文章快速检索  
  高级检索
辽北开原地区房木花岗斑岩LA-ICP-MS锆石U-Pb年龄及地球化学特征
豆世勇     
辽宁省地质矿产调查院有限责任公司, 沈阳 110031
摘要: 研究区位于华北克拉通北缘东段、华北克拉通与兴蒙造山带的交接部位。本文通过对辽北开原地区房木花岗斑岩的岩石学、年代学和地球化学研究,探讨了其形成时代、岩石成因和构造环境,并进一步探讨了华北克拉通东部岩石圈减薄的起始时间。用LA-ICP-MS技术测定了花岗斑岩的锆石U-Pb同位素,获得其锆石206Pb/238U加权平均年龄为(117±1)Ma,表明花岗斑岩形成于早白垩世。花岗斑岩具有高硅、富碱、贫镁和钙的特征,富集大离子亲石元素(K、Rb)和高场强元素(Th、Ta、Nb),亏损Sr、Ba、P、Ti元素,稀土配分曲线均呈现右倾海鸥型,具有明显的负Eu异常;显示研究区花岗斑岩为A型(A1亚型)花岗岩,形成于古太平洋俯冲的后造山伸展环境,其岩浆源于地幔物质上涌而导致的地壳物质重熔。研究区在(156±1)Ma之前,属于挤压造山环境,表明研究区岩石圈减薄时间应处于156~117 Ma之间。
关键词: 辽北    花岗斑岩    地球化学    早白垩世    LA-ICP-MS锆石U-Pb测年    岩石圈减薄    
LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Granitic Porphyry in Kaiyuan Area of Northern Liaoning Province
Dou Shiyong     
Liaoning Survey Academy Limited Liability Company of Geology and Mineral Resources, Shenyang 110031, China
Abstract: The study area is located in the eastern part of the north margin of the North China craton, which is the intersection of the North China craton and the Xingmeng orogenic belt. The author studied the detailed petrology, geochronology and geochemistry of the Fangmu granitic porphyry in Kaiyuan area of northern Liaoning Province, discussed their formation age, petrogenesis, tectonic settings, and the thinning time of North China craton. The LA-ICP-MS zircon U-Pb dating was tested for the granitic porphyry. The 206Pb/238U age is (117±1) Ma, which indicates that the granitic porphyry was formed in the Early Cretaceous. The granitic porphyry is characterized by high Si, rich in alkali, poor in Mg and Ca, rich in large ion lithophile elements (e.g. K and Rb), and high field strength elements (e.g. Th, Ta, and Nb), while deplete in Sr, Ba, P, and Ti. Besides, the REE pattern shows a typical right dipping seagull shape. There is a negative Eu anomaly, which indicates that the granitic porphyry is A-type granite (A1 subtype), and formed in the post orogenic extensional environment during paleo Pacific subduction. The magma was from the re-melting of the crustal material caused by the mantle material upwelling. In addition, the study area was a compressional orogenic environment before (156±1) Ma. Thus, we believe that the crustal thinning began in 156-117 Ma.
Key words: northern Liaoning Province    granite porphyry    geochemistry    Early Cretaceous    LA-ICP-MS zircon U-Pb dating    lithospheric thinning    

0 引言

华北克拉通是地球上最古老的陆核之一,具有以太古宙片麻岩为主的基底岩石[1-2]。该克拉通在早元古代(大约1.85 Ga)之前克拉通化,其中大部分一直保持稳定直到晚三叠世。然而,华北克拉通的东部自晚三叠世或早中生代以来重新活化,表现为发育大规模中生代岩浆作用和伸展盆地[3-4]。因此,学者们普遍认为华北克拉通东部在中生代时期发生了岩石圈减薄现象,但是对岩石圈减薄的起始时间却认识不一,存在三叠纪[5-6]、侏罗纪—早白垩世[7-10]、晚白垩世—新生代[11-14]的不同争论。辽宁地区是华北克拉通岩石圈减薄最为强烈和典型的地区之一,很多学者对辽宁地区的岩浆岩和构造做了大量研究,如辽南变质核杂岩[15],辽东半岛的古道岭和饮马湾山同构造岩体[16]、断陷盆地[16-17]、大营子拆离断层[18],辽西阜新—义县断陷盆地[19]、义县组火山岩[20]等;然而对辽北地区的研究甚少,尤其是辽北地区的中生代岩浆岩。

通过大量研究,学者们普遍认为华北克拉通中生代岩浆岩的主要地球化学特征为高钾钙碱性、高Sr-Ba质量分数、高Sr/Y和La/Yb值,以及高度富集的Sr-Nd同位素特征[21-23]。但是学者们对华北东部中生代岩浆作用的成因和地球动力学背景却一直存在争议:一些学者认为华北东部中生代岩浆作用属于板内后造山岩浆活动的产物,其形成的动力学环境与晚三叠世的扬子-华北板块碰撞有关[21, 24];还有一些学者则认为其形成与太平洋板块俯冲有关[25-27]。本文通过对辽北开原地区房木花岗斑岩的岩石学、年代学及地球化学研究,进一步探讨了华北克拉通东部岩浆岩的成因及岩石圈减薄的起始时间,以期为华北克拉通中生代岩浆岩的深入研究提供一些科学依据。

1 研究区地质背景

研究区位于华北克拉通北缘东段、华北克拉通与兴蒙造山带的交接部位,华北克拉通北缘断裂(即赤峰—开原断裂,本区又称为清河断裂)从研究区中部穿过(图 1)。研究区出露的地层为新太古界红透山岩组、中二叠统照北山岩组、下三叠统尖山子组火山岩及下白垩统德仁组火山岩。红透山岩组主要以斜长角闪岩、黑云角闪斜长变粒岩为主,夹黑云斜长片麻岩、磁铁石英岩;照北山岩组为一套灰白色大理岩、灰黑色透闪透辉变粒岩及少量斜长角闪岩;尖山子组火山岩主要为一套片理化安山岩;德仁组底部为一套砂岩、砾岩,上部为中酸性火山岩夹火山碎屑岩。研究区岩浆活动可分为新太古代、二叠纪、三叠纪、侏罗纪、白垩纪5个期次(图 1b)。新太古代侵入岩主要为英云闪长岩;二叠纪侵入岩主要为晚二叠世二长花岗岩;三叠纪侵入岩包括中三叠世花岗闪长岩、二长花岗岩及早三叠世二长花岗岩;侏罗纪侵入岩包括晚侏罗世似斑状二长花岗岩,中侏罗世辉长岩、花岗闪长岩、石英闪长岩、似斑状二长花岗岩及早侏罗世花岗岩;白垩纪侵入岩主要为早白垩世花岗斑岩和碱长花岗岩。研究区断裂主要为北西向断裂及北东向断裂,并受北西西向清河断裂影响,区内的二叠纪、三叠纪侵入岩及地层发生了强烈的韧性变形。

a.华北克拉通北缘构造略图(据文献[28]修编);b.研究区地质略图。1.下白垩统德仁组火山岩;2.下三叠统尖山子组火山岩;3.中二叠统照北山岩组;4.新太古界红透山岩组;5.早白垩世碱长花岗岩;6.早白垩世花岗斑岩;7.晚侏罗世似斑状二长花岗岩;8.中侏罗世似斑状二长花岗岩;9.中侏罗世花岗闪长岩;10.中侏罗世石英闪长岩;11.中侏罗世辉长岩;12.早侏罗世花岗岩;13.中三叠世花岗闪长岩;14.中三叠世二长花岗岩;15.早三叠世二长花岗岩;16.晚二叠世二长花岗岩;17.新太古代英云闪长岩;18.断裂;19.地质界线;20.同位素测年样品位置及年龄(本次项目测试);21.样品采集点及编号;22.同位素样品采集点及编号;23.地名;24.国界。①得尔布干构造带;②贺根山缝合带;③西拉木伦缝合带;④嫩江—八里罕走滑断裂带;⑤牡丹江断裂带;⑥伊通—依兰走滑断裂带;⑦敦密断裂带。 图 1 研究区地质略图 Fig. 1 Geological sketch map of the study area
2 岩石学特征

研究区花岗斑岩体出露在工作区北部,平岗盆地边缘,出露面积约22 km2,呈岩株状产出,侵入二叠纪、侏罗纪岩体。花岗斑岩体呈浅红色,斑状结构,块状构造(图 2a)。斑晶由石英、斜长石、条纹长石组成。其中:石英体积分数约为15%,呈他形粒状,局部有溶蚀现象,粒度为1 mm左右;斜长石体积分数约为10%,呈半自形板状,粒度为1~2 mm;条纹长石体积分数约为5%,呈半自形板状,粒度为1 mm左右。岩石基质体积分数约为70%,由石英、长石及黑云母组成,具显微晶质结构。

a.野外岩貌;b.镜下照片。Qz.石英;Pth.条纹长石;Pl.斜长石。 图 2 研究区花岗斑岩特征照片 Fig. 2 Photos of the granite porphyry in the study area
3 样品采集和测试方法

本次采集了3个地球化学分析样品:HG-TY1(124°41′20″E,42°30′48″N)、HG-TY2(124°44′10″E, 42°30′43″N)、HG-N1(124°42′30″E, 42°30′40″N),其中HG-N1为对应的同位素样品。

锆石U-Pb同位素采用LA-ICP-MS法测试。锆石单矿物分选在河北省廊坊区域地质调查研究院地质实验室完成。先将挑好的锆石置于环氧树脂内固定、抛光,再将制好的靶样进行透射、反射光照相并采集阴极发光(CL)图像。锆石制靶和阴极发光照相在北京锆年领航科技有限公司完成。根据锆石CL图像判断锆石成因,结合透射、反射照片,选择无包体、无裂隙的锆石微区圈定激光剥蚀区域。LA-ICP-MS测试在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室完成。激光剥蚀系统为GeoLas Pro,ICP-MS为Agilent 7500,激光剥蚀直径为30 μm。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用9.0版本的ICP-MS Data Cal[29-31]程序完成。U-Pb同位素测试中采用锆石标准GJ-1作外标进行同位素分馏校正,每分析5~10个样品点分析2次GJ-1。对于与分析时间有关的U-Th-Pb同位素比值漂移,利用GJ-1的变化采用线性内插的方式进行校正。锆石U-Pb谐和图绘制和加权平均计算用3.0版本的Isoplot[32]完成。锆石U-Pb同位素分析数据见表 1

表 1 研究区花岗斑岩LA-ICP-MS锆石U-Th-Pb同位素分析结果 Table 1 LA-ICP-MS zircon U-Th-Pb age data from granite porphyry in the study area
点号wB/10-6Th/U同位素比值年龄/Ma
Pb232Th238U207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
153.21 6202 2180.730.052 30.001 30.134 30.003 20.018 80.000 22985612831201
245.21 4441 8970.760.052 40.001 70.131 40.004 30.018 20.000 23027212541161
455.51 8722 2170.840.053 80.001 60.137 00.003 80.018 50.000 23616913031181
5102.05 3443 5051.520.049 00.001 10.125 20.003 00.018 60.000 21505812031191
633.61 0111 4090.720.053 40.002 10.134 80.005 00.018 60.000 23468912841181
848.11 6361 9920.820.048 90.001 50.121 90.003 60.018 30.000 21436811731171
1364.22 3142 7190.850.052 00.001 30.129 50.003 50.018 10.000 22835512431151
1429.08001 3190.610.048 90.001 80.121 90.004 50.018 20.000 21439011741162
1553.51 9662 2130.890.049 10.001 30.123 10.003 30.018 30.000 21546511831171
1641.21 3261 7810.740.050 20.001 50.125 50.003 90.018 20.000 22117012031161
1762.12 4022 5650.940.050 60.001 50.125 20.003 40.018 10.000 22207512031161
1851.71 5162 2850.660.049 30.001 30.122 50.003 20.018 20.000 21616911731161
1929.38641 3270.650.052 70.002 40.130 30.006 40.017 90.000 332210412461142

岩石主量元素、微量和稀土元素的分析测试在国土资源部沈阳矿产资源监督检测中心完成。主量元素分析测试使用X射线荧光光谱仪(XRF-1500)完成,微量元素、稀土元素分析测试使用等离子体质谱仪(ICP-MS)Element Ⅱ完成。岩石地球化学分析数据见表 2

表 2 研究区花岗斑岩主量、微量和稀土元素分析结果 Table 2 Major, trace and rare earth elements of the granite porphyry in the study area
编号SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5
HG-TY173.820.1413.721.210.580.040.280.192.605.670.02
HG-TY269.530.4615.082.560.770.070.950.203.084.060.07
HG-N175.630.1312.301.530.710.040.530.053.304.310.02
编号KRbBaThTaNbZrHfSrA/CNKσ43
HG-TY147 061.00176.00262.0016.102.1031.20278.0010.50102.001.282.20
HG-TY233 698.00131.00834.008.581.3320.20383.0010.90166.001.541.89
HG-N135 773.00159.00401.0015.002.5737.90403.0014.9069.201.211.77
编号LaCePrNdSmEuGdTbDyHoEr
HG-TY125.60121.005.3116.902.840.192.890.383.030.692.24
HG-TY234.3074.807.1926.103.840.753.170.513.030.561.76
HG-N120.50111.005.0317.003.580.123.830.704.861.023.31
编号TmYbLuYΣREELREE/HREE(La/Yb)NδEuLa/SmGd/YbSm/ Nd
HG-TY10.443.000.5017.10185.0013.055.750.205.670.780.17
HG-TY20.282.060.3416.20159.0012.5511.230.645.621.240.15
HG-N10.583.860.5828.60176.008.393.580.103.600.800.21
注:主量元素质量分数单位为%;微量和稀土元素质量分数单位为10-6σ43=(w(Na2O+K2O))2/ (w(SiO2)-43);w(TFeO)=w(FeO)+w(Fe2O3)。
4 测试结果 4.1 年代学特征

花岗斑岩(HG-N1)的LA-ICP-MS锆石U- Pb同位素数据见表 1

花岗斑岩锆石在显微镜下呈黄粉色,晶体呈自形—半自形双锥柱状及柱状,但有不同程度的熔蚀。其阴极发光图像(图 3a)显示,锆石结晶较好,晶域较宽,多在边部发生条带构造;从表 1的分析结果可知,锆石Th/U为0.61~1.52,显示该锆石为岩浆锆石。测得的13个206Pb/238U年龄介于120~114 Ma之间,给出的加权平均值为(117±1) Ma,MSWD=0.54(图 3b),表明花岗斑岩形成于早白垩世。

图 3 研究区花岗斑岩锆石阴极发光(CL)图像(a)和锆石U-Pb谐和图(b) Fig. 3 CL images (a) and U-Pb concordia diagrams (b) of zircon grains from granite porphyry in the study area
4.2 地球化学特征

研究区花岗斑岩的w(SiO2)为69.53%~75.63%,w(Al2O3)为12.30%~15.08%,w(TFeO)为1.79%~3.33%,w(MgO)为0.28%~0.95%,w(CaO)为0.05%~0.20%,w(Na2O)为2.60%~3.30%,w(K2O)为4.06%~5.67%,K2O/Na2O值为1.31~2.18。岩石具有富钾和贫铁、镁、钙的特征。岩石里特曼指数为1.77~2.20,属钙碱性系列。w(K2O)-w(SiO2)图解(图 4a)中,样品大多落入高钾钙碱性系列区域,个别落入钾玄岩系列区域。岩石分异指数为59.65~70.56,铝质指数A/CNK为1.21~1.54(图 4b),为过铝质岩石。

图 4 研究区花岗斑岩w(K2O)-w(SiO2)图解(a)和A/NK-A/CNK图解(b) Fig. 4 w(K2O)-w(SiO2)diagrm (a) and A/NK -A/CNK diagram (b) of granite porphyry in the study area

花岗斑岩的稀土元素总量(w(∑REE))在159.00×10-6~185.00×10-6之间,平均为173.00×10-6δEu=0.10~0.64,表现出明显的负Eu异常,说明其应发生了强烈的分离结晶作用。(La/Yb)N=3.58~11.23,表明轻重稀土分馏较明显,富集轻稀土,亏损重稀土。La/Sm=3.60~5.67,Gd/Yb=0.78~1.24,表明轻稀土分馏程度相对较强,重稀土分馏程度相对较弱。

从花岗斑岩原始地幔微量元素标准化蛛网图(图 5a)可以看出,岩石富集大离子亲石元素K、Rb及高场强元素Th、Ta、Nb、Zr、Hf等,相对亏损Sr、Ba、P、Ti等元素;稀土配分模式图(图 5b)中,曲线呈明显的右倾趋势,表现出陆内花岗岩的壳源特征。

原始地幔标准值据文献[33];球粒陨石标准值据文献[34]。 图 5 研究区花岗斑岩原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化分布模式图(b) Fig. 5 Primitive mantle normolized trace element spider diagram (a) and chondrite-normalized REE patterns (b) of granite porphyry in the study area
5 讨论 5.1 岩石成因及构造环境

花岗岩研究中一个重要的基础问题是对花岗岩成因类型的判定。前人将花岗岩根据物质来源和构造环境不同划分为I型、S型、M型和A型等类型[35],但在自然界中M型花岗岩可能分布极少,绝大多数花岗岩都为S型、I型和A型[36]。针对花岗岩类型的判断,不同学者提出了多种判别标准,特别是对A型花岗岩的识别,已脱离了岩相学,而越来越侧重于地球化学指纹[37]

研究区花岗斑岩具有高硅、富碱、贫镁和钙的特征;富集大离子亲石元素(K、Rb)和高场强元素(Th、Ta、Nb、Zr、Hf),亏损Sr、Ba、P、Ti;稀土配分曲线均呈现右倾海鸥型,且具有明显的负Eu异常,显示出A型花岗岩的地球化学特征[37]。(Na2O+K2O)/CaO-10000Ga/Al图解(图 6a)显示,花岗斑岩样品落入A型花岗岩区域,表明花岗岩斑岩为A型花岗岩。A型花岗岩最早被定义为碱性、贫水和非造山的花岗岩[39]。按照化学成分,Eby[40]将A型花岗岩分为两个亚类:A1型和A2型,也有人将它们对应地称为AA型和PA型[41]。在Nb-Y-Ce图解(图 6b)中,花岗斑岩样品均落入A1型花岗岩区域,表明其形成于后造山伸展拉张环境或板内非造山的构造环境[42]。肖庆辉等[43]认为在经过碰撞、后碰撞之后,进入板内演化的开始阶段可以称作为“后造山”阶段,因此“非造山”拉张环境和“后造山”拉张环境具有一定的共性。在构造环境判别图解中,图 7ab显示花岗斑岩样品均落入后碰撞区域;图 7cd显示样品大部分落入后造山区域。研究区在中生代时期受到了古亚洲洋构造域和古太平洋构造域的叠加影响。前人研究认为,古亚洲洋在三叠纪晚期已完成闭合[46-49],中国东部在燕山期的地质演化则与古太平洋板块的俯冲及伴生的弧后伸展或俯冲带后退有关[25-26]。吴福元等[27]通过对辽东半岛中生代花岗质岩浆作用的年代学研究,得出中生代花岗质岩石的年龄由东部燕辽地区向西部太行山地区呈现逐渐变新的结论,认为包括东北在内的整个中国东部从170 Ma左右便开始了由太平洋板块俯冲控制的地质历史发展过程。以上研究表明,研究区花岗斑岩应形成于古太平洋俯冲的后造山伸展环境。

a底图据文献[38];b底图据文献[42]。 图 6 研究区花岗斑岩A型花岗岩判别图解 Fig. 6 Discrimination diagrams of A-type granitoids for granitic porphyries in the study area
VAG.火山弧花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;Syn-COLG.同碰撞花岗岩;post-COLG.后碰撞花岗岩;IAG.岛弧花岗岩类;CAG.大陆弧花岗岩类;CCG.大陆碰撞花岗岩类;POG.后造山花岗岩类;PRG.与裂谷有关的花岗岩类;CEUG.与大陆的造陆抬升有关的花岗岩类。a、b底图据文献[44];c、d底图据文献[45]。 图 7 研究区花岗斑岩构造环境判别图解 Fig. 7 Tectonic setting discrimination diagrams of granitic porphyries in the study area

前人对于A型花岗岩的物质来源和成因有着不同的解释和认知,主要有幔源岩浆的分异或部分熔融[50-53]、壳-幔物质的混合熔融[54]、壳源物质的部分熔融和再熔模式[55-57]及壳源物质的混染作用[58]。吴锁平等[37]认为A1型花岗岩亚类中Rb、Ce、Y、Nb、Sc、Zr、Hf、Ta、Ga等不相容元素的比值与洋岛玄武岩(OIB)相似,显示其物质来源以地幔为主(可有一定的地壳混染)。张旗等[59]则认为花岗岩都是壳源成因,大致分为洋壳、陆壳以及两者之间过渡的3种源区。研究区花岗斑岩具有较高的Na2O、K2O质量分数,K2O/Na2O=1.31~2.18,La/Nb=0.54~1.70,w(Th)=8.58×10-6~16.10×10-6,Sm/Nd=0.15~0.21,表现出壳源特征。(La/Yb)N -w(Yb)图解(图 8a)显示,花岗斑岩的岩浆位于大陆上部地壳区域;La/Sm-w(La)图解(图 8b)显示,花岗斑岩分布于分离结晶区域,并具有较高的负Eu异常,表明其发生了强烈的分离结晶作用。笔者[60]于2017年对研究区平岗盆地中早白垩世火山岩进行研究时,测得早白垩世流纹岩的成岩年龄为(117.0±0.9) Ma,与花岗斑岩的成岩年龄一致,且两者产出位置相同。图 9显示二者的稀土与微量的地球化学特征基本一致,说明两者属于同一构造环境且同一时间产出,甚至有可能为同一岩浆房。在早白垩世英安质角砾晶屑岩屑凝灰岩中,获得了年龄分别为(246.8±3.5) Ma和(169.6±4.6) Ma的两组岩浆锆石。通过研究,确认这两组锆石分别来源于盆地基底早三叠世、中侏罗世岩体的重熔[60],表明该期岩浆活动存在地壳重熔现象。同时笔者通过对辽宁岫岩地区同时期花岗斑岩的Hf同位素研究(数据另发),显示其物源来自地壳物质的重熔。通过对早白垩世火山岩地球化学数据[60]的进一步分析,笔者发现玄武粗安岩-英安岩具有较高的Mg#(45.90~70.09),显示出地幔源岩特征;且具有高Sr(337×10-6~1 570×10-6),低Y(1.56×10-6~2.55×10-6)、Yb(18.2×10-6~24.3×10-6)质量分数特征,说明其岩浆残留相中存在石榴子石或金红石等高压矿物,表明岩浆来源较深,同时在岩浆形成过程中有地幔物质参与。Zhao[61-62]通过地震层析成像研究发现在东亚大陆下地幔深部存在若干低速带,认为其是太平洋板块沿日本海沟一直向下俯冲到410~660 km的地幔过渡带,向西深入东亚大陆内部;且太平洋板块俯冲到410 km的消减带可以产生脱水作用,使上覆热和湿的软流圈地幔上涌,产生地幔对流,导致岩石圈的破裂和减薄。陈斌等[63]通过华北中生代岩浆作用的研究,也得出了基本相同的结论。通过以上研究,笔者认为研究区由于岩石圈减薄,导致地幔物质上涌,其携带的热量致使地壳物质发生重熔,从而形成了花岗斑岩岩浆。

图 8 研究区花岗斑岩(La /Yb)N-w(YbN)图解(a)和La/Sm-w(La)图解(b) Fig. 8 (La/Yb)N -w (YbN) diagram (a) and La/Sm-w(La) diagram (b) of granite porphyry in the study area
流纹岩数据来源于文献[56]。 图 9 研究区花岗斑岩和流纹岩原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化分布模式图(b) Fig. 9 Primitive mantle normolized trace element spider diagram (a) and chondrite-normalized REE patterns (b) of the granite porphyry and the rhyolite in the study area
5.2 岩石圈减薄的时间限制

笔者在研究平岗盆地早白垩世火山岩时,认为研究区在早白垩世发生了正负地形的快速转变,形成伸展盆地,同时结合邻区变质核杂岩的发育、中国东北部双峰式火山岩的出现,认为研究区在早白垩世发生了强烈的岩石圈减薄作用[60]。目前针对岩石圈减薄的起始时间存在三叠纪[5-6]、侏罗纪—早白垩世[7-10]、晚白垩世—新生代[11-14]等不同认识。

为解决这一问题,笔者针对研究区的中生代岩体均进行了LA-ICP-MS锆石U-Pb定年,除早白垩世岩体外,其余的中生代岩体为:晚侏罗世似斑状二长花岗岩(156±1) Ma、中侏罗世似斑状二长花岗岩(163±1) Ma、中侏罗世石英闪长岩(173±1) Ma、早侏罗世花岗岩(180±1) Ma、中三叠世花岗闪长岩(235±1) Ma、早三叠世二长花岗岩(243±6) Ma。通过地球化学分析,研究区早三叠世花岗岩至晚侏罗世花岗岩均属于高钾钙碱性岩石,具有高Sr,低Yb、Y质量分数,富集轻稀土,亏损重稀土特征[64],显示出埃达克质岩石特征。符合华北克拉通东部中生代岩浆岩普遍具有的高Sr/Y和La/Yb值特征[65-66]。针对研究区中生代埃达克质岩浆的形成,传统观点认为其起源于地壳加厚条件下基底下地壳的部分熔融[67-69]。张旗[67]认为华北地壳在127~125 Ma之前存在一个高原。说明研究区在晚侏罗世末期(156±1) Ma之前应处于地壳抬升、构造挤压的状态,与辽西地区晚侏罗世发生强烈的推覆及褶皱作用相符[70-71]。在156~117 Ma之间,研究区发生了正负地形的快速转换,形成伸展盆地,并发育强烈的岩浆及火山活动。以上证据表明,研究区地壳减薄时间应早于117 Ma,晚于156 Ma。

6 结论

1) LA-ICP-MS锆石U-Pb年龄显示,花岗斑岩的锆石206Pb/238U加权平均年龄为(117±1) Ma(MSWD=0.54,n=13),代表了花岗斑岩的形成年龄为早白垩世。

2) 研究区花岗斑岩属于A型(A1亚型)花岗岩,形成于古太平洋俯冲的后造山伸展环境。由于岩石圈的减薄,导致地幔物质上涌,从而使地壳发生重熔,形成了花岗斑岩岩浆,并发生了强烈的分离结晶作用。

3) 研究区的岩石圈减薄时间应处于156~117 Ma之间。

致谢: 在野外工作过程中,辽宁省地质矿产调查院刘锦、彭游博、杨仲杰、赵辰给予了热情帮助,在此深表感谢。

参考文献
[1]
刘锦, 刘正宏, 赵辰, 等. 辽宁清河断裂以北新太古代变质表壳岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(2): 497-510.
Liu Jin, Liu Zhenghong, Zhao Chen, et al. Discovery of the Late Archean Supracrustal Rock to the North of Qinghe Fault in Liaoning Province and Its Geological Significance[J]. Journal of Jilin University(Earth Science Edtion), 2017, 47(2): 497-510.
[2]
张雅静, 孙丰月, 霍亮, 等. 辽宁树基沟铜锌矿成矿时代及矿石再活化机制[J]. 吉林大学学报(地球科学版), 2014, 44(3): 786-795.
Zhang Yajing, Sun Fengyue, Huo Liang, et al. Metallogenic Age and Ore Remobilization Mechanisms of Shujigou Coper-Zinc Deposit, Liaoning Province, China[J]. Journal of Jilin University(Earth Science Edtion), 2014, 44(3): 786-795.
[3]
Fan W M, Zhang H F, Baker J, et al. On and Off the North China Craton:Where is the Archean Keel[J]. Journal of Petroleum Science and Engineering, 2000, 41: 933-950.
[4]
Deng J F, Mo X X, Zhao H L, et al. A New Model for the Dynamic Evolution of Chinese Lithosphere:Continental Roots-Plume Tectonics[J]. Earth Science Reviews, 2004, 65: 223-275. DOI:10.1016/j.earscirev.2003.08.001
[5]
Gao S, Lu T C, Zhong B R, et al. Chemical Composition of the Continental Crust As Revealed by Studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62: 1959-1975. DOI:10.1016/S0016-7037(98)00121-5
[6]
Gao S, Rudnick R L, Carlson R W, et al. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere Beneath the North China Craton[J]. Earth and Planet Sci Lett, 2002, 198: 307-322. DOI:10.1016/S0012-821X(02)00489-2
[7]
邓晋福, 莫宣学, 赵海玲, 等. 中国东部岩石圈根/去根作用与大陆"活化":东亚型大陆动力学模式研究计划[J]. 现代地质, 1994, 8(3): 349-356.
Deng Jinfu, Mo Xuanxue, Zhao Hailing, et al. Lithosphere Root/De-Rooting and Activation of the East China Continent[J]. Geoscience, 1994, 8(3): 349-356.
[8]
邓晋福, 赵海玲, 莫宣学. 中国大陆根-柱构造:大陆动力学的钥匙[M]. 北京: 地质出版社, 1996: 1-91.
Deng Jinfu, Zhao Hailing, Mo Xuanxue. Root-Column Structure of China Continent:Key to Continental Dynamics[M]. Beijing: Geological Publishing House, 1996: 1-91.
[9]
吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄[J]. 长春科技大学学报, 1999, 29(4): 313-318.
Wu Fuyuan, Sun Deyou. The Mesozoic Magmatism and Lithospheric Thinning in Eastern China[J]. Journal of Changchun University of Science and Technology, 1999, 29(4): 313-318.
[10]
吴福元, 孙德有, 张广良, 等. 论燕山运动的深部地球动力学本质[J]. 高校地质学报, 2000, 6(3): 379-388.
Wu Fuyuan, Sun Deyou, Zhang Guangliang, et al. Deep Geodynamics of Yanshain Movement[J]. Geological Journal of China Universities, 2000, 6(3): 379-388.
[11]
Fan W M, Menzies M A. Destruction of Aged Lower Lithosphere and Accretion of Asthenosphere Mantle Beneath Eastern China[J]. Geotecon Metallogen, 1992, 16: 171-180.
[12]
Xu Y G. Thermo-Tectonic Destruction of the Archaean Lithospheric Keel Beneath the Sino-Korean Craton in China:Evidence, Timing and Mechanism[J]. Physics and Chemistry of the Earth, 2001, 26: 747-757.
[13]
Zheng J P, Griffin W L, O'Reilly S Y, et al. Mechanism and Timing of Lithospheric Modification and Replacement Beneath the Eastern North China Craton:Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5203-5225. DOI:10.1016/j.gca.2007.07.028
[14]
Zhu G Z, Shi Y L, Tackley P. Subduction of the Western Pacific Plate Underneath Northeast China:Implications of Numerical Studies[J]. Physics of the Earth and Planetary Interiors, 2010, 178: 92-99. DOI:10.1016/j.pepi.2009.10.008
[15]
刘俊来, Davis G A, 纪沫, 等. 地壳的拆离作用与华北克拉通破坏:晚中生代伸展构造约束[J]. 地学前缘, 2008, 15(3): 72-81.
Liu Junlai, Davis G A, Ji Mo, et al. Crustal Detachment and Destruction of the North China Craton:Constraints from Late Mesozoic Extensional Structures[J]. Earth Science Frontiers, 2008, 15(3): 72-81.
[16]
林伟, 王清晨, 王军, 等. 辽东半岛晚中生代伸展构造:华北克拉通破坏的地壳响应[J]. 中国科学:地球科学, 2011, 41(5): 638-653.
Lin Wei, Wang Qingchen, Wang Jun, et al. Late Mesozoic Extensional Tectonics of the Liaodong Peninsula Massif:Response of Crust to Continental Lithosphere Destruction of the North China Craton[J]. Science China:Earth Sciences, 2011, 41(5): 638-653.
[17]
段秋梁, 谭未一, 杨长春, 等. 华北东部晚中生代伸展构造作用[J]. 地球物理学进展, 2007, 22(2): 403-410.
Duan Qiuliang, Tan Weiyi, Yang Changchun, et al. A Review on the Late Mesozoic Extensional Tectonics on the Eastern North China Craton[J]. Progress in Geophysics, 2007, 22(2): 403-410.
[18]
申亮, 刘俊来, 胡玲, 等. 辽东半岛大营子拆离断层系及其区域构造意义[J]. 中国科学:地球科学, 2011, 41(4): 437-451.
Shen Liang, Liu Junlai, Hu Ling, et al. The Dayingzi Detachment Fault System in Liaodong Peninsula and Its Regional Tectonic Significance[J]. Science China:Earth Sciences, 2011, 41(4): 437-451.
[19]
张宏, 柳小明, 李之彤, 等. 辽西阜新-义县盆地及附近地区早白垩世地壳大规模减薄及成因探讨[J]. 地质论评, 2005, 51(4): 360-372.
Zhang Hong, Liu Xiaoming, Li Zhitong, et al. Early Cretaceous Large-Scale Crustal Thinning in the Fuxin-Yixian Basin and Adjacent Area in Western Liaoning[J]. Geological Review, 2005, 51(4): 360-372.
[20]
Zhang Hongfu, Sun Min, Zhou Xinhua, et al. Secular Evolution of the Lithosphere Beneath the Esstern North China Craton:Evidence from Mesozoic Basalt and High-Mg Andesites[J]. Geochinica et Cosmochimica Acta, 2003, 67(22): 4373-4387. DOI:10.1016/S0016-7037(03)00377-6
[21]
Zhang H F, Sun M, Zhou X H. Mesozoic Lithosphere Destruction Beneath the North China Craton:Evidence from Major, Tracelement and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts[J]. Contributions to Mineralogy and Petrology, 2002, 144: 241-253. DOI:10.1007/s00410-002-0395-0
[22]
Chen B, Zhai M G. Geochemistry of Late Mesozoic Lamprophyre Dykes from the Taihang Mountains, North China, and Implications for the Sub-Continental Lithospheric Mantle[J]. Geology Magazine, 2003, 140: 87-93. DOI:10.1017/S0016756802007124
[23]
Chen B, Jahn B M, Arakawa Y, et al. Pelrogenesis of the Mesozoic Intrusive Complexes from the Southern Taihang Orogen, North China Craton:Elemental and Sr-Nd-Pb Isotopic Constraints[J]. Contributions to Mineralogy and Petrology, 2004, 148: 489-501. DOI:10.1007/s00410-004-0620-0
[24]
Gao S, Rudnick R L, Carlson R W, et al. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere Beneath the North China Craton[J]. Earth and Planetary Science Letters, 2002, 198: 307-322. DOI:10.1016/S0012-821X(02)00489-2
[25]
周新民, 徐夕生, 董传万, 等. 中国东南活动大陆边缘的矿物标志:钙长石质斜长石[J]. 科学通报, 1994, 39(11): 1011-1014.
Zhou Xinmin, Xu Xisheng, Dong Chuanwan, et al. Mineral Markers of the Active Continental Margin in Southeast China:Anorthitic Plagioclase[J]. Chinese Science Bulletin, 1994, 39(11): 1011-1014.
[26]
李武显, 周新民. 中国东南部晚中生代俯冲带探索[J]. 高校地质学报, 1999, 5(2): 164-168.
Li Wuxian, Zhou Xinmin. Late Mesozoic Subduction Zone of Southeastern China[J]. Geological Journal of China Universities, 1999, 5(2): 164-168.
[27]
吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3): 305-317.
Wu Fuyuan, Yang Jinhui, Liu Xiaoming. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula Northeast China[J]. Geological Journal of China Universities, 2005, 11(3): 305-317.
[28]
张兴洲, 杨宝俊, 吴福元, 等. 中国兴蒙-吉黑地区岩石圈结构基本特征[J]. 中国地质, 2006, 33(4): 816-823.
Zhang Xingzhou, Yang Baojun, Wu Fuyuan, et al. The Lithosphere Structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) Region, Northeastern China[J]. Geology in China, 2006, 33(4): 816-823.
[29]
Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[30]
Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoluths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[31]
Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. DOI:10.1007/s11434-010-3052-4
[32]
Ludwig K R. User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-20.
[33]
Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society of London, Special Publication, 1989, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
[34]
Boynton W V. Cosmochemistry of the Rare Earth Elements:Meteorite Studies[J]. Developments in Geochemistry, 1984, 32(4): 63-114.
[35]
Chappell B W, White A J R. Two Contrasing Granite Types[J]. Pacific Geology, 1974, 8: 173-174.
[36]
邱检生, 肖娥, 胡建, 等. 福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 2008, 24(11): 2468-2484.
Qiu Jiansheng, Xiao E, Hu Jian, et al. Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes[J]. Acta Petrologica Sinica, 2008, 24(11): 2468-2484.
[37]
吴所平, 王梅英, 戚开静. A型花岗岩研究现状及其评述[J]. 岩石矿物学杂志, 2007, 26(1): 57-66.
Wu Suoping, Wang Meiying, Qi Kaijing. Present Situation of Researches on a Type Granites:A Renew[J]. Acta Petrologica et Mineralogica, 2007, 26(1): 57-66.
[38]
Whalen J B, Currie K L, Chappell B W. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. DOI:10.1007/BF00402202
[39]
Loiselle M C, Wones D S. Characteristics and Origin of Anorogenic Granites[J]. Geological Society of America, 1979, 11: 468.
[40]
Eby G N. Chemical Subdivision of the A-Type Granitoids:Petrogenesis and Implications[J]. Geology, 1992, 20: 641-644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[41]
袁忠信. 关于A型花岗岩命名问题的谈论[J]. 岩石矿物学杂志, 2001, 20(3): 293-296.
Yaun Zhongxin. A Discussion on the Naming of A-Type Granite[J]. Acta Petrologica et Mineralogica, 2001, 20(3): 293-296.
[42]
Liegeois J P, Jacques N, Jan H, et al. Black Contrasting Origin of Post-Collisional High-K Cale-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids, the Use of Sliding Normalization[J]. Lithos, 1998, 45(1/2/3/4): 1-28.
[43]
肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002: 1-294.
Xiao Qinghui, Deng Jinfu, Ma Daquan, et al. Thinking and Methods of Granite Research[M]. Beijing: Geological Publishing House, 2002: 1-294.
[44]
Pearce J A. Source and Settings of Granitic Rocks[J]. Episodes, 1996, 19: 120-125. DOI:10.18814/epiiugs/1996/v19i4/005
[45]
Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101: 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[46]
Jahn B M, Wu F Y, Lo C H, et al. Crust-Mantle Interaction Induced by Deep Subdution of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China[J]. Chemical Geology, 1999, 157: 119-146. DOI:10.1016/S0009-2541(98)00197-1
[47]
Zhang H F, Sun M, Zhou X H. Mesozoic Lithosphere Destruction Beneath the North China China:Evidence from Major, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Baslts[J]. Contributions to Mineralogy and Petrology, 2002, 144: 241-253.
[48]
Li Y L, Zhou H W, Brouwer F M, et al. Early Paleozoic to Middle Triassic Bivergent Accretion in the Central Asian Orogenic Belt:Insights from Zircon U-Pb Dating of Ductile Shear Zones in Central Inner Mongolia, China[J]. Lithos, 2014, 205: 84-111. DOI:10.1016/j.lithos.2014.06.017
[49]
Yuan L L, Zhang X H, Xue F H, et al. Late Permian High-Mg Andesite and Basalt Association from Northern Liaoning, North China:Insights Into the Final Closure of the Paleo-Asian Ocean and the Orogeny-Craton Boundary[J]. Lithos, 2016, 258: 58-76.
[50]
Pearce J A. Trace Element Discrimination Diagram for Tectonic Interpretation of Granitic Rocks[J]. J Petrolito, 1984, 25: 656-682.
[51]
许保良, 阎国翰, 张臣, 等. A型花岗岩岩石学亚类及其物质来源[J]. 地学前缘, 1998, 5(3): 113-124.
Xu Baoliang, Yan Guohan, Zhang Chen, et al. Petrological Subdivision and Source Material of A-Type Granites[J]. Earth Science Frontiers, 1998, 5(3): 113-124.
[52]
Eby G N. The A-Type Granitiods:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis[J]. Lithos, 1990, 26: 115-134. DOI:10.1016/0024-4937(90)90043-Z
[53]
Eby G N. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20: 641-644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[54]
Dickin A P, Halliday A N, Bowden P. A Pb, Sr and Nd Isotope Study of the Basement and Mosozoic Ring Complexes of the Jos Piateau, Nigeria[J]. Chemical Geology, 1991, 94: 23-32. DOI:10.1016/S0009-2541(10)80014-2
[55]
Collins W J, Beams S D, White A J, et al. Nature and Origin of A-Type Granites with Particular Reference to Southeastem Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189-200. DOI:10.1007/BF00374895
[56]
Landenberger B, Collins W J. Derivation of A-Type Granites from a Dehydrated Charnockitic Lower Crust:Evidence from the Chaelundi Complex, Eastem Australia[J]. Journal of Petrology, 1996, 37: 145-170. DOI:10.1093/petrology/37.1.145
[57]
赵广涛, 王德滋, 曹钦臣. 崂山花岗岩岩石地球化学与成因[J]. 高校地质学报, 1997, 3(1): 1-15.
Zhao Guangtao, Wang Dezi, Cao Qinchen. The Geochemistry and Genesis of the Lao Shan Granitioids, Shandong Province[J]. Geological Journal of China Universities, 1997, 3(1): 1-15.
[58]
Dickin A P. Nd Isotope Chemistry of Tertiary Igneous from Arran, Scotland:Implications for Magma Evolution and Crustal Structure[J]. Geological Magazine, 1994, 131: 329-333. DOI:10.1017/S0016756800011092
[59]
张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩:挑战与机遇[M]. 北京: 中国大地出版社, 2008: 1-344.
Zhang Qi, Wang Yan, Xiong Xiaolin, et al. Adakite and Granite:Challenges and Opportunities[M]. Beijing: China Land Press, 2008: 1-344.
[60]
豆世勇, 刘锦, 鲍东明, 等. 辽宁德仁组火山岩LA-ICP-MS锆石U-Pb年龄及岩石地球化学特征[J]. 地质通报, 2017, 36(10): 1708-1721.
Dou Shiyong, Liu Jin, Bao Dongming, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of the Volcanic Rocks in Deren Formation of Northern Liaoning Province[J]. Geologoical Bulletin of China, 2017, 36(10): 1708-1721.
[61]
Zhao D P. Global Tomographic Images of Mantle Plumes and Subducting Slabs:Insight Into Deep Earth Dynamics[J]. Physics of the Earth and Planetary Interiors, 2004, 146: 3-34. DOI:10.1016/j.pepi.2003.07.032
[62]
Zhao D P. Multiscale Seismic Tomography and Mantle Dynamics[J]. Gondwana Research, 2009, 15: 297-323. DOI:10.1016/j.gr.2008.07.003
[63]
陈斌, 田伟, 翟明国, 等. 太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义[J]. 岩石学报, 2005, 21(1): 13-24.
Chen Bin, Tian Wei, Zhai Mingguo, et al. Zircon U-Pb Geochronology and Geochemistry of the Mesozic Magmatism in the Taihang Mountains and Other Places of the North China Craton, with Implications for Petrogenesis and Geodynamic Setting[J]. Acta Petrologica Sinica, 2005, 21(1): 13-24.
[64]
刘锦, 刘正宏, 李世超, 等. 华北北缘东段开原地区三叠世侵入岩年代学及岩石地球化学研究[J]. 岩石学报, 2016, 32(9): 2739-2756.
Liu Jin, Liu Zhenghong, Li Shichao, et al. Geochronology and Geochemistry of Triassic Intrusive Rocks in Kaiyuan Area of the Eastern Section of the Northern Margin of North China[J]. Acta Petrologica Sinica, 2016, 32(9): 2739-2756.
[65]
钱青, 钟孙霖, 李通艺, 等. 八达岭基性岩和高Sr-Ba花岗岩地球化学特征及成因谈论:华北和大别-苏鲁造山带中生代岩浆对比[J]. 岩石学报, 2002, 18(3): 275-292.
Qian Qing, Zhong Sunlin, Li Tongyi, et al. Geochemical Characteristics and Petrogenesis of the Badaling High Ba-Sr Granitoids a Comparison of Igneous Rocks from North China and the Dabie-Sulu Orogen[J]. Acta Petrologica Sinica, 2002, 18(3): 275-292.
[66]
刘红涛, 孙世化, 刘建明, 等. 华北克拉通北缘中生代高Sr花岗岩类:地球化学与源区性质[J]. 岩石学报, 2002, 18(3): 257-274.
Liu Hongtao, Sun Shihua, Liu Jianming, et al. The Mesozoic High-Sr Granitoids in the Northern Marginal Region of North China Craton Geochemistry and Source Region[J]. Acta Petrologica Sinica, 2002, 18(3): 257-274.
[67]
张旗, 金惟俊, 李承东, 等. 中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系[J]. 地学前缘, 2009, 16(2): 21-51.
Zhang Qi, Jin Weijun, Li Chengdong, et al. Yanshanian Large-Scale Magmatism and Lithosphere Thinning in Eastern China:Relation to Large Igneous Province[J]. Earth Science Frontiers, 2009, 16(2): 21-51.
[68]
Chen B, Zhai M G, Shao J. Petrogensis and Significance of the Mesozoic North Taihang Complex:Major and Trace Element Evidence[J]. Science in China:Series D, 2003, 46: 941-953. DOI:10.1007/BF02991340
[69]
张旗, 王焰, 王元龙, 等. 中国埃达克岩的时空分布及其形成背景[J]. 地学前缘, 2003, 10(4): 385-400.
Zhang Qi, Wang Yan, Wang Yanlong, et al. On the Space-Time Distribution and Geodynamic Environments of Adakites in China[J]. Earth Science Frontiers, 2003, 10(4): 385-400.
[70]
和政军, 王宗起, 任纪舜. 华北北部侏罗纪大型推覆构造带前缘盆地沉积特征和成因机制初探[J]. 地质科学, 1999, 34(2): 186-195.
He Zhengjun, Wang Zongqi, Ren Jishun. A Prelimin-ary Research on Sedimentary Features and Genetic Mechanism of Frontal Basins Before Jurassic Large-Scale Nappe in the Northern Region of North China[J]. Scientia Geologica Sinica, 1999, 34(2): 186-195.
[71]
王根厚, 张长厚, 王果胜, 等. 辽西地区中生代构造格局及其形成演化[J]. 现代地质, 2001, 15(1): 1-7.
Wang Genhou, Zhang Changhou, Wang Guosheng, et al. Tectonic Framework of Western Liaoning Province and Its Evolution During Mesozoic[J]. Geoscience, 2001, 15(1): 1-7.
http://dx.doi.org/10.13278/j.cnki.jjuese.20190198
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

豆世勇
Dou Shiyong
辽北开原地区房木花岗斑岩LA-ICP-MS锆石U-Pb年龄及地球化学特征
LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Granitic Porphyry in Kaiyuan Area of Northern Liaoning Province
吉林大学学报(地球科学版), 2020, 50(6): 1752-1765
Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1752-1765.
http://dx.doi.org/10.13278/j.cnki.jjuese.20190198

文章历史

收稿日期: 2019-09-28

相关文章

工作空间