼吐组火山岩的新鲜样品进行锆石挑选和制靶,由中国地质科学院国家地质实验测试中心完成阴极发光图像采集、U-Pb年龄测定工作。锆石数据分析采用Thermo Element II及配套的New Wave UP213激光剥蚀系统,激光波长213 nm,激光斑束直径为30 μm,脉冲频率10 Hz,采用高纯度He气作为剥蚀物质的载体。测试过程中,每测定10个样品,重复测定1个锆石91 500对样品进行校正,并测量1个锆石Plesovice,观察仪器的状态以保证测试的精确度。测试结果通过GLITTER[22]软件计算得出,实验获得的数据采用文献[23]的方法进行同位素比值的校正以扣除普通Pb的影响,谐和图的绘制采用Isoplot[24]完成。详细的实验原理和流程见文献[25]

2.2 年龄测定结果

本文对柴河地区不同地方的的两个火山岩样品(RZ19、RZ27)进行了LA-ICP-MS锆石U-Pb同位素分析,分析结果如表 1图 3所示。立体显微镜和CL图像显示,所测火山岩样品锆石多为无色透明,颗粒晶型较好,呈短柱状或长柱状,具明显岩浆成因的震荡生长环带结构(图 4)。2个样品锆石Th/U值均大于0.10(表 1),分别为0.47~2.08和0.33~1.35,为典型的岩浆成因锆石。

表 1 玛尼吐组火山岩LA-ICP-MS锆石U-Pb同位素分析结果 Table 1 LA-ICP-MS zircon U-Pb analyses of the volcanic rocks in Manitu Formation
样品测点Th/U同位素比值年龄/Ma
207Pb/206Pb±1σ206Pb/238U±1σ207Pb/235U±1σ 206Pb/238U±1σ
RZ19-10.920.050 010.001 800.019 770.000 310.143 580.005 551262
RZ19-21.090.049 930.000 960.021 910.000 270.148 890.003 161402
RZ19-30.660.098 760.002 490.024 810.000 360.350 450.010 241582
RZ19-40.730.051 130.000 940.024 420.000 280.174 590.003 511562
RZ19-50.740.051 450.002 710.023 970.000 460.180 420.010 451533
RZ19-61.460.048 980.001 270.023 430.000 290.157 080.004 411492
RZ19-71.330.057 630.001 750.023 360.000 330.185 780.006 171492
RZ19-81.310.049 870.002 250.023 070.000 390.160 210.007 871472
RZ19-90.910.053 210.001 680.023 220.000 330.169 190.005 811482
RZ19-101.730.049 150.001 320.023 480.000 310.158 740.004 651502
RZ19-110.590.113 060.023 530.024 900.002 230.307 540.073 5415914
RZ19-120.920.100 530.023 910.033 120.003 280.439 880.125 5621020
RZ19-131.560.076 470.021 550.028 920.003 030.290 370.092 7518419
RZ19-140.610.052 950.009 470.027 550.001 550.187 760.037 1617510
RZ19-150.720.049 860.008 030.026 790.001 340.187 200.033 191708
RZ19-162.020.066 160.003 830.029 430.000 650.267 030.017 851874
RZ19-170.900.052 250.001 010.021 960.000 260.163 300.003 411402
RZ19-181.030.052 890.000 810.020 870.000 230.151 280.002 481331
RZ19-190.690.049 960.001 020.020 900.000 260.141 840.003 121332
RZ19-200.470.050 490.001 610.020 490.000 290.137 830.004 691312
RZ19-210.770.054 770.002 230.020 900.000 360.148 330.006 451332
RZ19-221.560.053 580.001 070.024 410.000 300.179 890.003 961552
RZ19-231.640.048 500.000 880.023 260.000 280.153 150.003 031482
RZ19-242.080.098 500.002 530.025 930.000 380.339 610.010 031652
RZ19-250.850.049 450.001 470.025 840.000 360.175 150.005 711652
RZ19-260.770.049 980.001 550.024 990.000 350.159 400.005 361592
RZ19-271.250.050 930.002 060.024 810.000 400.167 760.007 401583
RZ19-281.240.048 020.003 150.026 080.000 580.162 150.011 531664
RZ19-291.160.056 560.005 100.026 220.000 810.178 570.017 531675
RZ19-301.010.051 130.002 570.023 390.000 450.158 970.008 621493
RZ27-10.560.049 800.001 180.022 070.000 430.152 550.003 641412
RZ27-20.510.050 620.001 260.021 970.000 430.153 800.003 881403
RZ27-30.460.047 230.001 970.020 410.000 440.142 180.006 291302
RZ27-40.560.049 330.001 920.023 650.000 510.160 260.006 671513
RZ27-51.350.050 680.001 520.023 340.000 470.156 230.004 901491
RZ27-60.480.049 540.001 550.021 250.000 430.146 170.004 751361
RZ27-70.660.050 110.001 520.023 070.000 460.152 870.004 821473
RZ27-80.600.062 540.001 780.022 050.000 440.193 450.005 741411
RZ27-90.540.053 900.001 480.021 530.000 430.153 940.004 331371
RZ27-100.810.047 810.001 260.021 830.000 430.146 160.003 921393
RZ27-110.650.051 780.001 500.022 980.000 460.164 400.004 951463
RZ27-120.590.049 090.001 550.021 220.000 430.142 970.004 701351
RZ27-130.540.050 430.001 630.020 910.000 430.142 690.004 821332
RZ27-140.500.050 300.001 610.023 780.000 490.158 360.005 341523
RZ27-150.420.050 670.001 640.022 270.000 460.147 950.005 021422
RZ27-160.480.048 700.001 550.022 700.000 460.146 310.004 851453
RZ27-170.330.050 840.002 220.023 030.000 520.153 290.007 151473
RZ27-180.640.046 920.001 180.022 680.000 440.146 280.003 731453
RZ27-190.650.049 920.001 430.021 510.000 430.148 010.004 371372
RZ27-200.530.050 880.001 450.022 350.000 450.161 370.004 791433
RZ27-210.540.054 470.001 940.022 650.000 480.177 020.006 731443
RZ27-220.510.049 490.001 080.021 870.000 420.151 100.003 281391
RZ27-230.580.048 780.001 190.022 390.000 440.147 400.003 661433
RZ27-240.450.048 680.001 270.022 650.000 440.150 440.004 001443
RZ27-250.610.050 570.001 570.022 440.000 460.160 340.005 231432
RZ27-260.520.050 630.001 360.021 470.000 420.146 970.004 051371
RZ27-270.420.051 850.001 850.019 870.000 420.143 710.005 371273
RZ27-280.540.049 300.001 690.020 940.000 430.146 760.005 281343
RZ27-290.520.052 320.001 290.021 490.000 420.156 740.003 931371
RZ27-300.570.050 810.001 360.021 730.000 430.149 950.004 131391
RZ27-310.490.050 220.001 260.021 690.000 420.149 180.003 811383
RZ27-320.520.049 800.001 160.022 980.000 450.156 060.003 681473
RZ27-330.480.050 030.001 190.022 910.000 450.156 270.003 771461
RZ27-340.530.048 730.001 140.023 580.000 460.157 040.003 731501
RZ27-350.510.049 120.001 050.021 540.000 410.155 710.003 301372
注:测试单位为中国地质科学院国家地质实验测试中心,2010年。
图 3 玛尼吐组火山岩U-Pb年龄谐和图

Fig. 3 U-Pb concordian diagrams of the volcanic rocks in Manitu Formation

图 4 玛尼吐组火山岩部分锆石阴极发光图

Fig. 4 CL images of selected zirons of the volcanic rocks in Manitu Formation

RZ19样品(采自固里河林场,121°30′14″N,47°40′35″E)共30个分析点,校正后具体分析数据中除去远离206Pb/238U-207Pb/235U谐和线或远离加权平均值的1、3、11、12、13、14、15、16、24共9个点外,其余21个分析点位于U-Pb谐和线上或其附近,206Pb/238U表面年龄为130~166 Ma,其加权平均值为(145±3) Ma,MSWD=2.5。

RZ27样品(采自四道沟盆地,121°37′12″N,47°37′35″E)共35个分析点,校正后具体分析数据中除去远离206Pb/238U-207Pb/235U谐和线或远离加权平均值的8、21、27计3个点,其余32个分析点均位于U-Pb谐和线上或其附近,206Pb/238U表面年龄为130~151 Ma,其加权平均值为(141±2)Ma,MSWD=3.7。

U-Pb测年结果表明,大兴安岭中段柴河地区玛尼吐组火山岩的形成年代为139~148 Ma。

3 地球化学特征

元素地球化学数据在国土资源部沈阳地质实验测试中心完成,主量元素采用XRF玻璃熔片法分析,分析精度和准确度优于5%;稀土和微量元素采用ICP-MS分析方法,分析精度和准确度一般优于10%。本次地球化学共采集6套样品,PM211YQ3(121°33′46″N,47°39′43″E)、PM211YQ25(121°32′30″N,47°40′03″E)、PM211YQ36(121°30′14″N,47°40′35″E)、PM211YQ40(121°28′53″N,47°41′08″E)、PM211Y42(121°28′56″N,47°41′08″E)、PM211YQ61(121°27′53″N,47°41′47″E)。表 2列出了玛尼吐组火山岩主量元素和微量元素分析结果。由表 2可知,玛尼吐组火山岩w(SiO2)为64.87%~68.65%,w(Al2O3)为15.53%~16.72%,富碱w(Na2O+K2O)=6.75%~9.22%,K2O/Na2O=0.63~1.57(属于钾质岩石),w(MgO)为0.40%~1.48%,w(CaO)为1.00%~2.52%。TAS火山岩分类命名图解(图 5)中,大部分样品落入亚碱性系列之中,岩性为粗面岩、粗面英安岩和英安岩;在w(SiO2)-w(K2O)图解(图 6)中,样品全部落入高钾钙碱性系列。

玛尼吐组火山岩稀土元素总量w(∑REE)=(124.95~208.57) × 10-6,在稀土元素配分模式图(图 7a)上,所有样品都具有轻稀土元素富集的右倾特征,重稀土分配较为平坦,轻重稀土分馏明显((La/Yb)N=11.50~14.88),铕负异常(δEu=0.45~1.17),这些特点反映出岩浆经历了斜长石的分离结晶作用或者岩浆源区有斜长石残留。通过微量元素原始地幔蛛网图(图 7b)可以看出,样品富集大离子亲石元素( Rb、Ba、K和LREE),亏损高场强元素( Nb、P和Ti),这些特点暗示岩浆可能来源于地壳。Sr元素差别较大,可能与个别样品中斜长石轻微绿帘石化有关。相容元素 Cr、Co、Ni质量分数较低,分别为(5.91~ 19.20)×10-6、(2.51~6.96)×10-6和(7.81~12.90)×10-6,Mg#值低(18~42,平均31),反映出岩浆地壳来源而非地幔源的特征。

表 2 玛尼吐组火山岩地球化学分析结果 Table 2 Geochemical data of the volcanic rocks in Manitu Formation
PM211YQ3PM211YQ25PM211YQ36PM211YQ40PM211YQ42PM211YQ61
SiO267.7467.7066.4064.8765.6468.65
TiO20.580.490.510.630.550.34
Al2O316.7215.6015.5316.3616.5015.67
TFe2O33.863.504.104.474.133.73
MnO0.070.080.090.100.090.09
MgO0.631.011.481.021.050.40
CaO1.751.642.372.522.131.00
Na2O2.624.004.474.054.345.66
K2O4.123.923.254.073.283.56
P2O50.100.160.190.240.200.12
烧失量1.541.681.351.431.920.58
合计99.6799.7899.7199.8399.7999.8
Mg#253742313418
δ1.82.52.53.02.63.3
τ24.423.721.719.522.329.9
La45.732.826.930.656.134.9
Ce87.366.153.862.255.776.5
Pr10.27.176.056.811.98.59
Nd37.626.022.225.541.632.1
Sm7.074.703.974.507.415.59
Eu1.551.650.720.881.091.02
Gd5.523.633.083.437.114.74
Tb1.030.640.570.611.150.80
Dy5.103.092.832.895.653.82
Ho1.030.630.590.591.140.80
Er2.952.012.011.863.302.42
Tm0.430.270.270.250.500.36
Yb2.491.611.591.483.052.17
Lu0.410.280.280.260.510.38
∑REE208.57150.66124.95142.06196.30174.37
δEu0.731.170.600.660.450.59
(La/Yb)N13.1814.5812.1914.8813.2211.50
Cr12.5019.209.145.915.9913.50
Co3.553.604.854.426.962.51
Ni9.8812.908.128.127.8112.10
Sr802.0627.077.4157.0615.0524.0
Rb10710373.791.574.066.3
Ba7137829129247041312
Th7.213.945.114.474.213.11
Nb15.809.628.608.378.6410.00
Zr242186180221179301
Y30.317.918.217.632.823.5
Rb/Sr0.130.160.950.580.120.13
Ti/Zr13.8115.2016.4016.5017.576.44
注:Mg#=100{(w(MgO)/40)/[(w(MgO)/40+0.899 8w(TFe2O3)/72)]};δ=2[w(Na2O)+w(K2O)]/[w(SiO2)-43];τ=[w(Al2O3)-w(Na2O)]/w(TiO2),τ为戈蒂尼指数。主量元素质量分数单位为%;微量元素质量分数单位为10-6
图 5 玛尼吐组火山岩TAS图解

Fig. 5 TAS diagram of the volcanic rocks in Manitu Formation

图 6 玛尼吐组火山岩w(K2O)-w(SiO2)图解

Fig. 6 w(K2O)-w(SiO2) diagram of the volcanic rocks in Manitu Formation

图 7 玛尼吐组火山岩稀土元素配分模式图(a)和微量元素蛛网图(b)

Fig. 7 Chondrite-normalized REE distribution pattern (a) and primitive mantle-normalized spidergram (b) of the volcanic rocks in Manitu Formation

表 2可知,玛尼吐组火山岩τ平均值为23.6,τ>10者一般为消减带火山岩。在戈蒂尼-里特曼指数(lgτ-lgδ)关系图(图 8)中,所有火山岩样品都投影于消减带范围(岛弧及活动大陆边缘)内。

图 8 玛尼吐组火山岩lgτ-lgδ关系图 (底图据文献[30])

Fig. 8 logτ-logδ diagram of the volcanic rocks in Manitu Formation (base map after[30])

4 讨论 4.1 形成时代

最新的锆石U-Pb定年结果显示,大兴安岭中生代火山岩的形成时代主要集中在122~173 Ma ,可分为3个峰期:晚侏罗世(160 Ma)、早白垩世早期(140 Ma)和早白垩世晚期(125 Ma)[1, 9, 11, 12, 15, 18, 20, 31, 32, 33],前者与本区的塔木兰沟组、满克头鄂博组、玛尼吐组、冀北——辽西地区的髫髻山组火山岩相对应,早白垩世早期火山事件与辽西张家口组火山岩及本区白音高老组相对应,早白垩世晚期火山事件与区域上的梅勒图组火山岩相对应[14]

笔者研究的火山岩锆石具有典型岩浆成因特征(Th/U>0.1),意味着其定年结果((145±2)Ma,(141±2)Ma)代表了火山岩的形成时代,这与建组剖面上获得的年龄137 Ma接近,也与该组地层在本区整合覆盖于下部晚侏罗世满克头鄂博、被白音高老组不整合覆盖的地质事实相吻合。结合本区玛尼吐组火山岩岩石组合和相邻区域古生物及化石资料,最终把玛尼吐组火山岩形成年代定为晚侏罗世。

4.2 岩浆源区

玛尼吐组火山岩富集强不相容亲石元素(Rb、Ba、K),亏损高场强元素(Nb、P、Ti),这一特点的火山岩岩浆源区可能为陆壳物质或是俯冲流体交代的岩石圈地幔[13]。玛尼吐组火山岩的相容元素Cr、Co、Ni和Mg#值较低,不具地幔成因的特征。研究区和相邻地区出露的基性火山岩有塔木兰沟组玄武岩(161±3)Ma(未发表数据)、梅勒图组玄武岩((122±1)Ma、(126±2)Ma)(未发表数据)和第四系大黑沟玄武岩,时代都与玛尼吐组不一致,所以玛尼吐组火山岩不可能由基性岩浆分离结晶作用形成。玛尼吐组火山岩的微量元素Ti/Zr=6.44~17.57(<20),位于壳源岩浆范围内[34];Rb/Sr=0.12~0.95,明显高于E-MORB(0.033)、原始地幔(0.03)和OIB(0.047)的Rb/Sr值[32]。上述显示,玛尼吐组火山岩的微量元素特征显示原始岩浆来源于地壳,并非地幔。

综上所述,大兴安岭中段柴河地区玛尼吐组火山岩原始岩浆来源于地壳岩石部分熔融。

4.3 构造背景

关于大兴安岭中生代火山岩构造背景,一直存在争论。主要有以下几种认识:与地壳拱起陷落作用有关[35],与裂谷作用有关[36],与边缘陆块型火山岩有关[37],与太平洋板块斜向俯冲导致的走滑剪切作用有关[38],与大陆根柱构造有关[39, 40],与板内伸展作用[41]有关,与太平洋板块俯冲作用[4, 42, 43, 44, 45, 46]有关,与地幔柱上涌作用[16, 47, 48]有关,与蒙古——鄂霍茨克洋闭合作用有关[11, 12, 15, 20, 49, 50]

从现在的火山岩定年结果来看,目前在吉黑东部还未发现138~145 Ma的火山岩[8, 31, 51],这一阶段的火山岩主要分布在松辽盆地以西的地区[4, 6, 18],表明这个阶段的岩浆事件与古太平洋板块的俯冲作用没有关系[15]。整个大兴安岭范围内的中生代火山岩分布很广,形成时代具有较大的变化范围,这种分布特征难以用地幔柱作用模式解释[10, 52]。与此同时,早期的研究认为蒙古——鄂霍茨克洋在中——晚侏罗世闭合[53],而Metelkin等[54]却认为大洋是自西向东逐渐闭合的,西部最终的闭合时间为晚侏罗世,东部最终闭合的时间为早白垩世,这一演化过程与本区玛尼吐组火山岩的形成时间(139~148 Ma)基本吻合。与此同时,大兴安岭地区玛尼吐组火山岩从北向南,存在由老到新的穿时性,同样证明它们的形成应与蒙古——鄂霍茨克缝合带演化有关。

苟军等[9]、孟恩等[11]、孙德有等[13],王建国等[20]对大兴安岭满洲里和大兴安岭南部中生代火山岩进行了年代学和地球化学研究,结果表明大兴安岭地区在晚侏罗世属于一种伸展环境。结合辽西地区在晚侏罗世——早白垩世土城子组之前存在的由北向南的推覆事件[55],表明该期火山岩应为这次推覆事件之后的产物,该期火山岩的形成应与这次陆壳加厚时间的坍塌或拆沉阶段相对应,即伸展的构造背景。本区玛尼吐组火山岩的锆石U-Pb年龄为139~148 Ma,在时间上正处于大规模伸展的环境中。

根据图 8可知,玛尼吐组火山岩样品都投影于消减带范围(岛弧及活动大陆边缘)内。而玛尼吐组火山岩w(K2O)为3.25%~4.12%,平均为3.70%,属于大陆活动边缘(活动陆缘)[56]。玛尼吐火山岩为钾质岩石,综合运用TiO2/Al2O3-Zr/Al2O3图解(图 9a)和50Nb-3Zr-Ce/P2O5图解(图 9b),可知玛尼吐组火山岩主要产生于大陆弧环境。

图 9 玛尼吐组火山岩的构造环境判别图解

Fig. 9 Discrimination diagrams of of the volcanic rocks in Manitu Formation

结合前人研究成果及对本区与邻区中生代的构造演化分析,笔者认为大兴安岭中段柴河地区玛尼吐组火山岩是蒙古——鄂霍茨克洋闭合后岩石圈伸展环境下的产物。

5 结论

根据大兴安岭中段柴河地区玛尼吐组火山岩年代学和地球化学研究,同时结合该区和邻区的研究成果,得出以下结论:

1)大兴安岭中段柴河地区玛尼吐组火山岩形成年龄为139~148 Ma,时期为晚侏罗世。

2)大兴安岭中段柴河地区玛尼吐组火山岩属于高钾钙碱性系列,以富集大离子亲石元素和轻稀土、亏损高场强元素特征,原始岩浆来源于地壳岩石的部分熔融。

3)大兴安岭中段柴河地区玛尼吐组火山岩是蒙古-鄂霍茨克洋闭合后岩石圈伸展环境下的产物。

参考文献
[1] 葛文春, 李献华, 林强, 等. 呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学, 2001, 36(2):176-183. Ge Wenchun, Li Xianhua, Lin Qiang, et al. Geochemistry of Early Cretaceous Alkaline Andesite from Hulun Lake, Daxing'anling and Its Tectonic Implications[J]. Scientia Geologica Sinica, 2001, 36(2):176-183.
[2] 赵忠华, 孙德友, 苟军, 等.满洲里南部塔木兰沟组火山岩年代学与地球化学[J]. 吉林大学学报:地球科学版, 2011, 41(6):1866-1880. Zhao Zhonghua, Sun Deyou, Gou Jun, et al. Chronology and Geochemistry of Volcanic Rocks in Tamulangou Formantion from Southern Manchuria, Inner Mongolia[J].Journal of Jilin University:Earth Science Edition, 2011, 41(6): 1866-1880.
[3] 林强, 葛文春, 曹林, 等. 大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 2003, 32(3): 208-222. Lin Qiang, Ge Wenchun, Cao Lin, et al. Geochemistry of Mesozoic Volcanic Rocks in Da Hinggan Ling: The Bimodal Volcanic Rocks[J]. Geochimica, 2003, 32(3):208-222.
[4] Wang Feng, Zhou Xinhua, Zhang Lianchang, et al. Late Mesozoic Volcanism in the Great Xing'an Range(NE China):Timing and Implications for the Dynamic Setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251:179-198.
[5] 张振强.额尔古纳满洲里地区中生代火山岩与铀成矿地质条件研究[J].辽宁地质, 2000, 17(4):263-266. Zhang Zhenqiang.Study on Mesozoic Volcanic Rocks and Uranium Metallogenic Geological Conditions in Erguna-Manzhouli[J]. Liaoning Geology, 2000, 17(4):263-266.
[6] Zhang Jiheng, Ge Wenchun, Wu Fuyuan, et al. Large Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China[J].Lithos, 2008, 102(1/2):138-157.
[7] Zhang Jiheng, Gao Shan, Ge Wenchun, et al. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China: Implications for Subduction-Induced De Lamination[J]. Chemical Geology, 2010, 276(3/4):144-165.
[8] Meng En, Xu Wenliang, Pei Fuping. Chronology of Late Paleozoic Volcanism in Eastern and Southeastern Margin of Jiamusi Massif and Its Tectonic Implications[J].Chinese Sciences Bulletin, 2008, 53:1231-1245.
[9] 苟军, 孙德有, 赵忠华, 等.满洲里南部玛尼吐组安山岩锆石U-Pb定年及岩石成因[J].岩石学报, 2010, 26(1):333-344. Gou Jun, Sun Deyou, Zhao Zhonghua, et al. Zircon LA-ICP-MS U-Pb Dating and Petrogenesis of Andesite in Manitu Formation from the Southern Manzhouli, Inner Mongolia[J]. Acta Petrologica Sinica, 2010, 26(1):333-344.
[10] Ying Jifeng, Zhou Xinhua, Zhang Lianchang, et al.Geochronological Framwork of Mesozoic Volcanic Rocks in the Great Xing'an Range, NE China, and Their Geodynamic Implications[J]. Journal of Asian Earth Sciences, 2010, 39(6):786-793.
[11] 孟恩, 许文良, 杨德彬, 等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其他地质意义[J].岩石学报, 2011, 27(4):1209-1226. Meng En, Xu Wenliang, Yang Debin, et al. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from Lingquan Basin in Manzhouli Area, and Its Tectonic Implications[J]. Acta Petrologica Sinca, 2011, 27(4):1209-1226.
[12] 徐美君, 许文良, 孟恩, 等.内蒙古东北部额尔古纳地区上护林向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报, 2011, 30(9):1321-1338. Xu Meijun, Xu Wenliang, Meng En, et al. LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Erguna Area, Northeastern Inner Mongolia[J]. Geological Bulletin of China, 2011, 30(9):1321-1338.
[13] 孙德有, 苟军, 任云生, 等. 满洲里南部玛尼吐组火山岩锆石U-Pb年龄与地球化学研究[J].岩石学报, 2011, 27(10):3083-3094. Sun Deyou, Gou Jun, Ren Yunsheng, et al.Zircon U-Pb Dating and Study on Geochemistry of Volcanic Rocks in Manitu Formation from Southern Manchuria, Inner Mongolia[J]. Acta Petrologica Sinica, 27(10):3083-3094.
[14] 孙巍, 迟效国, 潘世语, 等. 大兴安岭北部新林地区倭勒根群大网子组锆石LA-ICP-MS U-Pb年龄及其地质意义[J].吉林大学学报:地球科学版, 2014, 44(1):176-185. Sun Wei, Chi Xiaoguo, Pan Shiyu, et al. Zircon LA-ICP-MS U-Pb Dating and Significance of Da-wangzi Formation from Wolegen Group in Xinlin Area, Northern Great Xing'an Range[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(1):176-185.
[15] 许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29(2):339-353.
[16] 王忠, 朱洪森.大兴安岭中南段中生代火山岩特征及演化[J]. 中国区域地质, 1999, 18(4): 351-358. Wang Zhong, Zhu Hongsen. Temporal and Spatial Erolution of the Mesozoil Volcanism in Mid-Southern Daxing'anling Mountain[J]. Regional Geology of China, 1999, 18(4): 351-358.
[17] 杨扬, 高福红, 陈井胜, 等.赤峰地区中生代火山岩锆石U-Pb年代学证据[J].吉林大学学报:地球科学版, 2012, 42(增刊2):257-268. Yang Yang, Gao Fuhong, Chen Jingsheng, et al. Zircon U-Pb Ages of Mesozoic Volcanic Rocks in Chifeng Area[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(Sup.2):257-268.
[18] Zhang Jiheng, Ge Wenchun, Wu Fuyuan, et al. Mesozoic Bimodal Volcanic in Zhalantun of the Da Hinggan Range and Its Geological Significance: Zircon U-Pb Age and Hf Isotopic Constraints.Acta[J].Geologica Sinica, 2006, 80(1):58-69.
[19] 崔天日, 杨芳林, 司秋亮, 等.大兴安岭中段柴河地区碎斑熔岩的发现及其意义[J].地质与资源, 2012, 21(1):35-41. Cui Tianri, Yang Fanglin, Si Qiuliang, et al. Discovery and Significance of the Porphyroclastic Lava in Chaihe Area, Middle Daxinganling Moutains[J]. Geology and Resources, 2012, 21(1):35-41.
[20] 王建国, 和钟铧, 许文良. 大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报, 2013, 29(3):853-863. Wang Jianguo, He Zhonghua, Xu Wenliang. Petrogenesis of Riebecki Rhyolotes in the Southern Da Hinggan Mts: Geochronological and Geochemical Evidence[J]. Acta Petrologica Sinca, 2013, 29(3):853-863.
[21] 李世超, 徐仲元, 刘正宏, 等. 大兴安岭中段玛尼吐组火山岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J].地质通报, 2013, 32(2):199-207. Li Shichao, Xu Zhongyuan, Liu Zhenghong, et al. Zircon U-Pb Dating and Geochemical Study of Volcanic Rocks in Manitu Formation of Central Da Hinggan Mountains[J]. Geological Bulletin of China, 2013, 32(2): 199-207.
[22] Jackson S E, Pearson N J, Griffin W L, et al. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spec-Trometry(LA-ICP-MS)to in Situ U-Pb Zircon Geochronology[J]. Chem Geol, 2004, 211:47-69.
[23] Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb[J]. Chemical Geology, 2002, 192:59-79.
[24] Ludwig K R. ISOPLOT 3:A Gochronological Toolkit for Microsoft Excel[M]. Berkeley:Special Publication, 2003.
[25] Yuan Honglin, Gao Shan, Liu Xiaoming et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Blation Inductively Coupled Plasma Mass Spectrometry[J]. Geostandard Newsletter:The Journal of Geostandards and Geoanalysis, 2004, 28:353-370.
[26] Middlemost E A K. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology[M]. London: Longman Group, 1985.
[27] Irvine T N, Baragar W R. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8:523-548.
[28] Peccerillo A, Taylor T S. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81.
[29] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Process[C]//Sauders A D, Norry M J.Magmatism in the Ocean Basins.Geolo-gical Society Special Publication, 1989, 42:313-345.
[30] Rittman A. Note to Contribution by V Gottini on the "Serial Character of the Volcanic Rocks of Pantelleria"[J]. Bull Volcanol, 1970, 33:978-981.
[31] 许文良, 葛文春, 裴福萍, 等.东北地区中生代火山作用的年代学格架及其构造意义[J].矿物岩石地球化学通报, 2008, 27(增刊1):286-287. Xu Wenliang, Ge Wenchun, Pei Fuping, et al. Geochronological Framwork of Mesozoic Volcanic Rocks in NE China and Its Tectonic Implications[J].Bulletin of Minerallgy, Petrology and Geochemistry, 2008, 27(Sup.1):286-287.
[32] 张吉衡.大兴安岭中生代火山岩年代学及地球化学研究.北京:中国地质大学, 2009. Zhang Jiheng. Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China. Beijing:China University of Geosciences, 2009.
[33] 陈志广, 张连昌, 吴华英, 等.二连盆地北缘晚中生代火山岩Ar-Ar年代、地球化学及构造背景[J].岩石学报, 2009, 25(2):297-310. Chen Zhiguang, Zhang Lianchang, Wu Huaying, et al. Ar-Ar Age, Geochemistry and Petrogenesis of Late Mesozoic Volcanic Rocks in the Northern Marginal Region of Erlian Basin, Inner Mongolia[J]. Acta Petrologica Sinica, 2009, 25(2):297-310.
[34] Pearce J A.The Role of Sub-continental Lithosphere in Magma Genesisi at Destructive Plate Margins[C]//Hawkesworth C J, Norry M J.Continental Basalts and Mantle Xenoliths.Nantwich Shiva:Academic Press, 1983:230-249.
[35] 徐公愉.大兴安岭的大陆火山岩及其矿化作用[J].地质通报, 1983(3): 39-50. Xu Gongyu.Continental Volcanic Rocks in the Greater Khingan Mountains and Their Mineralization[J].Geological Bulletin of China, 1983(3): 39-50.
[36] 蒋国源, 权恒.大兴安岭根河海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质矿产研究所所刊, 1988(3): 23-100. Jiang Guoyuan, Quan Heng. Mesozoic Volcanic Rock of Genhe and Hailaer Basins in Daxinganling[J]. Bulletin of Shenyang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1988(3):23-100.
[37] 夏军, 王成善, 李秀华, 等.海拉尔及其邻区中生代火山岩的特征与边缘陆块型火山岩的提出[J]. 成都地质学院学报, 1993, 20(4):67-80. Xia Jun, Wang Chengshan, Li Xiuhua, et al.Characteristics of Mesozoic Volcanic Rocks in Hailaer and Its Adjacent Areas and Discussion on Volcanic Rocks of Marginal Block Type[J]. Journal of Chengdu College of Geology, 1993, 20(4):67-80.
[38] 许文良, 孙德有, 周燕.满洲里绥芬河地学断面岩浆作用和地壳结构[M]. 北京: 地质出版社, 1994. Xu Wenliang, Sun Deyou, Zhou Yan. Manzhouli-Suifenhe Geoscience Transect: Magmatism and Crust Structure[M].Beijing: Geological Publishing House, 1994.
[39] 邓晋福, 赵海玲, 莫宣学, 等.中国大陆根柱构造:大陆动力学的钥匙[M].北京:地质出版社, 1996. Deng Jinfu, Zhao Hailing, Mo Xuanxue, et al.Continental Roots-Plume Tectonics of China: Key to the Continental Dynamics[M]. Beijing: Geological Publishing House, 1996.
[40] 董树文, 吴锡浩, 吴珍汉, 等.论东亚大陆的构造翘变: 燕山运动的全球意义[J].地质论评, 2000, 46(1):8-13. Dong Shuwen, Wu Xihao, Wu Zhenhan, et al. On Tectonic Seesawing of the East Asia Continent: Global Implication of the Yanshanian Movenment[J]. Geological Review, 2000, 46(1):8-13.
[41] 邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, 6(4):339-346. Shao Ji'an, Zhang Lüqiao, Mou Baolei.Magmatism in the Mesozoic Extending Orogenic Process of Daxing'anling[J].Earth Science Frontiers, 1999, 6(4):339-346.
[42] 马家骏, 方大赫.黑龙江省中生代火山岩初步研究[J].黑龙江地质, 1991, 2(2):1-16. Ma Jiajun, Fang Dahe.A Preliminary Study of the Mesozoic Volcanic Rocks in Heilongjiang Province, China[J].Heilongjiang Geology, 1991, 2(2): 1-16.
[43] 朱勤文, 路凤香, 谢意红, 等. 大陆边缘扩张型活动带火山岩组合:松辽盆地周边中生代火山岩研究[J].岩石学报, 1997, 13(4):551-562. Zhu Qinwen, Lu Fengxiang, Xie Yihong, et al. Volcanic Assemblages in Active Belt of Spreading Type in Continental Margin: Study on Mesozoic Volcanic Rocks Around Songliao Basin[J]. Acta Petrologica Sinica, 1997, 13(4):551-562.
[44] Griffin W L, Zhang A D, O'Reilly S Y, et al.Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton[C]//Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia.Am Geophys Union Geogyn Ser, 1998, 27:107-126.
[45] Menzie M A, Xu Y. Geodynamics of the North China Craton[C]//Flower M F J, Chung S L, Lo C H, et al.Mantle Dynamics and Plate Interactions in East Asia.Geodynamics Series, 1998, 27:155-165.
[46] 吴福元, 孙德有, 张广良, 等.论燕山运动的深部地球动力学本质[J]. 高校地质学报, 2000, 6(3):379-388. Wu Fuyuan, Sun Deyou, Zhang Guangliang, et al. Deep Geodynamics of Yanshan Movement[J].Geological Journal of China Univerisities, 2000, 6(3):379-388.
[47] 林强, 葛文春, 孙德有, 等中国东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2):129-139. Lin Qiang, Ge Wenchun, Sun Deyou, et al. Tectonic Significance of Mesozoic Volcanic Rocks in Nor-theastern China[J]. Scientia Geologica Sinica, 1998, 33 (2):129-139.
[48] 葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J]. 地球科学, 2000, 25(2):172-178. Ge Wenchun, Lin Qiang, Sun Deyou, et al. Geo-Chemical Research into Origins of Two Types of Mesozoic Andesite in Daxing'anling[J]. Earth Science, 2000, 25(2):172-178.
[49] Wang Pujun, Liu Wanzhu, Wang Shuxue et al.40Ar-39Ar and K-Ar Dating on the Volcanic Rocks in the Songliao Basin, NE China:Constraints on Stratigraphy and Basin Dynamics Int[J]. Earth Sci, 2002, 91:331-340.
[50] 周新华, 英基丰, 张连昌, 等.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约[J]. 地球科学:中国地质大学学报, 2009, 34(1):1-10. Zhou Xinhua, Ying Jifeng, Zhang Lianchang, et al. The Petrogenesis of Late Mesozoic Volcanic Rock and the Contributions from Ancient Micro-Continents: Constraints from the Zircon U-Pb Dating and Sr-Nd-Pb-Hf Isotopic Systematics[J].Earth Science:Journal of China University of Geosciences, 2009, 34(1):1-10.
[51] Xu Wenliang, Ji Weiqiang, Pei Fuping, et al. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China:Chronology, Geochemistry, and Tectonic Implications[J]. Journal of Asian Earth Sciences, 2009, 34(3):392-402.
[52] Fan Weiming, Guo Feng, Wang Yuejun. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hingan Mountains, Northeastern China[J]. Journal of Volcanology and Geothermal Research, 2003, 121:115-135.
[53] Zorin Y A. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region(Russia) and Mongolia[J].Tectonophysics, 1999, 306:33-56.
[54] Metelkin D V, Vernikovsky V A, Kazansky A Y, et al. Late Mesozoic Tectonics of Central Asia Based on Paleomagnetic Evidence[J].Gondwana Research, 2010, 18(2/3):400-419.
[55] Zhang Yueqiao, Dong Shuwen, Zhao Yue, et al. Jurassic Tectonics of North China:A Synthetic View[J]. Acta Geologica Sinica, 2008, 82(2):310-326.
[56] 邱家骧, 林景仟.岩石化学[M]. 北京: 地质出版社, 1993. Qiu Jiaxiang, Lin Jingqian. Petrochemistry[M].Beijing: Geological Publishing House, 1993.
[57] Muller D, Rock N M S, Groves D I. Geochemical Discrimination Between Shoshonitic and Potassic Volvanic Rocks in Different Tectonic Settings:A Pilot Study[J].Mineralogy and Petrology, 1992, 46:259-289.
http://dx.doi.org/10.13278/j.cnki.jjuese.201502105
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

司秋亮, 崔天日, 唐振, 李伟, 吴新伟, 江斌, 李林川
Si Qiuliang, Cui Tianri, Tang Zhen, Li Wei, Wu Xinwei, Jiang Bin, Li Linchuan
大兴安岭中段柴河地区玛尼吐组火山岩年代学、地球化学及岩石成因
Chronology,Geochemistry and Petrogenesis of the Volcanic Rocks in Manitu Formation in Chaihe Area, Central Great Xing'an Range
吉林大学学报(地球科学版), 2015, 45(2): 389-403
Journal of Jilin University(Earth Science Edition), 2015, 45(2): 389-403.
http://dx.doi.org/10.13278/j.cnki.jjuese.201502105

文章历史

收稿: 2014-07-16

相关文章

工作空间