文章快速检索  
  高级检索
中国致密砂岩储层流体可动性及其影响因素
吴蒙1,2, 秦勇1, 王晓青3, 李国璋1, 朱超1, 朱士飞2     
1. 煤层气资源与成藏过程教育部重点实验室, 江苏 徐州 221008;
2. 江苏地质矿产设计研究院, 江苏 徐州 221006;
3. 河南理工大学资源环境学院, 河南 焦作 454000
摘要: 致密砂岩储层流体可动性对油气开发、预测和评价具有重要意义。查阅国内近十年相关成果,对致密储层流体可动性的相关参数、测试方法、分布特征及其影响因素进行了分析。发现致密砂岩储层的弛豫时间T2谱截止值为0.540~41.600 ms,可动流体孔隙度为0.12%~14.35%,可动流体饱和度为2.16%~90.30%,Ⅲ—Ⅳ类储层是致密砂岩储层的主要类型,致密储层可动流体的孔喉半径下限为0.013~0.110 μm,高压压汞、核磁共振、恒速压汞识别的孔喉半径下限分别为0.037 5、0.070 0~0.200 0、0.120 0 μm,水膜厚度为0.05~1.00 μm。统计分析显示,核磁共振、恒速压汞测得致密储层可动流体饱和度偏低;水膜厚度是影响致密砂岩储层流体渗流的主要因素;低煤阶煤层可动流体饱和度最高,致密砂岩储层次之,页岩储层最低;致密砂岩储层约是页岩储层、低煤阶煤层可动流体孔隙度的10倍;砂岩储层可动流体赋存于孔隙和喉道中,受孔隙和喉道共同控制;致密砂岩具有喉道分布集中,有效孔隙发育差,孔隙大部分为喉道半径小于1.000 μm的微细孔;喉道半径越集中、孔喉半径比越小、有效喉道半径越大,越有利于储层流体的渗流;砂岩渗透率(< 2×10-3 μm2)越低,可动流体参数衰减越快;渗透率(>2×10-3 μm2)越高,可动流体参数升高越缓慢;喉道半径是控制致密砂岩储层流体可动性的主要因素。
关键词: 致密砂岩    流体可动性    微观孔隙结构    润湿性    喉道半径    
Fluid Mobility and Its Influencing Factors of Tight Sandstone Reservoirs in China
Wu Meng1,2, Qin Yong1, Wang Xiaoqing3, Li Guozhang1, Zhu Chao1, Zhu Shifei2     
1. Key Laboratory of CBM Resource and Reservoir Formation Process, Ministry of Education, Xuzhou 221008, Jiangsu, China;
2. Jiangsu Mineral Resources and Geological Design and Research Institute, Xuzhou 221006, Jiangsu, China;
3. College of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
Abstract: Fluid mobility of tight sandstone reservoirs is of great significance for oil and gas development, prediction, and evaluation. According to relevant domestic achievements in the past ten years, the fluidity parameters, test methods, distribution characteristics, and influencing factors of tight reservoirs were analyzed. It is found that the T2 value of tight sandstone reservoirs is 0.540-41.600 ms, the porosity of the movable fluid is 0.12%-14.35%, the saturation of the movable fluid is 2.16%-90.30%, the lower limit of the pore throat radius of movable fluids in tight reservoirs is 0.013-0.110 μm, the lower limit of pore-throat radius of high pressure mercury injection, nuclear magnetic resonance, and constant velocity mercury injection are 0.037 5 μm, 0.070 0-0.200 0 μm, and 0.120 0 μm respectively, and the water film thickness is 0.05-1.00 μm. Ⅲ-Ⅳ reservoirs are the main types of tight sandstone reservoirs. Statistical analysis shows that the mobile flow saturation of tight reservoirs is low, which is measured by nuclear magnetic resonance and constant velocity mercury injection. The water film thickness is the main factor affecting fluid seepage in tight sandstone reservoirs. The saturation of movable fluid of low-rank coal seams is the highest, the second is that of tight sandstone reservoirs, and the lowest is that of shale reservoirs. The movable fluid porosity of tight sandstone reservoirs is 10 times more than that of shale reservoirs and low-rank coal seams. The movable fluids in sandstone reservoirs exist in pores and throats, and are controlled by these pores and throats. Tight sandstone has a concentrated throat distribution and poor effective pore development, and most of the pores are micropores with a throat diameter less than 1.000 μm. The more concentrated the throat radius, the larger the effective throat radius, and the more favorable the seepage of the reservoir fluid. Lower sandstone permeability (< 2×10-3 μm2) leads to faster decay of movable fluid parameters; and higher permeability (>2×10-3 μm2) leads to slower rise of movable fluid parameters. The throat radius is the main factor controlling fluid mobility of tight reservoirs.
Key words: tight sandstone    fluid mobility    micropore structure    wettability    pore-throat radius    

0 引言

致密砂岩物性差、喉道细、非均质性强,其储层描述和精细评价是一个关键问题[1]。一般情况下,孔隙度、渗透率可以较好地作为常规储层的分类标准。致密砂岩储层在沉积、成岩双重作用的改造下微观孔隙结构复杂[2],以纳米尺度的孔-喉连通体系为主[3-4],使得大部分流体被毛细管力束缚,难以流动[5],物性参数不能满足储层评价及生产需要[5-7]。近年来,许多学者[8-11]认为致密储层流体可动性是一个优于孔隙度、渗透率的表征参数,可以作为评价储层开发潜力、渗流能力[9-10],能够有效指导储层产能预测和开发方案的制定[11-16]。然而,目前对致密储层流体可动性的研究尚处于探索阶段,尤其对致密砂岩储层流体可动性影响因素存在争议。沉积、成岩作用是控制致密砂岩储集层流体可动性的主要因素[17]。黏土矿物的质量分数、种类、产状共同作用影响着致密砂岩储层可动流体饱和度[15]。纳米尺度喉道是连通致密砂岩孔隙空间、决定油气渗流的主要通道[18],水锁是造成致密砂岩储层开发难度大、采收率低的重要原因[19]。“大喉道-小孔隙-均质孔喉配置”是研究致密砂岩储层可动流体饱和度的关键[20],而致密砂岩储层孔喉结构非均质性越强,喉道对可动流体的赋存和渗流越显著[21]

目前,研究致密砂岩储层流体可动性的定量方法包括核磁共振[19-25]、高压压汞[18, 26]和恒速压汞[6, 20, 27]。考虑到致密砂岩储层孔渗低、孔喉半径小,这些实验手段对纳米级孔隙可能存在局限性[28-30]。为此,本文基于国内近10年相关文献及其报道的数据,对比了不同致密储层流体可动性的相关参数、测试方法,分析了可动流体的储层特征及其影响因素,以期为致密砂岩储层油气勘探和开发提供理论依据。

1 致密砂岩流体可动性表征参数

核磁共振技术利用带正电的氢核在磁场中的自旋作用所产生的横向弛豫时间T2,根据岩石中各种孔喉弛豫时间不同,在T2谱上表现出不同谱峰特征,进而判断孔喉特点。当岩心饱和水后,孔隙中水的赋存形态包括可动状态和束缚状态两种,其中,束缚状态主要是毛细管水和薄膜水。束缚流体对应的T2弛豫时间短,可动流体对应的T2弛豫时间长[23]T2豫驰时间受流体性质和岩石物性共同影响[21-22]。低T2值表示流体是微孔中的黏土束缚流体,中T2值代表小孔隙中的毛细管束缚流体和薄膜水,高T2值代表大孔隙中的可动流体[31]。根据T2截止值(T2cutoff),把储层流体划分为可动流体与不可动流体[23]。国际上,一般认为核磁共振实验,岩石受离心速度力作用使得岩石所受毛细管压力达到0.70 MPa时,岩石中剩下的水为束缚水[32]。部分学者[20, 24-27, 33]将13.985 ms作为流体在岩石中流动的T2弛豫时间界限,也有学者认为陆相致密砂岩储层T2截止值为1~20 ms[28],同时当T2截止值小于10 ms时,束缚流体由微孔隙和小喉道控制的大孔隙中的流体构成[29]T2弛豫时间长短受孔隙大小、形态,流体类型、黏度,矿物成分以及表面性质控制[30]。安塞油田长6储层流动孔喉半径为0.250 μm,孔喉半径下限为0.100 μm[34]。根据气-水离心Washburn方程计算,陇东地区延长组长7段致密储层喉道半径大于0.110 μm为可动流体[35]。根据核磁共振研究,致密砂岩孔喉半径大于0.013 μm是可动流体[36]。吉木萨尔凹陷芦草沟组砂岩储层可动流体的主喉道半径为0.070~0.200 μm,有效孔喉半径下限大约是50 nm[5]。统计这些作者给出的测试结果,致密砂岩储层可动流体的孔喉半径下限为0.013~0.110 μm。

可动流体饱和度可以反映流体在孔隙结构中的赋存、渗流特征,能够直观、快速地评价储层孔隙结构优劣[22, 37-39],选择合适的测量方法非常重要。核磁共振识别储层可动流体的孔喉半径下限为0.070 0~0.200 0 μm[34, 38],恒速压汞可以测量岩石可动流体的孔喉半径下限为0.120 0 μm[39],高压压汞识别致密储层可动流体的孔喉半径下限为0.037 5 μm[36-37]。表明核磁共振和恒速压汞测得可动流体饱和度偏低,高压压汞测得可动流体饱和度较准确。核磁共振T2谱分析毛细管压力达到0.70 MPa时,束缚水膜对应的喉道半径下限为0.20 μm[38]。储层水膜厚度在0.05~1.00 μm之间[39],指示水膜厚度是影响致密砂岩储层渗流能力的重要因素。

2 致密砂岩储层可动流体分布特征

可动流体主要赋存于致密砂岩的大孔隙中,喉道和微小孔隙中主要赋存束缚流体[40]。储层流体可动性表征参数包括可动流体饱和度、可动流体孔隙度和束缚水饱和度。其中,可动流体饱和度为岩石孔隙中可动流体部分所占的比例;可动流体孔隙度等于可动流体百分数与孔隙度的乘积,可以定量描述单位体积岩样的可动流体体积[41-42]。综合国内致密砂岩储层流体可动性研究数据,发现T2谱截止值为0.540~41.600 ms,可动流体孔隙度为0.12%~14.35%,可动流体饱和度为2.16%~90.30%,束缚流体饱和度为9.70%~97.84%(表 1)。

表 1 国内致密砂岩储层核磁共振流体可动性参数特征 Table 1 Fluid mobility parameters of NMR indomestic tight sandstone reservoir
T2cutoff/ms 可动流体饱和度/% 可动流体孔隙度/% 束缚流体饱和度/% 典型地区 文献
3.960~23.140 7.23~81.94 0.12~12.75 18.06~96.47 鄂尔多斯盆地 [33, 42-44]
16.000 40.51~74.92 7.43~12.67 25.08~59.49 张韩区块 [45]
13.895 2.18~83.62 0.17~8.57 16.38~97.82 苏里格地区 [46-49]
13.895 26.48~44.64 2.93~6.11 55.36~73.52 安塞地区 [34]
0.540~15.000 6.89~70.09 0.39~7.47 29.91~93.11 姬塬地区 [22, 25-27, 30, 50]
10.55~49.45 0.15~2.49 50.55~89.45 川西新场地区 [6]
13.895 19.27~75.75 1.99~9.39 24.25~80.73 华庆地区 [14, 51-52]
13.895 2.16~46.55 0.28~6.09 53.45~97.84 辽河西部凹陷南段 [53]
15.000 29.80~50.50 49.50~70.20 镇北地区 [37]
13.895 27.77~62.00 2.09~9.10 38.00~72.23 板桥合水地区 [31, 54]
3.870~41.600 19.44~90.30 0.22~14.35 9.70~88.56 陇东地区 [10, 35, 38, 55-56]
13.895 20.12~52.03 1.80~7.17 42.97~79.88 甘谷驿地区 [15]
8.030~13.890 25.60~61.80 9.03~12.60 38.20~74.40 苏北盆地 [57]
29.44~68.92 31.08~60.56 准噶尔盆地 [5]
注:空白代表没有数据,下同。

以可动流体饱和度高低为标准,将储层从好到差划分为5类,可动流体饱和度分别为:大于65%(Ⅰ类,好储层)、50%~65%(Ⅱ类,较好储层)、35%~50%(Ⅲ类,中等储层)、20%~35%(Ⅳ类,较差储层)、小于20%(Ⅴ类,差储层)[58]。运用核磁共振技术,前人[6, 16, 20-28, 31-32, 34-37, 40-41, 44, 46-47, 50-53, 55-59]测试213块砂岩样品,其中:Ⅰ类储层样品19块,占总数的8.92%;Ⅱ类储层样品26块,占总数的12.21%;Ⅲ类储层样品72块,占总数的33.80%;Ⅳ类储层样品71块,占总数的33.33%;Ⅴ类储层样品25块,占总数的11.74%(表 2)。可以看出,孔隙度、渗透率减小,可动流体饱和度降低;Ⅲ—Ⅳ类致密砂岩储层样品数占样品总数的67.13%,对应的可动流体饱和度小于50%。

表 2 国内不同储层类型致密砂岩可动流体特征 Table 2 Fluid characteristics of tight sandstone with different reservoir types in China
储层类型 样品数 孔隙度/% 渗透率/(10-3 μm2) 可动流体饱和度/%
极小值 极大值 平均值 极小值 极大值 平均值 极小值 极大值 平均值
19 5.42 18.61 11.42 0.010 55.000 7.500 65.83 90.31 78.70
26 6.68 18.77 11.51 0.027 6.380 0.940 50.50 63.78 57.60
72 4.70 19.50 11.51 0.003 6.960 0.710 35.14 49.80 41.66
71 2.82 17.00 10.73 0.002 3.000 0.410 20.12 33.95 28.45
25 6.60 18.30 10.10 0.020 0.460 0.140 2.16 19.89 12.09

通过致密砂岩储层与低煤阶煤层、页岩储层对比发现,致密砂岩储层较低煤阶煤层、页岩储层主要孔隙半径分布集中。相比于低煤阶煤层、页岩储层,致密砂岩储层T2谱截止值、可动流体饱和度、可动流体孔隙度分布范围广。对可动流体饱和度而言,低煤阶煤层最高,致密砂岩储层次之,页岩储层最低。致密砂岩储层约是低煤阶煤层、页岩储层可动流体孔隙度的10倍(表 3)。

表 3 不同储层类型流体可动性参数特征 Table 3 Characteristics of fluid mobility parameters with different reservoir types
储层类型 主要孔径分布/μm T2cutoff/ms 可动流体饱和度/% 可动流体孔隙度/% 文献
海相页岩 0.02~0.20 1.07~3.22 23.19~30.84 0.49~0.94 [60-61]
陆相(油)页岩 > 0.20 0.15~0.54 14.48~44.46 0.29~5.78 [62]
低煤阶煤层 0.01~1.00 0.50~7.00 92.55~98.97 0.45~1.89 [63]
致密砂岩 0.10左右 0.54~41.60 2.16~90.30 0.12~14.35 [64]

观察鄂尔多斯盆地不同地区致密砂岩储层可动流体在微观孔隙中的赋存特征(表 4),发现姬源地区砂岩储层孔隙半径平均值、喉道半径平均值、孔喉比和主流喉道半径均较小,分选系数较大,其可动流体孔隙度、可动流体饱和度均较高。相反,苏里格地区致密砂岩储层孔隙半径平均值、喉道半径平均值、主流喉道半径、孔喉比和分选系数均较大,但其可动流体孔隙度较低。表明致密砂岩储层可动流体赋存于孔隙和喉道中,同时受孔隙和喉道共同控制。

表 4 鄂尔多斯盆地致密砂岩储层微观特征与流体可动性的关系 Table 4 Relation between microscopic characteristics of tight sandstone reservoirs and fluid mobility in the Ordos basin
地区 孔隙半径平均值/μm 喉道半径平均值/μm 主流喉道半径/μm 分选系数 孔喉比 可动流体饱和度/% 可动流体孔隙度/% 文献
苏里格 [20, 46, 49]
红河 [43, 65]
姬源 [25-27]
板桥 [27, 31]
华庆 [48]
安塞 [34]
合水 [19, 55]
注:,下同。
3 致密砂岩储层流体可动性影响因素

致密储层流体可动性受多种因素影响。宏观地质因素如物源、沉积环境、成岩作用,微观地质因素主要包括喉道半径的大小[34, 48]、喉道连通性[34, 58]、孔喉半径比[38]、喉道发育程度[15, 19, 35, 38, 56]、孔喉数量配置比[19, 58]以及黏土矿物发育程度[36]

3.1 宏观地质因素

物源和沉积环境控制着砂岩成分、粒度和孔隙类型等,进而对储层流体可动性造成影响[65-66]。鄂尔多斯盆地砂岩储层岩性、沉积环境与流体可动性关系见表 5,发现姬塬地区、红河地区、马岭地区、和合水—华池地区处于相同沉积环境,在不同物源供应的情况下,储层岩性成分存在差异,可动流体饱和度、可动流体孔隙度的均值分别处于31.83%~41.48%、3.22%~5.02%之间。其中姬塬地区长6储层物源主要来自盆地北东、北西方向[27],马岭地区长8储层物源来自盆地北东、西南和西部方向[40]。辫状河三角洲前缘沉积环境下,镇北地区比苏里格东部地区致密砂岩储层可动流体饱和度、可动流体孔隙度高。沉积环境由辫状河三角洲—曲流河三角洲→曲流河三角洲平原→三角洲前缘、深湖—半深湖→深湖—半深湖的过程,致密砂岩储层可动流体饱和度逐渐降低。

表 5 鄂尔多斯盆地致密砂岩储层岩性、沉积环境与流体可动性的关系 Table 5 Relation between lithology, sedimentary environment and fluid mobility of tight sandstone reservoirs in Ordos basin
地区 沉积环境 岩性成分 可动流体饱和度/% 可动流体孔隙度/% 文献
姬塬 三角洲前缘 长石砂岩 [27, 50]
红河 三角洲前缘 长石岩屑砂岩、岩屑长石砂岩 [65]
马岭 三角洲前缘 岩屑长石砂岩、长石岩屑砂岩 [40]
华庆 三角洲前缘 岩屑长石砂岩、长石岩屑砂岩 [48, 52]
合水—华池 三角洲前缘 岩屑长石砂岩 [55]
镇北 辫状河三角洲前缘 长石岩屑砂岩、岩屑长石砂岩 [37]
苏里格东部 辫状河三角洲前缘 石英砂岩、岩屑石英砂岩 [21, 47]
苏里格西部 辫状河三角洲曲流河三角洲 石英砂岩、岩屑石英砂岩 [21]
苏里格 曲流河三角洲平原 石英砂岩 [20]
板桥 三角洲前缘(湖相)、深湖—半深湖 岩屑长石砂岩 [27, 31]
陇东 深湖—半深湖 长石岩屑砂岩、岩屑长石砂岩 [35]

同时,沉积与成岩的双重作用控制储层孔喉大小、分布及形态,是影响储层可动流体的重要因素[24]。沉积水动力越弱,粒度越细,机械压实和胶结作用越强,孔喉连通性和微观孔隙结构越差,可动流体饱和度就越小[37]。随着埋深、矿物成分成熟度增加,成岩作用对可动流体影响越显著[51]。其中:压实作用使得储层颗粒排列紧密,体积减小,物性降低,使部分可动流体变成束缚流体[51, 57];溶蚀作用不仅可以形成次生孔隙[55],还能沟通原本不连通的孔隙,使储层可动流体增加[19];胶结作用使胶结物充填孔喉空间,孔喉连通性降低,孔隙毛细管力增强,使部分可动流体变成束缚流体[53, 57]

致密砂岩储层微裂缝连通大孔隙和中孔隙甚至基质中微—小孔隙,使大量死孔隙或者微孔隙中的束缚流体转变成可动流体,有效改善了储层的渗流能力,对提高可动流体饱和度具有重要意义[5, 30, 54]

3.2 储层孔渗性质

基于核磁共振T2谱和离心实验,发现对于物性较差的储层,渗透率是决定可动流体饱和度的主要因素[5, 25, 33]。死孔隙、微—小孔喉的阻挡和堵塞, 导致孔隙度较大的储层可动流体饱和度低[30]。黏土矿物占据原生孔隙、切割喉道和堵塞孔隙,造成孔隙度减小,束缚流体饱和度增多[20]。孔喉分布和连通性差异是决定岩石渗透率的重要因素[67]。也有作者[54]认为,致密砂岩储层孔隙度、渗透率与可动流体饱和度之间不存在必然的因果关系。

根据前人[5, 19-20, 23-26, 30, 34-35, 37, 45-46, 49-57]对143块致密砂岩的测试结果,绘制了可动流体参数与孔渗性质散点图(图 1)。孔隙度与可动流体饱和度的相关性极差,与可动流体孔隙度具有一定的正相关趋势(图 1a)。渗透率与可动流体饱和度之间具有对数正相关趋势,与可动流体孔隙度之间对数正相关性较为显著(图 1b)。可见,渗透率(< 2×10-3 μm2)越低,可动流体参数衰减越快;渗透率(>2×10-3 μm2)越高,可动流体参数升高越缓慢。致密砂岩储层孔渗性无论好坏,可动流体参数均存在较大的变化,这与前人[68-70] “物性较好的储层可动流体参数是多种因素综合作用的结果”不完全相同。

图 1 致密砂岩可动流体参数与孔渗性质散点图 Fig. 1 Plots of porosity and permeability and to movable fluid parameters
3.3 储层孔隙结构

孔隙结构是储层孔喉大小、空间分布、几何形状及其连通性的总称,是反映储层品质最直观的物理属性[70]。喉道半径越大、喉道数量越多、孔喉半径比越小,孔喉连通性越好,可动流体饱和度就越高[19]。喉道结构是控制微观孔隙结构非均质性,影响可动流体赋存特征的关键因素[42, 51, 68]。有效喉道半径越大,可动流体的束缚力越弱,流体在孔隙中的可流动能力越强[40]。可动流体饱和度受喉道的分布形态、大小、类型以及分选性的共同作用[51]。致密砂岩储层喉道呈弯片状、片状,孔喉连通性差,储层内部容易形成“死孔隙”,可动流体饱和度减少[35]。储层孔隙形状多样,椭圆形孔隙仅在壁面形成水膜,束缚水饱和度相对较低;三角形孔隙和不规则形孔隙除在壁面形成水膜外,还会在边角迂回处聚集成液滴,束缚水饱和度增高[71]

前人基于核磁共振和恒速压汞测试,统计处理后得到致密砂岩储层孔喉半径加权平均值[23, 34, 51]和喉道半径加权平均值[23, 34, 51]。孔隙半径为110.00~198.10 μm,平均138.00 μm,孔隙半径越大,储层的储集能力越好。喉道半径为0.124~1.640 μm,平均0.673 μm,喉道半径小于1.000 μm占总数的86.40%,表明该喉道大部分为微细孔。主流喉道半径为0.109~5.163 μm,平均1.025 μm,喉道半径越大,流体越容易流动[19, 67]。分选系数为0.003~3.580,平均为0.508,小于0.500的样品占70.70%,表明喉道分布较集中。孔喉半径比为109.60~891.30,平均为353.58,孔喉半径比越小,孔喉分布越均匀,孔隙和喉道半径差异就越小。最大喉道半径为0.13~3.30 μm,平均为1.17 μm,1.00~1.60 μm最大喉道半径区间的储层可动流体饱和度较高。单位体积有效喉道体积为0.003~0.090 mL/cm3,平均为0.040 mL/cm3;单位体积有效孔隙体积为0.003~0.150 mL/cm3,平均为0.065 mL/cm3,可动流体饱和度随着有效喉道体积与有效孔隙体积之和增大而增大。孔喉半径加权平均值为0.208~3.351 μm,平均1.010 μm;孔隙半径加权平均值为121.01~161.00 μm,平均146.75 μm。

统计结果显示:致密砂岩孔隙半径与可动流体孔隙度、可动流体饱和度呈对数正相关趋势,但数据点十分离散,表明致密砂岩储层有效孔隙发育差(图 2a);喉道半径与可动流体饱和度、可动流体孔隙度呈现微弱的线性正相关关系,相关性好于孔隙半径与可动流体参数的相关性,表明喉道半径对可动流体的影响更大(图 2b);主流喉道半径与可动流体饱和度的对数正相关性极低,但与可动流体孔隙度的对数相关性较为显著,说明大喉道有利于可动流体赋存空间的发育,但对流体可动性影响有限(图 2c);分选系数与可动流体饱和度具有微弱的指数正相关性,与可动流体孔隙度之间的指数正相关性较为显著,表明有效喉道半径分布越集中,越有利于储层流体的流动(图 2d)。因此,可动流体渗流特征主要受喉道控制,有效喉道半径越小,流体束缚力越强,孔隙中可动流体饱和度越小。

图 2 可动流体参数与孔喉结构参数的关系 Fig. 2 Relation between the microscopic pore structure parameters andthe movable fluid parameters

孔喉半径比是表征储层流体可动性的另一有效参数,与可动流体饱和度之间具有微弱的对数负相关性,与可动流体孔隙度的线性负相关性较为显著(图 3a)。孔喉半径比越大,小喉道被大孔隙所包围,储层流体渗流容易发生卡断现象,可动流体变成束缚流体;孔喉半径比越小,大喉道在总孔隙空间的占比越大,束缚流体越容易转变为可动流动。同时,孔喉半径比减小,也有可能出现小孔隙被喉道包围,可动流体饱和度降低[40]。最大喉道半径与可动流体饱和度呈微弱的指数正相关性,与可动流体孔隙度呈显著的线性正相关性(图 3b),表明最大喉道半径对储层流体可动性的控制作用更为显著。

图 3 可动流体参数与孔喉半径比、最大喉道半径关系 Fig. 3 Relation between radius ratio of pore throat, maximum throat radius and the movable fluid parameters

致密砂岩样品单位体积有效孔隙体积与可动流体饱和度、可动流体孔隙度均呈现较为显著的指数正相关性(图 4a);单位体积有效喉道体积与可动流体饱和度呈较为显著的对数正相关性,与可动流体孔隙度呈较为显著的指数正相关,单位体积有效喉道体积与可动流体孔隙度的相关性略好于可动流体饱和度(图 4b)。也就是说,赋存于致密砂岩储层有效孔隙中流体的可动性要优于赋存在有效喉道中的流体。物性较差时,可动流体主要赋存于孔隙中,束缚流体赋存于喉道;物性较好时,可动流体一部分存在于大的喉道,另一部分存在于孔隙,表明可动流体饱和度只与孔隙和喉道有关[21, 47, 51]

图 4 有效孔隙、有效喉道与可动流体参数关系 Fig. 4 Relationship between the effective pore and throat volume and the movable fluid parameters

致密砂岩样品孔喉半径加权平均值与可动流体饱和度呈微弱的对数正相关性,与可动流体孔隙度之间的对数正相关性较为显著(图 5a);孔隙半径加权平均值与可动流体饱和度之间数据点离散,相关性极差,而与可动流体孔隙度具有微弱的指数正相关性(图 5b)。这一特点,表明喉道半径是控制致密砂岩储层流体可动性的主要因素。喉道半径增大,可动流体饱和度升高。

图 5 可动流体参数与孔喉、孔隙半径加权平均值关系 Fig. 5 Relation between the movable fluid parameters and the weighted averageof pore, throat radius
3.4 黏土矿物与储层可动流体

致密砂岩储层中常见的黏土矿物包括伊利石、绿泥石、蒙脱石以及伊蒙混层等。黏土矿物大多是结晶层状硅酸盐颗粒,直径1~5 mm,一般小于2 mm,在致密砂岩中主要起填隙作用,其质量分数、赋存状态及类型严重影响孔喉的连通性,使储层流体呈束缚状态[38]。黏土矿物的质量分数、种类、产状均会对储层可动流体饱和度产生影响。单一种类黏土矿物的质量分数基本上不影响可动流体赋存,可动流体饱和度主要受多种黏土矿物的共同作用[40]。黏土矿物的富集能够破坏储层可动流体饱和度:一方面使储层比表面增加,孔喉表面粗糙度增大,孔隙与喉道间的水膜厚度增加,导致孔喉表面的束缚流体质量分数增加;另一方面,赋存于黏土矿物微孔中的流体,受毛细管力的束缚作用,使部分可动流体变为束缚流体[15, 43, 54]

同时,黏土矿物充填于孔隙、喉道,造成孔隙空间减小;外来液体与储层岩石发生反应,如黏土矿物遇水膨胀、外来液体与储层流体反应生成沉淀等,都会大大减小孔喉体积,甚至堵塞喉道,进而降低可动流体饱和度[57]。绿泥石主要呈膜状,可以吸附大量水和油,使储层流体呈束缚状态[40]。伊利石多呈弯片状或丝缕状垂直碎屑颗粒,表面生长或呈搭桥状充填于碎屑颗粒之间,使得喉道曲折迂回,加上黏土矿物比表面大以及其表面所带电荷的强吸附性,直接影响可动流体饱和度[54]。黏土矿物产状影响孔隙间的连通性,孔隙表面附着片丝状伊利石,对原孔隙充填、切割,使孔喉曲折迂回,造成孔隙间连通性变差,流体难以渗流而形成束缚流体[33, 42]

3.5 润湿性及敏感性对流体可动性的影响

致密砂岩储层润湿性强弱直接影响孔隙表面水膜厚度[39, 72],砂岩亲水性强弱与水膜厚度呈正相关关系[72]。亲水岩石表面形成的较厚水膜,具有明显的界面效应,不利于流体渗流[49, 73]。强亲水性使储层表面水膜厚度增大,喉道缩小,致使孔隙贾敏效应突出,甚至完全阻塞喉道,束缚流体饱和度增加[49]。在大孔喉中流体分子受孔隙表面强润湿性影响时,可动流体饱和度减少,反之则可动流体饱和度增加[10, 49]。砂岩储层亲水性较强时,颗粒表面对流体的吸附能力越强,微孔内水的流动需要更大的驱动压力克服毛细管力[43, 49]。储层润湿性表现为中—强亲水时,岩石表面具有较强的吸附能力,碎屑颗粒表面可动流体容易被吸附成为束缚流体[74]

致密砂岩敏感性,如水敏、速敏、盐敏、碱敏、酸敏和应力敏,都会伤害储层,影响可动流体饱和度。储层伤害程度与黏土矿物类型、孔喉大小以及碎屑组分紧密相关[75],黏土矿物的成分、质量分数和产状是影响储层敏感性的主要因素[76],黏土矿物质量分数直接影响储层水敏性强弱[77]。外来流体侵入使储层中的黏土矿物发生膨胀、分散、运移,从而堵塞孔隙和喉道,可动流体饱和度减少[78]。若外来流体矿化度较低,储层黏土矿物发生膨胀、分散和运移,从而伤害储层渗透率[76, 79]。酸性外来流体可与砂岩储层中绿泥石、高岭石等反应,产生化学沉淀或者凝胶;使碳酸盐矿物溶解及再沉淀,引起可动流体改变[80-81]。碱性外来流体能够与储层硅质矿物发生化学反应,产生新的硅酸盐沉淀物和硅凝胶,或者OH-与一些二价阳离子反应生成沉淀,降低了储层可动流体饱和度[82]。若外来溶液与原储层溶液混合,可以使疏松的矿物颗粒运移,堵塞喉道,储层渗流能力下降[78, 83]。若上覆地层压力、构造应力和孔隙流体压力的动态平衡被打破,承载骨架颗粒与喉道的相互关系发生改变,引起砂岩储层岩石颗粒的不可逆微变形,最终导致渗透能力发生变化[83-84]

因此,储层中黏土、碳酸盐、硅酸盐、硫酸盐等敏感性矿物与外来流体所携带的固体微粒接触,均可以使储层渗流能力以及可动流体饱和度发生改变[76, 85-86]

4 结论

1) 我国致密砂岩储层可动流体的孔喉半径下限为0.013~0.110 μm,高压压汞、核磁共振、恒速压汞识别储层可动流体的孔喉半径下限分别为0.037 5、0.070 0~0.200 0、0.120 0 μm,储层的水膜厚度为0.05~1.00 μm。因此,核磁共振、恒速压汞测得致密储层可动流体饱和度偏低,高压压汞测得储层可动流体饱和度较准确,水膜厚度是影响致密储层渗流能力的重要因素。

2) 我国致密砂岩储层T2谱截止值为0.540~41.600 ms,可动流体孔隙度为0.12%~14.35%,可动流体饱和度为2.16%~90.30%,束缚流体饱和度为9.70%~97.84%。储层类型从Ⅰ—Ⅴ孔隙度、渗透率减小,可动流体饱和度降低,Ⅲ—Ⅴ类储层是致密砂岩储层的主要类型。比较低煤阶煤层、页岩和砂岩储层的可动流体饱和度,发现低煤阶煤层最高,致密砂岩储层次之,页岩储层最低。且砂岩储层约是低煤阶煤层、页岩储层可动流体孔隙度的10倍。致密砂岩储层可动流体赋存于孔隙和喉道中,同时受孔隙和喉道共同控制。

3) 我国致密砂岩储层具有喉道分布集中,有效孔隙发育差和孔隙大部分为喉道半径小于0.10 μm的微细孔等特点。砂岩渗透率(< 2×10-3 μm2)越低,可动流体参数衰减越快;渗透率(>2×10-3 μm2)越高,可动流体参数升高越缓慢。喉道半径越集中、孔喉半径比越小、有效喉道半径越大,越有利于储层流体的渗流;有效孔隙中赋存的可动流体优于有效喉道中赋存的可动流体。

4) 致密砂岩储层流体可动性受宏观地质因素、孔渗性质、润湿性、黏土矿物和敏感性共同作用。包括物源、沉积和成岩作用控制下的砂岩成分、粒径、孔喉大小、分布、形态,孔隙连通性,亲水岩石表面的水膜厚度、吸附能力,黏土矿物的富集、充填孔隙以及黏土、碳酸盐、硅酸盐、硫酸盐等敏感性矿物与外来流体相互作用。其中,喉道半径是控制致密砂岩储层流体可动性的主要因素。

参考文献
[1]
郭秋麟, 陈宁生, 胡俊文, 等. 致密砂岩气聚集模型与定量模拟探讨[J]. 天然气地球科学, 2012, 23(2): 199-207.
Guo Qiulin, Chen Ningsheng, Hu Junwen, et al. Geo-Model of Tight Sandstone Gas Accumulation and Quantitative Simulation[J]. Natural Gas Geoscience, 2012, 23(2): 199-207.
[2]
刘伟, 林承焰, 王国民, 等. 柴西北地区油泉子油田低渗透储层特征与成因分析[J]. 石油学报, 2009, 30(3): 417-421.
Liu Wei, Lin Chengyan, Wang Guomin, et al. Characteristics of Low Permeability Reservoir and Its Origin in Youquanzi Oilfield in the Northwest Part of Qaidam Basin[J]. Acta Petrolei Sinica, 2009, 30(3): 417-421.
[3]
杨华, 付金华, 刘新社, 等. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发, 2012, 39(3): 295-303.
Yang Hua, Fu Jinhua, Liu Xinshe, et al. Accumulation Conditions and Exploration and Development of Tight Gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development, 2012, 39(3): 295-303.
[4]
邹才能, 陶士振, 杨智, 等. 中国非常规油气勘探与研究新进展[J]. 矿物岩石地球化学通报, 2012, 31(4): 312-322.
Zou Caineng, Tao Shizhen, Yang Zhi, et al. New Advance in Unconventional Petroleum Exploration and Research in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4): 313-322.
[5]
李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1): 140-149.
Li Min, Wang Hao, Chen Meng. Distribution Characteristics and Influencing Factors of Movable Fluid in Tight Sandstone Reservoirs:A Case Study of Lucaogou Formation in Jimsar Sag, NW China[J]. Lithologic Reservoirs, 2018, 30(1): 140-149.
[6]
肖开华, 冯动军, 李秀鹏. 川西新场须四段致密砂岩储层微观孔喉与可动流体变化特征[J]. 石油实验地质, 2014, 36(1): 77-82.
Xiao Kaihua, Feng Dongjun, Li Xiupeng. Micro Pore and Throat Characteristics and Moveable Fluid Variation of Tight Sandstone in 4th Member of Xujiahe Formation, Xinchang Gas Field, Western Sichuan Basin[J]. Petroleum Geology & Experiment, 2014, 36(1): 77-82.
[7]
吴蒙, 朱超, 秦云虎, 等. 临兴地区山西组致密砂岩气开采潜力地质评价方法[J]. 吉林大学学报(地球科学版), 2020, 50(4): 991-1002.
Wu Meng, Zhu Chao, Qin Yunhu, et al. Geological Evaluation Method of Tight Sandstone Gas Exploitation Potential in Shanxi Formation in Linxing Area[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(4): 991-1002.
[8]
李海波, 郭和坤, 李海舰, 等. 致密储层束缚水膜厚度分析[J]. 天然气地球科学, 2015, 26(1): 186-192.
Li Haibo, Guo Hekun, Li Haijian, et al. Thickness Analysis of Bound Water Film in Reservoir[J]. Natural Gas Geoscience, 2015, 26(1): 186-192.
[9]
计玮. 致密砂岩气储层气水相渗特征及其影响因素:以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
Ji Wei. Gas Water Relative Flow of Tight Sandstone Gas Reservoirs and Its Influencing Factors:Case Study of Member 8 of Permian Xiashihezi Formation and Member 1 of Permian Shanxi Formation in Shaan Well 234-235 Area of Sulige Gas-Field in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6): 1540-1551.
[10]
任颖惠, 吴珂, 何康宁, 等. 核磁共振技术在研究超低渗-致密油储层可动流体中的应用:以鄂尔多斯盆地陇东地区延长组为例[J]. 矿物岩石, 2017, 37(1): 103-110.
Ren Yinghui, Wu Ke, He Kangning, et al. Application of NMR Technique to Movable Fluid of Ultra-Low Permeability and Tight Reservoir:A Case Study on the Yangchang Formation in Longdong Area, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(1): 103-110.
[11]
Gao S, Ye L, Xiong W, et al. Nuclear Magnetic Resonance Measurements of Original Water Saturation and Mobile Water Saturation in Low Permeability Sandstone Gas[J]. Chinese Physics Letters, 2010, 27(12): 217-218.
[12]
Jiang G, Li Y, Zhang M. Evaluation of Gas Wettability and Its Effects on Fluid Distribution and Fluid Flow in Porous Media[J]. Petroleum Science, 2013, 10(4): 515-527.
[13]
Legchenko A, Baltassat J M, Beauce A, et al. Nuclear Magnetic Resonance As a Geophysical Tool for Hydrogeologists[J]. Journal of Applied Geophysics, 2002, 50(2): 21-46.
[14]
屈雪峰, 孙卫, 雷启鸿, 等. 华庆油田低渗透砂岩储层可动流体饱和度及其影响因素[J]. 西安石油大学学报(自然科学版), 2016, 31(2): 93-98.
Qu Xuefeng, Sun Wei, Lei Qihong, et al. Study on Saturation of Movable Fluid in the Low-Permeability Sandstone Reservoirs of Huaqing Oilfield and Its Influencing Factors[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(2): 93-98.
[15]
庞振宇, 李艳, 赵习森, 等. 特低渗储层可动流体饱和度研究:以甘谷驿油田长6储层为例[J]. 地球物理学进展, 2017, 32(2): 702-708.
Pang Zhenyu, Li Yan, Zhao Xisen, et al. Study on Movable Fluid Saturation in Ultra-Low Permeability Reservoir:Taking Chang 6 Reservoir in Ganguyi Oil Field as an Example[J]. Progress in Geophysics, 2017, 32(2): 702-708.
[16]
司马立强, 王超, 吴丰, 等. 川西马井气田蓬莱镇组致密砂岩储层可动水饱和度计算方法[J]. 测井技术, 2017, 41(2): 199-204.
Sima Liqiang, Wang Chao, Wu Feng, et al. Calculation of Mobile Water Saturation in Tight Sandstone Reservoirs of Penglaizhen Formation, Western Sichuan Basin[J]. Well Logging Technology, 2017, 41(2): 199-204.
[17]
冯军, 张博为, 冯子辉, 等. 松辽盆地北部致密砂岩储集层原油可动性影响因素[J]. 石油勘探与开发, 2019, 46(2): 312-321.
Feng Jun, Zhang Bowei, Feng Zihui, et al. Crude Oil Mobility and Its Controlling Factors in Tight Sand Reservoirs in Northern Songliao Basin, China[J]. Petroleum Exploration and Development, 2019, 46(2): 312-321.
[18]
任晓霞, 李爱芬, 王永政, 等. 致密砂岩储层孔隙结构及其对渗流的影响:以鄂尔多斯盆地马岭油田长8储层为例[J]. 石油与天然气地质, 2015, 36(5): 774-779.
Ren Xiaoxia, Li Aifen, Wang Yongzheng, et al. Pore Structure of Tight Sand Reservoir and Its Influence on Percolation:Taking the Chang 8 Reservoir in Maling Oilfield in Ordos Basin as an Example[J]. Oil & Gas Geology, 2015, 36(5): 774-779.
[19]
司马立强, 王超, 王亮, 等. 致密砂岩储层孔隙结构对渗流特征的影响:以四川盆地川西地区上侏罗统蓬莱镇组储层为例[J]. 天然气工业, 2016, 36(12): 18-25.
Sima Liqiang, Wang Chao, Wang Liang, et al. Effect of Pore Structure on the Seepage Characteristics of Tight Sandstone Reservoirs:A Case Study of Upper Jurassic Penglaizhen Formation Reservoirs in the Western Sichuan Basin[J]. Natural Gas Industry, 2016, 36(12): 18-25.
[20]
柳娜, 周兆华, 任大忠, 等. 致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例[J]. 岩性油气藏, 2019, 31(5): 1-12.
Liu Na, Zhou Zhaohua, Ren Dazhong, et al. Distribution Characteristics and Controlling Factors of Movable Fluid in Tight Sandstones Gas Reservoir:A Case Study of the Eighth Member of Xiashihezi Formation and the First Member of Shanxi Formation in Western Sulige Gas Field[J]. Lithologic Reservoirs, 2019, 31(5): 1-12.
[21]
吴育平, 孙卫, 杜堃, 等. 致密砂岩储层孔喉结构差异对可动流体赋存特征的影响:以苏里格气田东区和西区盒8储层为例[J]. 地质与勘探, 2019, 55(1): 214-224.
Wu Yuping, Sun Wei, Du Kun, et al. Influence of Pore-Throat Structure Differences on Occurrence Characteristics of Movable Fluid in Tight Sandstone Reservoirs:An Example of the He 8th Member of Permian Xiashihezi Formation in the East and West of the Sulige Gas Field[J]. Geology and Exploration, 2019, 55(1): 214-224.
[22]
王伟, 牛小兵, 梁晓伟, 等. 鄂尔多斯盆地致密砂岩储层可动流体特征:以姬塬地区延长组长7段油层组为例[J]. 地质科技情报, 2017, 36(1): 183-187.
Wang Wei, Niu Xiaobing, Liang Xiaowei, et al. Characteristic of Movable Fluid for Tight Sandstone Reservoir in Ordos Basin:A Case of Chang 7 Oil Reservoir of Yanchang Formation in Jiyuan Area[J]. Geological Science and Technology Information, 2017, 36(1): 183-187.
[23]
师调调, 孙卫, 何生平. 低渗透储层微观孔隙结构与可动流体饱和度关系研究[J]. 地质科技情报, 2012, 31(4): 81-85.
Shi Tiaotiao, Sun Wei, He Shengping. Relationship Between Micro-Pore Structure and Movable Fluid Saturation in Low Permeability Reservoir[J]. Geological Science and Technology Information, 2012, 31(4): 81-85.
[24]
张颀悦, 孙卫, 尹红佳, 等. 低渗透储层核磁共振可动流体研究:以姬塬地区长6储层为例[J]. 石油化工应用, 2014, 33(8): 42-47.
Zhang Yinyue, Sun Wei, Yin Hongjia, et al. Study on NMR Fluids in Low Permeability Reservoirs:A Case Study of Chang 6 Reservoir in Jiyuan Area[J]. Petrochemical Industry Application, 2014, 33(8): 42-47.
[25]
马淼, 孙卫, 刘登科, 等. 低渗透砂岩储层可动流体赋存特征及影响因素研究:以姬塬油田长6储层为例[J]. 石油地质与工程, 2016, 30(6): 64-72.
Ma Miao, Sun Wei, Liu Dengke, et al. Occurrence Characteristics and Influencing Factors of Movable Fluids in Low Permeability Sandstone Reservoirs:A Case Study of Chang 6 Reservoir in Jiyuan Oilfield[J]. Petroleum Geology and Engineering, 2016, 30(6): 64-72.
[26]
任颖, 孙卫, 张茜, 等. 低渗透储层不同流动单元可动流体赋存特征及生产动态分析:以鄂尔多斯盆地姬塬地区长6段储层为例[J]. 地质与勘探, 2016, 52(5): 974-984.
Ren Ying, Sun Wei, Zhang Xi, et al. Characteristics of Movable Fluids and Study of Production Performance in Different Flow Units of Low-Permeability Reservoir:An Example from the Chang 6 Block of the Jiyuan Oilfield in Ordos Basin[J]. Geology and Exploration, 2016, 52(5): 974-984.
[27]
盛军, 孙卫, 刘燕妮, 等. 低渗透油藏储层微观孔隙结构差异对可动流体的影响:以鄂尔多斯盆地姬塬与板桥地区长6储层为例[J]. 地质科技情报, 2016, 35(3): 167-172.
Sheng Jun, Sun Wei, Liu Yanni, et al. Effect of the Difference of Low Permeability Reservoir Microscopic Pore Structure on Movable Fluid:A Case for the Chang 6 Reservoir of Jiyuan and Banqiao Areas in Ordos Basin[J]. Geological Science and Technology Information, 2016, 35(3): 167-172.
[28]
王为民, 叶朝辉, 郭和坤. 陆相储层岩石核磁共振物理特征的实验研究[J]. 波谱学杂志, 2001, 18(2): 113-121.
Wang Weimin, Ye Chaohui, Guo Hekun. Experimental Studies of NMR Properties of Continental Sedimentary Rocks[J]. Chinese Journal of Magnetic Resonance, 2001, 18(2): 113-121.
[29]
孙军昌, 杨正明, 唐立根, 等. 致密气藏束缚水分布规律及含气饱和度研究[J]. 深圳大学学报(理工版), 2011, 28(5): 377-383.
Sun Junchang, Yang Zhengming, Tang Ligen, et al. Study on Distribution Law of Irreducible Water and Gas Saturation of Tight Sandstone Gas Reservoir[J]. Journal of Shenzhen University(Science and Engineering), 2011, 28(5): 377-383.
[30]
黄兴, 李天太, 王香增, 等. 致密砂岩储层可动流体分布特征及影响因素:以鄂尔多斯盆地姬塬油田延长组长8油层组为例[J]. 石油学报, 2019, 40(5): 557-567.
Huang Xing, Li Tiantai, Wang Xiangzeng, et al. Distribution Characteristics and Its Influence Factors of Movable Fluid in Tight Sandstone Reservoir:A Case Studyfrom Chang 8 Oil Layer of Yanchang Formation in Jiyuan Oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2019, 40(5): 557-567.
[31]
王梦茜, 孙卫, 魏虎. 鄂尔多斯盆地板桥-合水地区长6储层可动流体赋存特征及影响因素[J]. 非常规油气, 2018, 5(3): 68-73.
Wang Mengxi, Sun Wei, Wei Hu. The Characteristic of Movable Fluid and Its Influencing Factors of Chang 6 Reservoir in Banqiao and Heshui Area, Ordos Basin[J]. Unconventonal Oil & Gas, 2018, 5(3): 68-73.
[32]
郑可, 徐怀民, 陈建文, 等. 低渗储层可动流体核磁共振研究[J]. 现代地质, 2013, 27(3): 710-718.
Zheng Ke, Xu Huaimin, Chen Jianwen, et al. Movable Fluid Study of Low Permeability Reservoir with Nuclear Magnetic Resonance Technology[J]. Geoscience, 2013, 27(3): 710-718.
[33]
时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析:以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5): 827-834.
Shi Jianchao, Qu Xuefeng, Lei Qihong, et al. Distribution Characteristics and Controlling Factors of Movable Fluid in Tight oil Reservoir:A Case Study of Chang 7 Reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5): 827-834.
[34]
陈斌, 孙卫, 明红霞, 等. 特低渗透储层可动流体饱和度影响因素分析:以安塞油田长6储层为例[J]. 石油化工应用, 2014, 33(9): 68-74.
Chen Bin, Sun Wei, Ming Hongxia, et al. Movable Fluid Saturation Factor Analysis of Low Permeability Reservoir:Taking the Chang 6 Reservoir in the Ansai Oilfield as an Example[J]. Petrochemical Industry Application, 2014, 33(9): 68-74.
[35]
郭睿良, 陈小东, 马晓峰, 等. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5): 665-674.
Guo Ruiliang, Chen Xiaodong, Ma Xiaofeng, et al. Analysis of the Characteristics and Its Influencing Factors of Horizontal Movable Fluid in the Chang 7 Tight Reservoir in Longdong Area, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(5): 665-674.
[36]
李爱芬, 任晓霞, 王桂娟, 等. 核磁共振研究致密砂岩孔隙结构的方法及应用[J]. 中国石油大学学报(自然科学版), 2015, 39(6): 92-98.
Li Aifen, Ren Xiaoxia, Wang Guijuan, et al. Characterization of Pore Structure of Low Permeability Reservoirs Using a Nuclear Magnetic Resonance Method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(6): 92-98.
[37]
郑庆华, 柳益群. 特低渗透储层微观孔隙结构和可动流体饱和度特征[J]. 地质科技情报, 2015, 34(4): 124-131.
Zheng Qinghua, Liu Yiqun. Microscopic Pore Structure and Movable Fluid Saturation of Ultra-Low Permeability Reservoir[J]. Geological Science and Technology Information, 2015, 34(4): 124-131.
[38]
白云云, 孙卫, 任大忠. 马岭油田致密砂岩储层可动流体赋存特征及控制因素[J]. 断块油气田, 2018, 25(4): 51-54.
Bai Yunyun, Sun Wei, Ren Dazhong. Characteristics and Controlling Factors of Movable Fluid in Low-Permeability and Tight Sandstone Reservoirs in Maling Oilfield[J]. Fault-Block Oil and Gas Field, 2018, 25(4): 51-54.
[39]
李洋, 雷群, 刘先贵, 等. 微尺度下的非线性渗流特征[J]. 石油勘探与开发, 2011, 38(3): 336-340.
Li Yang, Lei Qun, Liu Xiangui, et al. Characteristics of Micro Scale Nonlinear Filtration[J]. Petroleum Exploration and Development, 2011, 38(3): 336-340.
[40]
黎盼, 孙卫, 李长政, 等. 低渗透砂岩储层可动流体变化特征研究:以鄂尔多斯盆地马岭地区长8储层为例[J]. 地球物理学进展, 2018, 33(6): 208-216.
Li Pan, Sun Wei, Li Changzheng, et al. Characteristics of Movable Fluids in the Low Permeability Sandstone Reservoir:Taking the Chang 8 Reservoir of Maling Oilfield, Ordos Basin as an Example[J]. Progress in Geophysics, 2018, 33(6): 208-216.
[41]
何顺利, 焦春燕, 王建国, 等. 恒速压汞与常规压汞的异同[J]. 断块油气田, 2011, 18(2): 235-237.
He Shunli, Jiao Chunyan, Wang Jianguo, et al. Discussion on the Differences Between Constant-Speed Mercury Injection and Conventional Mercury Injection Techniques[J]. Fault-Block Oil and Gas Field, 2011, 18(2): 235-237.
[42]
王瑞飞, 陈明强. 特低渗透砂岩储层可动流体赋存特征及影响因素[J]. 石油学报, 2008, 29(4): 558-561.
Wang Ruifei, Chen Mingqiang. Characteristics and Influencing Factors of Movable Fluid in Ultra-Low Permeability Sandstone Reservoir[J]. Acta Petrolei Sinica, 2008, 29(4): 558-561.
[43]
高辉, 孙卫. 特低渗透砂岩储层可动流体变化特征与差异性成因:以鄂尔多斯盆地延长组为例[J]. 地质学报, 2010, 84(8): 1223-1230.
Gao Hui, Sun Wei. Movable Fluid Variation Characteristics and Diversity Origin of Ultra-Low Permeability Sandstone Reservoir[J]. Acta Geologica Sinica, 2010, 84(8): 1223-1230.
[44]
闫子旺, 张红玲, 周晓峰, 等. 超低渗透油藏核磁共振可动流体研究:以鄂尔多斯盆地西南部长8储层为例[J]. 陕西科技大学学报, 2015, 33(5): 105-109.
Yan Ziwang, Zhang Hongling, Zhou Xiaofeng, et al. Research on Movable Fluid in Ultra-Low Permeability Reservoirs with Nuclear Magnetic Resonance Technology:As an Example from Southwestern Chang 8 Reservoir in Ordos Basin[J]. Journal of Shaanxi University of Science & Technology, 2015, 33(5): 105-109.
[45]
解伟, 张刚, 孙卫. 应用核磁共振技术对定边油田张韩区块长2储层可动流体进行研究[J]. 内蒙古石油化工, 2011, 37(12): 18-19.
Xie Wei, Zhang Gang, Sun Wei. Application of Nuclear Magnetic Resonance Technique to Study on Movable Fluid of Chang 2 Reservoir in Zhanghan Block of Dingbian Oilfield[J]. Inner Mongolia Petrochemical Industry, 2011, 37(12): 18-19.
[46]
高航, 孙卫, 庞振宇, 等. 低渗透致密气藏可动流体饱和度研究:以苏里格苏48区块盒8段储层为例[J]. 地球物理学进展, 2014, 29(1): 324-330.
Gao Hang, Sun Wei, Pang Zhenyu, et al. Movable Fluid Saturation of Low-Permeability and Tight Sandstone Gas Reservoir:Taking He 8 Section of Block Su 48 in Sulige Gasfiled as an Example[J]. Progress in Geophysics, 2014, 29(1): 324-330.
[47]
明红霞, 孙卫, 张龙龙, 等. 致密砂岩气藏孔隙结构对物性及可动流体赋存特征的影响:以苏里格气田东部和东南部盒8段储层为例[J]. 中南大学学报(自然科学版), 2015, 46(12): 4556-4567.
Ming Hongxia, Sun Wei, Zhang Longlong, et al. Impact of Pore Structure on Physical Property and Occurrence Characteristics of Moving Fluid of Tight Sandstone Reservoir:Taking He 8 Reservoir in the East and Southeast of Sulige Gasfield as an Example[J]. Journal of Central South University(Science and Technology), 2015, 46(12): 4556-4567.
[48]
任大忠, 孙卫, 董凤娟, 等. 鄂尔多斯盆地华庆油田长81储层可动流体赋存特征及影响因素[J]. 地质与勘探, 2015, 51(4): 797-803.
Ren Dazhong, Sun Wei, Dong Fengjuan, et al. Characteristics of Movable Fluids in the Chang 81Reservoir, Yanchang Formation in Huaqing Oilfield, Ordos Basin and the Influencing Factors[J]. Geology and Exploration, 2015, 51(4): 797-803.
[49]
刘登科, 孙卫, 任大忠, 等. 致密砂岩气藏孔喉结构与可动流体赋存规律:以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136-2146.
Liu Dengke, Sun Wei, Ren Dazhong, et al. Features of Pore-Throat Structures and Movable Fluid in Tight Gas Reservoir:A Case from the 8th Member of Permian Xiashihezi Formation and the 1st Member of Permian Shanxi Formation in the Western Area of Sulige Gasfield, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(12): 2136-2146.
[50]
王斌, 孙卫, 张茜, 等. 姬塬油田长6储层可动流体赋存特征及渗流能力分析[J]. 石油化工应用, 2016, 35(10): 80-86.
Wang Bin, Sun Wei, Zhang Xi, et al. Analysis of the Occurrence Characteristics and Seepage Capacity of the Movable Fluid in the Chang 6 Reservoir of the Jiyuan Oilfield[J]. Petrochemical Industry Application, 2016, 35(10): 80-86.
[51]
任大忠, 孙卫, 赵继勇, 等. 鄂尔多斯盆地岩性油藏微观水驱油特征及影响因素:以华庆油田长81油藏为例[J]. 中国矿业大学学报, 2015, 44(6): 1043-1052.
Ren Dazhong, Sun Wei, Zhao Jiyong, et al. Microscopic Water Flooding Characteristics and Influencing Factors of Lithologic Reservoirs:A Case Study of Chang 81 Reservoir in Huaqing Oilfield, Ordos Basin[J]. Journal of China University of Mining & Technology, 2015, 44(6): 1043-1052.
[52]
高洁, 任大忠, 刘登科, 等. 致密砂岩储层孔隙结构与可动流体赋存特征:以鄂尔多斯盆地华庆地区长63致密砂岩储层为例[J]. 地质科技情报, 2018, 37(4): 190-195.
Gao Jie, Ren Dazhong, Liu Dengke, et al. Impact of Pore Structures on Features of Movable Fluid in Tight Sandstone Reservoir:Taking Chang 63 Tight Sandstone Reservoir of Huaqing Area in Ordos Basin as an Example[J]. Geological Science and Technology Information, 2018, 37(4): 190-195.
[53]
陈广志. 致密砂岩储层可动流体赋存特征及影响因素[J]. 科学技术与工程, 2015, 15(21): 12-17.
Chen Guangzhi. Characteristics and Influencing Factors of Movable Fluid in Tight Sandstone Reservoir[J]. Science Technology and Engineering, 2015, 15(21): 12-17.
[54]
曹雷, 孙卫, 盛军, 等. 低渗透致密油藏可动流体饱和度计算方法:以板桥地区长6油层组致密油储层为例[J]. 长江大学学报(自然科学版), 2016, 13(20): 1-8.
Cao Lei, Sun Wei, Sheng Jun, et al. A Method to Determine Movable Fluid Saturation of Low-Permeability and Tight Oil Reservoirs:By Taking Tight Oil Reservoirs in Sixth Member of Yanchang Formation in Banqiao Area as an Example[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(20): 1-8.
[55]
霍磊, 孙卫, 曹雷, 等. 特低渗透储层微观孔隙结构及可动流体赋存特征研究:以鄂尔多斯盆地合水-华池地区长6储层为例[J]. 石油地质与工程, 2016, 30(1): 121-125.
Huo Lei, Sun Wei, Cao Lei, et al. Study on Microscopic Pore Structure and Movable Fluid Occurrence Characteristics of Ultra-Low Permeability Reservoirs:A Case Study of Chang 6 Reservoir in Heshui-Huachi Area, Ordos Basin[J]. Petroleum Geology & Engineering, 2016, 30(1): 121-125.
[56]
黎盼, 孙卫, 高永利, 等. 鄂尔多斯盆地马岭油田长81储层不同成岩相类型可动流体赋存特征分析[J]. 地质与勘探, 2019, 55(2): 205-216.
Li Pan, Sun Wei, Gao Yongli, et al. Occurrence Characteristics of Movable Fluids in Different Diagenetic Facies of the Chang 81 Reservoir, Maling Oilfield, Ordos Basin[J]. Geology and Exploration, 2019, 55(2): 205-216.
[57]
杨涛, 谢俊, 周巨标, 等. 低孔-特低渗砂岩储层可动流体核磁共振特征及成因:以王龙庄油田T89断块阜宁组二亚段为例[J]. 山东科技大学学报(自然科学版), 2018, 37(1): 119-126.
Yang Tao, Xie Jun, Zhou Jubiao, et al. NMR Features and Contributing Factors of Movable Fluid in Low Porosity and Ultra-Low Permeability Sandstone Reservoir:Taking the 2nd Member of Funing Formation in T89 Block of Wanglongzhuang Oilfield as an Example[J]. Journal of Shandong University of Science and Technology (Natural Science), 2018, 37(1): 119-126.
[58]
李长政, 孙卫, 任大忠, 等. 华庆地区长81储层微观孔隙结构特征研究[J]. 岩性油气藏, 2012, 24(4): 19-23.
Li Changzheng, Sun Wei, Ren Dazhong, et al. Microscopic Pore Structure Characteristics of Chang 81 Reservoir in Huaqing Area[J]. Lithologic Reservoirs, 2012, 24(4): 19-23.
[59]
杨正明, 骆雨田, 何英, 等. 致密砂岩油藏流体赋存特征及有效动用研究[J]. 西南石油大学学报(自然科学版), 2015, 37(3): 85-92.
Yang Zhengming, Luo Yutian, He Ying, et al. Study on Occurrence Feature of Fluid and Effective Development in Tight Sandstone Oil Reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(3): 85-92.
[60]
周尚文, 刘洪林, 闫刚, 等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4): 612-616.
Zhou Shangwen, Liu Honglin, Yan Gang, et al. NMR Research of Movable Fluid and T2 Cutoff of Marine Shale in South China[J]. Oil & Gas Geology, 2016, 37(4): 612-616.
[61]
李太伟, 郭和坤, 李海波, 等. 应用核磁共振技术研究页岩气储层可动流体[J]. 特种油气藏, 2012, 19(1): 107-109.
Li Taiwei, Guo Hekun, Li Haibo, et al. Research on Movable Fluids in Shale Gas Reservoirs with NMR Technology[J]. Special Oil and Gas Reservoirs, 2012, 19(1): 107-109.
[62]
桑茜, 张少杰, 朱超凡, 等. 陆相页岩油储层可动流体的核磁共振研究[J]. 中国科技论文, 2017, 12(9): 15-20.
Sang Qian, Zhang Shaojie, Zhu Chaofan, et al. Study on Movable Fluid of Continental Shale Oil Reservoir with NMR Technology[J]. China Science Paper, 2017, 12(9): 15-20.
[63]
范俊佳, 周海民, 柳少波. 塔里木盆地库车坳陷致密砂岩储层孔隙结构与天然气运移特征[J]. 中国科学院大学学报, 2014, 31(1): 112-120.
Fan Junjia, Zhou Haimin, Liu Shaobo. Pore Structure and Gas Migration Characterization of Tight Sandstone in Kuqa Depression of Tarim Basin[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(1): 112-120.
[64]
郑司建, 姚艳斌, 蔡益栋, 等. 准噶尔盆地南缘低煤阶煤储层可动流体及孔径分布特征[J]. 煤田地质与勘探, 2018, 46(1): 56-65.
Zheng Sijian, Yao Yanbin, Cai Yidong, et al. Characteristics of Movable Fluid and Pore Size Distribution of Low Rank Coals Reservoir in Southern Margin of Junggar Basin[J]. Coal Geology & Exploration, 2018, 46(1): 56-65.
[65]
高辉. 红河油田长8致密砂岩储层微观孔隙结构及可动流体饱和度特征研究[J]. 石油地质与工程, 2018, 32(5): 44-47.
Gao Hui. Microscopic Pore Structure and Movable Fluid Saturation Characteristics of Chang 8 Tight Sandstone Reservoir of Honghe Oilfied[J]. Petroleum Geology and Engineering, 2018, 32(5): 44-47.
[66]
高辉, 孙卫. 鄂尔多斯盆地合水地区长8储层成岩作用与有利成岩相带[J]. 吉林大学学报(地球科学版), 2010, 40(3): 542-548.
Gao Hui, Sun Wei. Diagenesis and Favorable Diagenetic Facies of Chang 8 Reservoir in Heshui Area, Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3): 542-548.
[67]
白斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3): 329-333.
Bai Bin, Zhu Rukai, Wu Songtao, et al. Multi-Scale Method of Nano (Micro)-CT Study on Microscopic Pore Structure of Tight Sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3): 329-333.
[68]
高辉, 解伟, 杨建鹏, 等. 基于恒速压汞技术的特低-超低渗砂岩储层微观孔喉特征[J]. 石油实验地质, 2011, 33(2): 206-221.
Gao Hui, Xie Wei, Yang Jianpeng, et al. Pore Throat Characteristics of Extra-Ultra Low Permeability Sandstone Reservoir Based on Constant-Rate Mercury Penetration Technique[J]. Petroleum Geology & Experiment, 2011, 33(2): 206-214.
[69]
Gharbi O, Blunt M J. The Impact of Wettability and Connectivity on Relative Permeability in Carbonates:A Pore Network Modeling Analysis[J]. Water Resources Research, 2012, 48(12): W12513.
[70]
卜淘, 曹廷宽. ZJ气田沙溪庙组储层微观孔隙结构及渗流特征研究[J]. 矿物岩石, 2018, 38(3): 106-114.
Bu Tao, Cao Tingkuan. Study of Pore Structure and Seepage Characteristics of Shaximiao Formation Reservoir in ZJ Gas Field[J]. Journal of Mineralogy and Petrology, 2018, 38(3): 106-114.
[71]
陈猛.致密油储层水驱油实验及动态网络模拟研究[D].成都: 西南石油大学, 2017.
Chen Meng. Water Flooding Experiment and Dynamic Network Simulation of Tight Oil Reservoir[D]. Chengdu: Southwest Petroleum University, 2017.
[72]
刘向君, 熊健, 梁利喜, 等. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25(10): 1644-1652.
Liu Xiangjun, Xiong Jian, Liang Lixi, et al. Analysis of the Wettablility of Longmaxi Formation Shale in the South Region of Sichuan Basin and Its Influence[J]. Natural Gas Geoscience, 2014, 25(10): 1644-1652.
[73]
吴蒙.临兴-神府地区煤系致密砂岩润湿性[D].徐州: 中国矿业大学, 2019.
Wu Meng. Wettability of Tight Sandstones in Coal Measures from Linxing-Shenfu Area, Shanxi, China[D]. Xuzhou: China University of Mining and Technology, 2019.
[74]
李海涛, 马启睿, 李东昊. 低矿化度注水提高砂岩储集层采收率的微观机理[J]. 石油钻采工艺, 2017, 39(2): 151-157.
Li Haitao, Ma Qirui, Li Donghao. Microscopic Mechanisms of Low Salinity Water Injection Technology for Sandstone Reservoir EOR[J]. Oil Drilling & Production Technology, 2017, 39(2): 151-157.
[75]
李云, 祁利褀, 胡作维, 等. 准噶尔盆地阜东斜坡中侏罗统头屯河组储层敏感性特征[J]. 岩性油气藏, 2014, 26(1): 52-57.
Li Yun, Qi Liqi, Hu Zuowei, et al. Reservoir Sensitivity of Middle Jurassic Toutunhe Formation in Fudong Slope, Junggar Basin[J]. Lithologic Reservoirs, 2014, 26(1): 52-57.
[76]
师俊峰, 师永民, 高超利, 等. 致密砂岩储层黏土矿物特征及敏感性分析:以鄂尔多斯盆地吴起油田寨子河地区长6油层为例[J]. 科学技术与工程, 2018, 18(20): 93-100.
Shi Junfeng, Shi Yongmin, Gao Chaoli, et al. Tight Sandstone Reservoir Clay Minerals Characteristics and Sensitivity Analysis:A Case Study of Chang 6 Formation in Zhaizihe Area, Wuqi Oilfield, Ordos Basin[J]. Science Technology and Engineering, 2018, 18(20): 93-100.
[77]
康逊, 胡文瑄, 王剑, 等. 扇三角洲砂砾岩油藏储层敏感性研究:以准噶尔盆地玛湖凹陷百口泉组为例[J]. 中国矿业大学学报, 2017, 46(3): 596-605.
Kang Xun, Hu Wenxuan, Wang Jian, et al. Fan-Delta Sandy Conglomerate Reservoir Sensitivity:A Case Study of the Baikouquan Formation in the Mahu Sag, Junggar Basin[J]. Journal of China University of Mining & Technology, 2017, 46(3): 596-605.
[78]
马世忠, 王海鹏, 孙雨, 等. 松辽盆地扶新隆起带北部扶余油层超低渗储层黏土矿物特征及其对敏感性的影响[J]. 地质论评, 2014, 60(5): 1085-1092.
Ma Shizhong, Wang Haipeng, Sun Yu, et al. Clay Minerals Characteristics and Its Effects on Sensitivity of Fuyu Ultra-Low Permeability Reservoirs in the Northern Fuxin Uplift, Songliao Basin[J]. Geological Review, 2014, 60(5): 1085-1092.
[79]
刘大伟, 康毅力, 何健, 等. 碳酸盐岩储层水敏性实验评价及机理探讨[J]. 天然气工业, 2007, 27(2): 32-34.
Liu Dawei, Kang Yili, He Jian, et al. Laboratory Investigation of Water Sensitivity of Carbonate Reservoirs and Discussion of Its Mechanism[J]. Natural Gas Industry, 2007, 27(2): 32-34.
[80]
王玉霞, 周立发, 焦尊生, 等. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
Wang Yuxia, Zhou Lifa, Jiao Zunsheng, et al. Sensitivity Evaluation of Tight Sandstone Reservoir in Yangchang Formation in Shanbei Area, Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 981-990.
[81]
党犇, 赵虹, 康晓燕, 等. 鄂尔多斯盆地陕北斜坡中部延长组深部层系特低渗储层敏感性微观机理[J]. 中南大学学报(自然科学版), 2013, 44(3): 1100-1107.
Dang Ben, Zhao Hong, Kang Xiaoyan, et al. Sensitivity Microscopic Mechanism Study of Super-Low Permeability Reservoirs in Depth of Yanchang Formation in Centration of Northern Shaanxi Slop Ordos Basin NW China[J]. Journal of Central South University (Science and Technology), 2013, 44(3): 1100-1107.
[82]
景海权, 张烈辉, 赵连水, 等. 大港油田张东地区低渗储层黏土矿物分析及敏感性研究[J]. 特种油气藏, 2012, 19(2): 110-112.
Jing Haiquan, Zhang Liehui, Zhao Lianshui, et al. Analysis and Sensitivity Study of Clay Minerals in Low Permeability Reservoirs in Zhangdong Area of Dagang Oilfield[J]. Special Oil & Gas Reservoirs, 2012, 19(2): 110-112.
[83]
邱隆伟, 于杰杰, 郝建民, 等. 南堡凹陷高南地区东三段低渗储层敏感性特征的微观机制研究[J]. 岩石矿物学杂志, 2009, 28(1): 78-86.
Qiu Longwei, Yu Jiejie, Hao Jianmin, et al. A Microscopic Study of the Formation Mechanism of Low Permeability Reservoir Sensibility of Ed3 in Gaonan Area[J]. Acta Petrologica et Mineralogica, 2009, 28(1): 78-86.
[84]
于忠良, 熊伟, 高树生, 等. 致密储层应力敏感性及其对油田开发的影响[J]. 石油学报, 2007, 28(4): 95-98.
Yu Zhongliang, Xiong Wei, Gao Shusheng, et al. Stress Sensitivity of Tight Reservoir and Its Influence on Oilfield Development[J]. Acta Petrolei Sinica, 2007, 28(4): 95-98.
[85]
雷刚, 董平川, 杨书, 等. 基于岩石颗粒排列方式的低渗透储层应力敏感性分析[J]. 岩土力学, 2014, 35(增刊1): 1085-1092.
Li Gang, Dong Pingchuan, Yang Shu, et al. Study of Stress-Sensitivity of Low-Permeability Reservoir Based on Arrangement of Particles[J]. Rock and Soil Mechanics, 2014, 35(Sup.1): 1085-1092.
[86]
贾爱林, 程立华. 数字化精细油藏描述程序方法[J]. 石油勘探与开发, 2010, 37(6): 709-715.
Jia Ailin, Cheng Lihua. The Technique of Digital Detailed Reservoir Characterization[J]. Petroleum Exploration and Development, 2010, 37(6): 709-715.
http://dx.doi.org/10.13278/j.cnki.jjuese.20190272
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

吴蒙, 秦勇, 王晓青, 李国璋, 朱超, 朱士飞
Wu Meng, Qin Yong, Wang Xiaoqing, Li Guozhang, Zhu Chao, Zhu Shifei
中国致密砂岩储层流体可动性及其影响因素
Fluid Mobility and Its Influencing Factors of Tight Sandstone Reservoirs in China
吉林大学学报(地球科学版), 2021, 51(1): 35-51
Journal of Jilin University(Earth Science Edition), 2021, 51(1): 35-51.
http://dx.doi.org/10.13278/j.cnki.jjuese.20190272

文章历史

收稿日期: 2019-12-16

相关文章

工作空间