文章快速检索  
  高级检索
甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示
孙海瑞1,2, 吕志成1,2, 于晓飞1,2, 李永胜1,2, 杜泽忠1,2, 吕鑫1,2, 公凡影1,2     
1. 中国地质调查局发展研究中心, 北京 100037;
2. 自然资源部矿产勘查技术指导中心, 北京 100083
摘要: 甘肃北山地区位于中亚造山带中段,是诠释中亚造山带构造演化的关键区域之一,长期以来受到地质学界的广泛关注。柳园地区位于甘肃北山南带,区内脉岩发育,这些岩脉的研究可以为阐释北山造山带晚古生代构造背景提供更多证据。基于此,本文选取位于甘肃柳园地区的正长花岗斑岩脉开展了系统的锆石U-Pb-Hf同位素和全岩主量、微量元素分析。LA-ICP-MS锆石U-Pb分析显示,岩脉侵位于早二叠世((288.5±1.4)Ma)。全岩地球化学分析显示,正长花岗斑岩脉的SiO2和全碱质量分数较高,Fe、Mg、Ca、Al和P质量分数较低,Rb、Th、U和Pb相对富集,Ba、Nb、La、Ce、Sr和Ti等元素相对亏损,Eu负异常显著,具有较高的Rb/Sr值和较低的K/Rb值及锆石饱和温度(730~844℃,集中于740℃左右),显示该岩脉为高钾钙碱性高分异Ⅰ型花岗岩,并具有俯冲带岩浆活动的地球化学特征。正长花岗斑岩脉具有较低的Zr/Hf值(18.42~28.01,平均值为22.37)和Th/U值(3.82~7.99,平均值为5.34),与平均地壳组分接近,锆石εHft)值为2.94~9.66,平均值为5.72,TDM2值为955~611 Ma,指示源区主体为新元古代地壳的部分熔融,并存在幔源物质加入。根据构造判别图解并结合前人关于二叠纪区域构造变形、盆地沉积物源、岩浆演化等方面的研究结果,笔者认为该正长花岗斑岩脉形成于俯冲作用过程中的局部伸展环境,并认为北山地区增生造山事件至少持续到早二叠世。
关键词: 正长花岗斑岩脉    高分异Ⅰ型花岗岩    地球化学    早二叠世    北山    中亚造山带    
Late Paleozoic Tectonic Evolution of Beishan Orogenic Belt: Chronology and Geochemistry Constraints of Early Permian Syenogranitic Porphyry Dyke in Liuyuan Area, Gansu Province
Sun Hairui1,2, Lü Zhicheng1,2, Yu Xiaofei1,2, Li Yongsheng1,2, Du Zezhong1,2, Lü Xin1,2, Gong Fanying1,2     
1. Development and Research Center, China Geological Survey, Beijing 100037, China;
2. Mineral Exploration Technical Guidance Center, Ministry of Natural Resources, Beijing 100083, China
Abstract: Beishan orogenic belt is located in the middle part of Central Asia orogenic belt (CAOB), and it is crucial to discuss the accretionary evolution of the CAOB. Liuyuan area is in the southern part of Beishan orogenic belt, where granitoid rocks and different types of dykes are widely distributed. To study these rocks and dykes can provide us with more important clues about the reconstruction of the geological evolution of this area. The LA-ICP-MS zircon U-Pb dating of the syenogranitic porphyry dyke in northeast Liuyuan area yields the weighted 206Pb/238U ages of (288.5±1.4) Ma, the Early Permian. The geochemical results show that the contents of SiO2 and total alkali of the syenogranitic porphyry are high, while the contents of Fe, Mg, Ca, Al and P are low. In addition, the porphyry is characterized by rich in Rb, Th, U and Pb but poor in Ba, Nb, La, Ce, Sr and Ti, with obvious Eu negative anomaly. The value of Rb/Sr is high, the value of K/Rb is low, and the saturation temperature of zircon is lower (730-844 ℃, concentrating around 740 ℃). Based on the above geochemical results and the comprehensive discriminant analysis, we believe that the porphyry belongs to high-K calc-alkaline and high fractionated Ⅰ-type granites. Also, the syenogranitic porphyry presents a narrow range of Zr/Hf (18.42 to 28.01, average 22.37) and Th/U values (3.82 to 7.99, average 5.34) respectively, which is similar to those of crust sourced rocks. The syenogranitic porphyry show positive εHf (t) values, varying from 2.94 to 9.66, with average of 5.72, and relatively young TDM2 ages, ranging from 955 to 611 Ma. Considering the occurrences of the coeval mafic igneous rocks in this region, we believe that the porphyry magma should be mainly derived from the partial melting of the crust-derived metamorphic igneous rocks with some contribution of mantle materials. The tectonic discriminant analysis shows that the Early Permian syenogranitic porphyry was formed in a subduction environment. Based on the previous studies on the regional tectonic deformation, basin sediment source, and the magma evolution from Permian to Triassic, it is concluded that the accretionary orogenic events in the southern part of Beishan orogenic belt lasted at least until the Early Permian, which provided important constraints on the reconstruction of the tectonic evolution of the Late Paleozoic Beishan orogenic belt.
Key words: syenogranitic porphyry dyke    high fractionated Ⅰ-type granite    geochemistry    Early Permian    Beishan area    Central Asia orogenic belt    

0 引言

中亚造山带(CAOB)夹持于东欧板块、西伯利亚板块、华北板块和塔里木板块之间,其形成与古亚洲洋长期俯冲消减有关,不仅是世界上著名的增生型造山带,也是显生宙以来陆壳生长最显著的地区之一[1-2],已成为探讨大陆增生-改造过程与成矿作用的天然实验室[3]。长期以来,中亚造山带中段北山地区古亚洲洋的闭合时间一直是争议的焦点,前人已开展了大量研究工作,先后提出了志留纪末泥盆纪初[4]、石炭纪[5]、早二叠世前[6]、晚二叠世或更晚[7-8]等不同观点,一直没有统一的认识,极大限制了对中亚造山带的整体认识。

甘肃北山地区位于中亚造山带中段,西与东天山紧邻,东与阿拉善相接,构造位置独特,构造-岩浆活动强烈。对该地区晚古生代早中生代岩浆作用的研究为反演古亚洲洋在北山造山带的构造演化过程提供了重要证据,该地区一直是地质学界关注的热点地区之一[9-14]。位于甘肃北山南带柳园地区的脉岩十分发育,这些岩脉的研究可以为重建该区的地质演化历史提供重要证据[15]。然而,目前的研究主要集中在镁铁质超镁铁质岩石[6, 12, 16-18],而对于同期中酸性脉岩的关注较少,不仅未能全面反映北山地区晚古生代岩浆作用的特征,也在一定程度上限制了区域构造演化研究的深入。

因此,笔者依托新近完成的甘肃北山柳园花牛山地区1:50 000矿产地质调查项目,以柳园一带发现的晚古生代酸性脉岩为研究对象,系统开展了岩石学、锆石U-Pb-Hf同位素及岩石地球化学研究,探讨其形成的时代、成因机制和构造环境,以期为北山地区晚古生代构造、岩浆作用的系统研究提供更多证据。

1 区域地质背景

北山位于中亚造山带的中段(图 1a),包括红柳河洗肠井蛇绿混杂岩带以南至敦煌地块北缘的区域,其形成与敦煌地块以及古亚洲洋南部复杂增生体俯冲碰撞有关。4条贯穿研究区的断裂带自北向南分别是红石山、星星峡石板井、红柳河洗肠井和柳园断裂带,这4条断裂带可能分别代表了分隔西伯利亚板块、东欧板块和塔里木板块的古洋盆,前人称其为“蛇绿混杂岩带”(图 1b)[4, 19]。以这些蛇绿混杂岩带为界,由南向北依次分布有石板山弧、花牛山双鹰山弧、马鬃山弧、旱山黑鹰山弧和雀儿山弧[7, 19]。除此之外,还有呈北西西、近东西和北东走向的断裂(图 1b)。上石炭统至下中二叠统均有出露,地层由老至新分别是干泉组、双堡塘组、菊石滩组、金塔组[20]。干泉组下部由砾岩、砂岩和泥岩组成,局部出现生物碎屑灰岩;其上部主要由火山岩组成,如玄武岩、英安岩和流纹岩等,同位素年代学研究认为干泉组形成时代可能延续至早二叠世早期[13]。下中二叠统由双堡塘组、菊石滩组和金塔组组成,其中双堡塘组以粗碎屑岩为主,菊石滩组以细碎屑岩为主,金塔组以火山岩为主,三者之间整合接触,均为海相沉积[20]。上二叠统由红岩井组和方山口组构成,主要为陆相碎屑岩和火山岩,不整合于下中二叠统之上,其中红岩井组以砾岩、砂岩和炭质泥页岩为主, 方山口组以酸性火山岩为主,含砂岩和凝灰质砂岩夹层[21]。区内岩浆活动强烈,以规模巨大、呈复式岩基存在的古生代侵入岩最为发育[11, 22]。此外,岩脉广泛出露,以中酸性、基性为主,脉体走向以北东向和近东西向最为发育,单个脉体长数十米至千余米不等(图 1c),倾角多在45°~70°之间,局部近直立。

1.红石山蛇绿混杂岩带;2.星星峡石板井蛇绿混杂岩带;3.红柳河洗肠井蛇绿混杂岩带;4.柳园蛇绿混杂岩带。a、b底图分别据文献[7, 16]修编。 图 1 中亚造山带构造位置图(a)、北山造山带构造简图(b)及柳园东北部地区地质简图(c) Fig. 1 Simplified tectonic map of Central Asian orogenic belt (a), simplified tectonic map of Beishan orogenic belt (b), and sketch geological map of the northeastern Liuyuan area (c)
2 样品特征及分析方法 2.1 样品特征

研究区位于红柳河洗肠井蛇绿混杂岩带与柳园蛇绿混杂岩带之间(图 1bc)。本次研究的正长花岗斑岩样品采自柳园镇北东约32 km,其围岩为中石炭世似斑状花岗闪长岩,岩石呈灰白或浅肉红色,似斑状结构;斑晶主要以斜长石为主,其次为钾长石,粒径一般为6~l5 mm,粗者可达2~4 cm,基质主要由斜长石、钾长石、石英、角闪石和黑云母组成。受强烈风化的影响,正长花岗斑岩脉在地表主要呈红色碎石条带展布,脉宽3~5 m,延长大于100 m,走向近65°,新鲜面呈深肉红色,含少量石英和钾长石斑晶,长石蚀变较弱(图 2)。

a.正长花岗斑岩脉穿插于中石炭世似斑状黑云母花岗闪长岩中,地表呈碎石状散布;b.正长花岗斑岩标本;c、d.正长花岗斑岩镜下显微照片,斑状结构清晰。Q.石英;Kfs.钾长石。 图 2 甘肃柳园正长花岗斑岩脉露头及样品照片 Fig. 2 Field outcrops and microphotographs of Liuyuan syenogranitic porphyry dyke
2.2 锆石U-Pb和Hf同位素分析

正长花岗斑岩的锆石分选在首钢地质勘查院完成。机械性粉碎含有锆石的岩石样品至80目,重力磁力分选后利用双目镜把锆石颗粒挑出。挑选出的锆石样品在北京锆年领航科技有限公司完成制靶和阴极发光照相。在双目镜下,选择透明、无包裹体、无裂隙、晶型好、颗粒较大的锆石单矿物粘在双面胶上,利用无色透明的环氧树脂固定,待环氧树脂固化后,将锆石抛光,使其内部结构剖面充分暴露。完成制靶后,对样品进行阴极发光图像(CL)的采集,以便观察锆石的内部结构,帮助选择适宜的测试点位。

单颗粒锆石LA-ICP-MS原位U-Pb同位素分析在北京燕都中实测试技术有限公司完成。激光剥蚀系统为NWR193(elemental scientific lasers LLC),ICP-MS为德国耶拿M90。测试过程中激光斑束选择25 μm,激光脉冲为8 Hz,能量密度为4 J/cm2。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合。每个时间分辨分析数据包括20~30 s的空白信号和50 s的样品信号。本次测试91500及Plesovice标样均符合推荐值[23-24]。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素质量分数及U-Th-Pb同位素比值和年龄计算)采用软件ZSkits完成。锆石的谐和图以及年龄频率图用软件Isoplot(version 3.0)绘制。年轻的锆石(< 1 Ga)采用206Pb/238U年龄。同位素比值及年龄误差均为σ

在完成上述锆石U-Pb同位素分析之后,对所测试锆石进行原位Hf同位素分析。Hf同位素测试位置与U-Pb定年点位相同或靠近。锆石原位Lu-Hf同位素测年在北京燕都中实测试技术有限公司美国热电Nepturn-plus MC-ICP-MS与New Wave UP213激光烧蚀进样系统测试完成。分析时激光束直径为35 μm,剥蚀使用频率为8 Hz,能量为16 J/cm2的激光剥蚀31 s,测定时用锆石国际标样91500作外标,仪器运行条件及详细分析步骤与校准方法类似于文献[25]。Hf同位素模式年龄的计算公式与计算过程中各种参数的选择可以参考相关文献[26]和[27]。

2.3 主微量元素分析

本次硅酸盐全分析在北京燕都中实测试技术有限公司完成。分析前首先将岩石粗碎至厘米级的块体,挑选肉眼观察无蚀变及脉体穿插的新鲜样品用纯化水冲洗干净,烘干后粉碎至200目以备测试使用。主量元素测试首先将粉末样品称量后加入Li2B4O7(1:8)助熔剂混合,并使用融样机加热至1 150 ℃, 使其在金铂坩埚中熔融成均一玻璃片体,后使用X射线荧光光谱分析(Zetium, PANalytical)测试。测试结果保证数据误差小于1%。微量元素测试将200目粉末样品称量后置入聚四氟乙烯溶样罐,然后加入HF+HNO3,在干燥箱中将高压消解罐保持在190 ℃、72 h,后取出经过赶酸并将溶液定容为稀溶液上机测试。测试使用ICP-MS(M90,analytikjena)完成,所测数据根据监控标样GSR-2显示误差小于5%,部分挥发性元素及极低质量分数元素的分析误差小于10%。

3 分析结果 3.1 LA-ICP-MS锆石U-Pb定年

本次做图所选的北山正长花岗斑岩脉锆石U-Pb分析结果剔除了普通铅丢失严重及谐和度低(<90%)的测试数据,如TW6241-1-01、TW6241-1-06、TW6241-1-07、TW6241-1-11和TW6241-1-23,有效的锆石U-Pb数据为20组(表 1)。CL图像显示锆石结晶均较好,短柱状晶形,自形程度较高,长度一般为100~160 μm,长宽比2:1.1~2:1.6,具震荡环带,为岩浆成因锆石(图 3)。

表 1 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb分析数据 Table 1 Zircon U-Pb isotopic data of Early Permian syenogranitic porphyry dyke in Liuyuan area, Gansu Province
黄色圆圈代表锆石U-Pb测年位置,红色圆圈代表Hf同位素分析位置。 图 3 甘肃柳园早二叠世正长花岗斑岩脉锆石CL图像 Fig. 3 Cathodoluminescence images for zircons of Early Permian syenogranitic porphyry dyke in Liuyuan area, Gansu Province

锆石U-Pb分析结果显示,其U和Th质量分数变化较大,U质量分数为116×10-6~641×10-6,Th质量分数为52.2×10-6~402.0×10-6,Th/U值分布比较均衡,为0.41~0.83,平均为0.63。锆石206Pb/238U年龄为282.8~293.1 Ma,分布较为集中,加权平均年龄(Mean)为(288.5±1.4) Ma (MSWD=0.55)(图 4),即早二叠世,代表正长花岗斑岩脉成岩年龄。

图 4 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb谐和年龄图解(a)和加权平均年龄图解(b) Fig. 4 Concordia (a) and weighted mean (b) ages of Early Permian syenogranitic porphyry dyke in Liuyuan area, Gansu Province
3.2 主量元素分析

甘肃北山柳园镇东北部正长花岗斑岩脉的岩石化学分析结果见表 2。正长花岗斑岩的SiO2质量分数为77.25%~77.90%,K2O+Na2O质量分数为7.64%~8.36%,TiO2质量分数为0.05%~0.12%,Al2O3质量分数为11.59%~12.11%,Fe2O3质量分数为1.58%~2.04%,MgO质量分数为0.12%~0.22%,CaO质量分数为0.39%~0.50%,P2O5质量分数为0.01%。在全碱二氧化硅(TAS)图解(图 5a)中,样品部分落入亚碱性花岗岩区域内;在w(K2O)-w(SiO2)图解(图 5b)中,样品基本落入高钾-钙碱性区域;A/CNK值变化范围较小(0.99~1.03),在A/NK-A/CNK图解(图 5c)中,样品全部落于准铝质到弱过铝质区域。因此,本次研究正长花岗斑岩属高钾-钙碱性-准铝质花岗岩。

表 2 甘肃柳园地区早二叠世正长花岗斑岩脉全岩主、微量元素分析结果 Table 2 Whole rock major elements and trace elements composition of Early Permian syenogranitic porphyry dyke in Liuyuan area, Gansu Province
样品号 SiO2 TiO2 Al2O3 Fe2O3 FeO MgO MnO K2O Na2O CaO P2O5 烧失量 总和 Ga Rb Sr Y Zr Nb Ta Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Pb Th U ∑REE K/Rb Rb/Sr A/NK A/CNK TZr/℃ Zr/Hf Th/U δEu
YQ6241-1 77.50 0.06 11.93 1.62 1.00 0.17 0.03 4.48 3.88 0.42 0.01 0.16 100.25 15.41 284.67 41.33 32.31 86.80 15.73 7.50 31.76 17.75 35.35 3.62 13.99 3.71 0.08 3.61 0.63 5.01 1.03 3.17 0.47 3.10 0.48 4.71 24.34 33.05 6.13 92.00 130.57 6.89 1.06 0.99 734 18.42 5.39 0.02
YQ6241-3 77.41 0.05 12.11 1.80 1.09 0.13 0.02 4.48 3.83 0.39 0.01 0.40 100.62 14.64 248.68 45.11 29.14 80.58 14.30 6.59 30.06 16.84 34.14 3.30 12.30 3.35 0.07 3.04 0.56 4.36 0.92 2.81 0.41 2.64 0.40 4.31 24.93 30.03 3.76 85.15 149.46 5.51 1.09 1.02 730 18.70 7.99 0.02
YQ6241-5 77.90 0.12 11.59 2.04 1.40 0.22 0.03 3.78 3.86 0.44 0.01 0.41 100.39 17.88 182.47 92.47 39.85 278.11 21.92 6.01 93.54 42.11 82.18 10.2 44.87 8.01 0.39 8.48 0.92 8.41 1.67 5.07 0.69 4.32 0.66 9.93 21.97 27.08 7.09 217.97 203.74 1.97 1.11 1.03 844 28.01 3.82 0.05
YQ6241-7 77.25 0.08 11.99 1.58 0.92 0.12 0.03 4.53 3.81 0.50 0.01 0.07 99.96 15.09 195.16 43.60 18.78 108.47 10.86 4.58 164.54 35.36 52.02 5.12 21.01 3.36 0.19 3.08 0.30 3.07 0.62 1.95 0.27 1.75 0.27 4.45 17.57 26.58 6.41 128.36 160.62 4.48 1.07 0.99 751 24.35 4.15 0.06
  注:TZr为正长花岗斑岩脉锆石饱和温度,计算公式据文献[28]。主量元素质量分数单位为%;微量元素质量分数单位为10-6
a、b、c底图分别据文献[29]、[30]、[31]。 图 5 甘肃柳园早二叠世正长花岗斑岩脉TAS分类图解(a)、w(K2O)-w(SiO2)图解(b)及A/NK-A/CNK图解(c) Fig. 5 Whole rock TAS diagram (a), w(K2O)-w(SiO2) diagram (b) and A/NK-A/CNK diagram of Early Permian syenogranitic porphyry dyke in Liuyuan area, Gansu Province
3.3 微量元素分析

正长花岗斑岩脉的微量元素分析结果见表 2,其稀土元素总量较低,w(ΣREE)为85.15×10-6~217.97×10-6δEu值为0.02~0.06,具明显的Eu负异常。稀土元素球粒陨石标准化配分模式为轻稀土富集的右倾型曲线,重稀土元素间分馏不明显(图 6a)。微量元素原始地幔标准化蛛网图(图 6b)显示,正长花岗斑岩富集Rb、Th、U、Pb和Hf等元素,而亏损Ba、Nb、La、Ce、Sr、P和Ti等元素。

球粒陨石和原始地幔标准化值引自文献[32]。 图 6 甘肃柳园早二叠世正长花岗斑岩脉稀土元素配分图解(a)和微量元素蛛网图(b) Fig. 6 Chondrite-normalized REE patterns (a) and primitive-mantle normalized trace element spider diagrams (b) of Early Permian syenogranitic porphyry dyke in Liuyuan area, Gansu Province
3.4 锆石Hf同位素分析

对20个已获得U-Pb年龄的锆石颗粒进行Hf同位素分析,分析结果见表 3。Hf同位素分析结果显示,锆石176Hf/177Hf值为0.282 701~0.282 893,fLu/Hf值为-0.92~-0.84,变化范围不大,显示出较为均一的特征;以单颗粒锆石U-Pb年龄计算得出的εHf(t)值为2.94~9.66,平均值为5.72;TDM1值为876~571 Ma,TDM2值为955~611 Ma。

表 3 甘肃柳园正长花岗斑岩脉锆石Hf同位素分析结果 Table 3 Zircon Hf isotopic data of Liuyuan syenogranitic porphyry dyke
4 讨论 4.1 岩石成因

本次研究正长花岗斑岩脉具有较高的SiO2、全碱质量分数和较低的Fe、Mg、Ca、P质量分数。在原始地幔标准化图解上,正长花岗斑岩脉呈Rb、Th、U和Pb富集的特征,Ba、Sr和Ti表现为亏损的特点,Eu负异常显著,同时具有较高的Rb/Sr值(1.97~6.89,平均值为4.71)和较低的K/Rb值(130.57~203.74,平均值为161.10)。正长花岗斑岩脉的锆石饱和温度(730~844 ℃(表 2),集中于740 ℃左右)、10000Ga/Al值(图 7a)和Zr+Nb+Ce+Y质量分数(图 7b)均偏低,与典型的A型花岗岩存在明显区别,而与高分异花岗岩极为相似,可能与岩浆结晶分异过程中存在黑云母、磷灰石、Fe-Ti氧化物(如金红石、钛铁矿等)和斜长石的结晶有关[34-37]。另外,正长花岗斑岩脉的Al2O3质量分数较低,多数样品A/CNK < 1.1,与典型的S型花岗岩较高的A/CNK(>1.1)存在明显不同。另外,正长花岗斑岩脉的P2O5质量分数也极低(< 0.1%,表 2),Y和Th质量分数均与Rb质量分数呈正相关关系(图 7cd),与Ⅰ型花岗岩的结晶分异演化曲线相似[33, 38],故属高分异的Ⅰ型花岗岩类型。

a、b底图据文献[33];c、d底图据文献[38]。I & S. Ⅰ型与S型花岗岩;FG.分异的花岗岩;OGT.未分异的M型、Ⅰ型以及S型花岗岩。 图 7 甘肃柳园早二叠世正长花岗斑岩脉岩浆岩判别图解 Fig. 7 Discriminant diagrams of Early Permian syenogranitic porphyry dyke in Liuyuan area, Gansu Province

研究区正长花岗斑岩脉的锆石εHf(t)值变化范围较大,平均值为5.72,分布于亏损地幔和地壳演化线之间(图 8),与北山地区早二叠世花岗岩Hf同位素组成特征相近,显示有幔源特征物质的加入。另外,本文正长花岗斑岩脉锆石的TDM2值为955~611 Ma,指示源区主体为新元古代地壳,暗示北山南部存在新元古代的大陆基底。前人研究认为,高分异Ⅰ型花岗岩的初始岩浆可能来源于镁铁质岩浆的结晶分异[38]或壳源物质的部分熔融[41]。本次研究正长花岗斑岩脉具有较低的Zr/Hf值(18.42~28.01,平均值为22.37)和Th/U值(3.82~7.99,平均值为5.34),与平均地壳组分接近(Zr/Hf=33,Th/U=4[42]),因此,其初始岩浆更可能来源于地壳的部分熔融。考虑到除本次研究正长花岗斑岩脉之外,柳园地区所在的花牛山双鹰山弧同期花岗质岩浆岩[41]和镁铁质岩浆岩均有广泛分布[39-40],并具有正的εHf(t)和负的εNd(t)值[6, 39, 44]。因此,本文认为研究区正长花岗斑岩岩浆主要来源于壳源变质火成岩的部分熔融,并存在幔源物质的加入。

底图据文献[11]。北山南段二叠纪花岗岩数据来自文献[39-40]和本文研究结果。 图 8 柳园正长花岗斑岩锆石U-Pb年龄与εHf(t)关系图解 Fig. 8 Zircon U-Pb age vs. Hf isotopes for Liuyuan syenogranitic porphyry dyke
4.2 构造背景

研究区位于中亚造山带中段的甘肃北山地区,长期以来,关于北山地区古亚洲洋闭合的时间早自志留纪末、晚至早中三叠世闭合的认识均有提出[4-7, 45-46],没有统一认识,争议很大。

以往将北山南部发育的墩墩山组火山-沉积岩组合归结为磨拉石建造,并将其作为北山南部在泥盆纪进入“造山晚期”的重要证据[47]。然而,近年来研究发现,墩墩山组主要由安山岩、英安岩、流纹岩及相应的火山碎屑岩、潜火山岩组成,显示出陆缘弧火山岩的岩石组合和地球化学特征[48-49],而与典型磨拉石建造缺少火山岩的特征有重大差异[50]。另外,柳园蛇绿岩带北侧发现了372 Ma的富Nb玄武岩及埃达克岩[51],并且有证据显示北山造山带中南部明确存在发育古老陆块,即中新元古代的前寒武纪基底[50, 52-53],本次研究岩脉锆石较老的Hf模式年龄(955~611 Ma)也证实了这一点。这些证据表明北山南带在晚泥盆世应该仍处于陆缘弧的构造背景。而石炭纪埃达克岩(356 Ma)[54]和小黄山俯冲带上盘(SSZ型)蛇绿岩(345~336 Ma)[55]的存在,以及小西弓地区和沙枣园地区二叠纪埃达克岩的发现[45, 56],说明石炭纪时北山南带仍然存在洋壳的俯冲作用,而不大可能处于碰撞后或陆内裂谷环境。

研究发现,柳园地区早二叠世正长花岗斑岩脉整体表现为钙碱性系列岩石,呈现轻、重稀土元素中等分异,稀土元素配分呈右倾特征,Eu负异常显著,重稀土分馏不明显,富集大离子亲石元素,亏损Ba、Nb、Sr、P、Zr、Ti等元素,具有俯冲带岩浆活动的地球化学特征。在构造判别图解中,与北山南带同期花岗岩相似,均处于火山弧环境和碰撞造山环境(图 9)。考虑到位于柳园西部的小西弓地区新近发现了中二叠世高镁闪长岩脉、岛弧特征辉长岩脉和埃达克特征花岗岩[45],这些证据进一步指示北山南带地区至少在早二叠世时仍处于大洋板块俯冲环境。

北山南段二叠纪花岗岩数据来自文献[11, 43, 45]和本次研究结果。底图据文献[57]和[58]。 图 9 柳园正长花岗斑岩脉微量元素构造判别图解 Fig. 9 Trace element discrimination of Liuyuan syenogranitic porphyry dyke

柳园地区位于花牛山弧之上,其南部为石板山弧,两者以柳园蛇绿杂岩带为界。通过对柳园蛇绿杂岩带两翼花牛山弧南部二叠纪火山碎屑岩和石板山弧北部黑山口地区二叠纪火山碎屑岩的研究,Guo等[59]发现柳园地区砂岩主要由棱角状玄武质、安山质和长石碎屑组成,黑山口地区砂岩主要由安山质和长英质碎屑组成,地球化学分析显示,前者来源于中性-镁铁质源区,后者来源于中性-长英质源区,认为两者可能分别形成于双向俯冲的大洋岛弧和陆缘弧环境。柳园蛇绿岩北侧发育的中晚奥陶世榴辉岩[60]和富Nb玄武岩类[61]也指示岛弧的构造背景。而除本次发现的正长花岗斑岩脉外,在双鹰山弧西侧出露有坡北、红石山等岩体,东侧音凹峡地区也分布基性岩脉和花岗岩岩体[43, 45, 62]。对红石山和坡北镁铁质超镁铁质杂岩的研究发现,岩石具有明显的Zr、Hf、Nb、Ta元素负异常和较高的标准化活动元素与不活动元素比值(Sr/Nd,Ba/La≫1),Ao等[63]认为其岩浆来源于有流体参与的俯冲带环境。另外,对柳园地区二叠纪火山岩和碎屑岩的研究显示,岩石也具有明显俯冲带岩石的地球化学特征[8, 60, 64]。另外,通过对红岩井盆地二叠纪沉积岩填图、构造分析和碎屑岩锆石年代学研究,Tian等[65-66]认为,发生于249 Ma的大型褶皱变形事件与古亚洲洋闭合汇聚的影响有关。这些证据说明,至少在早二叠世时北山造山带南部的柳园洋仍在向北俯冲。

值得注意的是,除研究区广泛分布的岩脉外,沿东西方向不仅分布高钾和富碱花岗质岩石及一系列表征伸展特征镁铁质岩脉[67-71],而且分布大量流纹岩、玄武岩以及A型花岗岩[39, 69, 71]。因此,早二叠世北山南部地区可能整体仍处于俯冲带环境,并引发了近东西向的局部伸展和强烈的地壳垂向增生[7],而多回次的俯冲板片回撤和拼贴作用在中亚造山带的形成过程中发挥了关键作用[45]。而且,目前越来越多的证据表明,北山地区与古亚洲洋闭合有关的造山作用发生于二叠纪早三叠世,这与北山北带大规模剪切带的活动时间260~245 Ma是一致的[56]。因此,对于古亚洲洋构造演化而言,本地区早二叠世应处于俯冲碰撞造山环境。

5 结论

本文对甘肃柳园东北部早二叠世正长花岗斑岩脉开展了详细的锆石U-Pb-Hf同位素和全岩主量、微量元素分析,得出如下结论:

1) LA-ICP-MS U-Pb分析结果显示,研究区正长花岗斑岩脉形成于早二叠世((288.5±1.4) Ma);岩石地球化学分析认为,该正长花岗斑岩属高钾-钙碱性系列高分异Ⅰ型花岗岩;岩石具有较低的Zr/Hf和Th/U值,富集Rb、Th、U、Pb和Hf等元素,而亏损Ba、Nb、La、Ce、Sr、P和Ti等元素,具有俯冲带岩浆活动的地球化学特征;锆石Hf同位素分析显示,其εHf(t)值变化范围较大,平均值为5.72,TDM2值为955~611 Ma,结合前人研究成果,本文认为研究区正长花岗斑岩岩浆来源于壳源变质火成岩的部分熔融,并存在幔源物质的贡献。

2) 研究区早二叠世正长花岗斑岩位于花牛山弧之上,形成于俯冲带环境。结合前人关于二叠纪及三叠纪区域构造变形、盆地沉积物源、岩浆演化等方面研究结果,本文认为北山南部地区的增生造山事件至少持续到早二叠世,这一认识为进一步限定晚古生代北山造山带的构造演化过程提供了更多证据。

参考文献
[1]
Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364: 299-307. DOI:10.1038/364299a0
[2]
和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2): 405-424.
He Zhonghua, Wang Qizhi, Wang Qiang. Geochemistry and Zircon U-Pb Ages of Clastic Rocks of Zhesi Formation in Suolun Region, Great Xing'an Range:Constraints on Origins of Sediment Provenance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 405-424.
[3]
肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 2008, 26(1): 4-8.
Xiao Wenjiao, Shu Liangshu, Gao Jun, et al. Geodynamic Processes of the Central Asian Orogenic Belt and Its Metallogeny[J]. Xinjiang Geology, 2008, 26(1): 4-8.
[4]
左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质, 2003, 12(1): 1-15.
Zuo Guochao, Liu Yike, Liu Chunyan. Framework and Eevolotion of the Tectonic Structure in Beishan Aarea Across Gansu Proveince, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region[J]. Gansu Geology, 2003, 12(1): 1-15.
[5]
聂凤军, 江思宏, 白大明, 等. 北山地区金属矿床成矿规律及找矿方向[M]. 北京: 地质出版社, 2002.
Nie Fengjun, Jiang Sihong, Bai Daming, et al. Metallogenic Studies and Ore Prospecting in the Conjunction Area of Inner Mongolia Autonomous Region, Gansu Province and Xinjiang Uygur Autonomous Region (Beishjan Mt), Northwest China[M]. Beijing: Geological Publishing House, 2002.
[6]
Zheng R G, Wu T R, Zhang W, et al. Geochronology and Geochemistry of Late Paleozoic Magmatic Rocks in the Yinwaxia Area, Beishan:Implications for Rift Magmatism in the Southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2014, 91: 39-55. DOI:10.1016/j.jseaes.2014.04.022
[7]
He Z Y, Klemd R, Yan L L, et al. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1-14. DOI:10.1016/j.earscirev.2018.05.012
[8]
宋东方, 肖文交, 韩春明, 等. 北山中部增生造山过程:构造变形和40Ar-39Ar年代学制约[J]. 岩石学报, 2018, 34(7): 231-242.
Song Dongfang, Xiao Wenjiao, Han Chunming, et al. Accretionary Processes of the Central Segment of Beishan:Constraints from Structural Deformation and 40Ar-39Ar Geochronology[J]. Acta Petrologica Sinica, 2018, 34(7): 231-242.
[9]
李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 2006, 80(1): 148-168.
Li Jinyi, He Guoqi, Xu Xin, et al. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation[J]. Acta Geologica Sinica, 2006, 80(1): 148-168.
[10]
刘畅, 赵泽辉, 郭召杰. 甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论[J]. 岩石学报, 2006, 22(5): 1294-1306.
Liu Chuang, Zhao Zehui, Guo Zhaojie, et al. Chronology and Geochemistry of Lamprophyre Dykes from Beishan Area, Gansu Province and Implications for the Crust-Mantle Interaction[J]. Acta Petrologica Sinica, 2006, 22(5): 1294-1306.
[11]
Li S, Wilde S A, Wang T. Early Permian Post-Collisional High-K Granitoids from Liuyuan Area in Southern Beishan Orogen, NW China:Petrogenesis and Tectonic Implications[J]. Lithos, 2013, 179: 99-119. DOI:10.1016/j.lithos.2013.08.002
[12]
Su B X, Qin K Z, Santosh M, et al. The Early Permian Mafic-Ultramafic Complexes in the Beishan Terrane, NW China:Alaskan-Type Intrusives or Rift Cumulates?[J]. Journal of Asian Earth Sciences, 2013, 66: 175-187. DOI:10.1016/j.jseaes.2012.12.039
[13]
卢进才, 牛亚卓, 魏仙样, 等. 北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 岩石学报, 2013, 29(8): 2685-2694.
Lu Jincai, Niu Yazhuo, Wei Xianyang, et al. LA-ICP-MS Zircon U-Pb Dating of the Late Paleozoic Volcanic Rocks from the Hongshishan Area of the Beishan Orogenic Belt and Its Tectonic Significances[J]. Acta Petrologica Sinica, 2013, 29(8): 2685-2694.
[14]
过磊, 王国强, 郭琳, 等. 北山造山带南部芦草沟地区早三叠世酸性脉岩成因[J]. 矿物岩石地球化学通报, 2018, 37(3): 502-512.
Guo Lei, Wang Guoqiang, Guo Lin, et al. Petrogenesis of Early Triassic Felsic Dikes in the Lucaogou Area of Southern Beishan Orogenic Belt[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2018, 37(3): 502-512. DOI:10.19658/j.issn.1007-2802.2018.37.040
[15]
罗照华, 魏阳, 辛后田, 等. 造山后脉岩组合的岩石成因:对岩石圈拆沉作用[J]. 岩石学报, 2006, 22(6): 1672-1684.
Luo Zhaohua, Wei Yang, Xin Houtian, et al. Petrogenesis of the Post-Orogenic Dike Complex:Constraints to Lithosphere Delamination[J]. Acta Petrologica Sinica, 2006, 22(6): 1672-1684. DOI:10.3321/j.issn:1000-0569.2006.06.024
[16]
Zhang Y Y, Yuan C, Sun M, et al. Permian Doleritic Dikes in the Beishan Orogenic Belt, NW China:Asthenosphere-Lithosphere Interaction in Response to Slab Break-off[J]. Lithos, 2015, 233(15): 174-192.
[17]
杨春霞, 王启航, 高翔, 等. 甘肃北山造山带晚古生代辉绿岩墙的地球化学特征及构造背景[J]. 甘肃地质, 2015, 24(1): 19-23.
Yang Chunxia, Wang Qihang, Gao Xiang, et al. Geochemical Characterisitics and Tectonic Setting of Diabase in Beishan, Gansu[J]. Gansu Geology, 2015, 24(1): 19-23.
[18]
彭海练, 高峰, 菅坤坤, 等. 内蒙古红石山南辉长岩体锆石U-Pb年龄及地质意义[J]. 矿产勘查, 2018, 9(9): 1705-1712.
Peng Hailian, Gao Feng, Jian Kunkun, et al. Zircon U-Pb Age and Its Geological Significance of Gabbro in the South Hongshi Mountain, Ejinna, Inner Mongolia Autonomous Region[J]. Mineral Exploration, 2018, 9(9): 1705-1712.
[19]
Xiao W J, Mao Q G, Windley B F, et al. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage[J]. American Journal of Science, 2010, 310(10): 1553-1594. DOI:10.2475/10.2010.12
[20]
甘肃省地质矿产局. 甘肃省岩石地层[M]. 武汉: 中国地质大学出版社, 1997.
Bureau of Geology and Mineral Resources of Gansu Province. Lithostratigraphy of Gansu Province[M]. Wuhan: China University of Geosciences Press, 1997.
[21]
牛亚卓, 卢进才, 刘池阳, 等. 甘蒙北山地区海相二叠系时代及其区域对比[J]. 地质学报, 2018, 92(6): 1131-1148.
Niu Yazhuo, Lu Jincai, Liu Chiyang, et al. Chronostratigraphy and Regional Comparison of Marine Permian System in the Beishan Region, North China[J]. Acta Geologica Sinica, 2018, 92(6): 1131-1148.
[22]
江思宏, 聂凤军. 北山地区花岗岩类成因的Nd同位素制约[J]. 地质学报, 2006, 80(6): 826-842.
Jiang Sihong, Nie Fengjun. Nd-Isotope Constraints on Origin of Granitoids in Beishan Mountain Area[J]. Acta Geologica Sinica, 2006, 80(6): 826-842.
[23]
Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1): 34-43.
[24]
Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. DOI:10.1007/s11434-010-3052-4
[25]
Wu F Y, Yang Y H, Xie L W, et al. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1): 105-126.
[26]
Blicherttoft J, Albarède F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System[J]. Earth & Planetary Science Letters, 1998, 154(1/2/3/4): 243-258.
[27]
Griffin W L, Pearson N J, Belousova E A, et al. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. DOI:10.1016/S0016-7037(99)00343-9
[28]
Watson E B, Harrison T M. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types[J]. Earth & Planetary Science Letters, 1983, 64(2): 295-304.
[29]
Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Annual Review of Earth & Planetary Sciences, 1994, 37(3/4): 215-224.
[30]
Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81.
[31]
Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. GSA Bulletin, 1989, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[32]
Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
[33]
Whalen J B, Currie K L, Chappell B W. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4): 407-419.
[34]
Sylvester P J, Liegeois J P. Post-Collisional Strongly Peraluminous Granites[J]. Lithos, 1998, 45(1/2/3/4): 29-44.
[35]
Foley S F, Barth M G, Jenner G A. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas[J]. Geochim Cosmochim Acta, 2000, 64(5): 933-938. DOI:10.1016/S0016-7037(99)00355-5
[36]
Clemens J D. S-Type Granitic Magmas:Petrogenetic Issues, Models and Evidence[J]. Earth Science Reviews, 2003, 61(1): 1-18.
[37]
Xiong X L, Adam J. Rutile Stability and Rutile/Melt HFSE Partitioning During Partial Melting of Hydrous Basalt:Implications for Adakite/TTG Genesis[J]. Chemical Geology, 2005, 218(3): 339-359.
[38]
Chappell B W, Sial A N, Stephens W E, et al. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites[J]. Lithos, 1999, 46(3): 535-551.
[39]
许伟, 徐学义, 牛亚卓, 等.北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义[J].岩石学报, 2018, 34(10): 3011-3033.
Geochronology, Petrogenesis and Tectonic Implications of Early Permian A-Type Rhyolite from Southern Beishan Orogen, NW China[J]. Acta Petrologica Sinica, 2018, 34(10): 3011-3033.
[40]
Zhang Y Y, Dostal J, Zhao Z H, et al. Geochronology, Geochemistry and Petrogenesis of Mafic and Ultramafic Rocks from Southern Beishan Area, NW China:Implications for Crust-Mantle Interaction[J]. Gondwana Research, 2011, 20(4): 816-830. DOI:10.1016/j.gr.2011.03.008
[41]
Chappell B W, Bryant C J, Wyborn D. Peraluminous Ⅰ-Type Granites[J]. Lithos, 2012, 153(8): 142-153.
[42]
Taylor S R, Mclennan S M. The Continental Crust:Its Composition and Evolution[M]. London: Blackwell, 1985.
[43]
张文, 冯继承, 郑荣国, 等. 甘肃北山音凹峡南花岗岩的锆石LA-ICP MS定年及其构造意义[J]. 岩石学报, 2011, 27(6): 1649-1661.
Zhang Wen, Feng Jicheng, Zheng Rongguo, et al. LA-ICP MS Zircon U-Pb Ages of the Granites from the South of Yin'aoxia and Their Tectonic Significances[J]. Acta Petrologica Sinica, 2011, 27(6): 1649-1661.
[44]
Ao S J, Xiao W J, Han C M, et al. Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China:Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids[J]. Gondwana Research, 2010, 18(2/3): 466-478.
[45]
Zheng R G, Li J Y, Zhang J, et al. Permian Oceanic Slab Subduction in the Southmost of Central Asian Orogenic Belt:Evidence from Adakite and High-Mg Diorite in the Southern Beishan[J]. Lithos, 2020, 358/359. DOI:10.1016/j.lithos.2020.105406
[46]
Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. DOI:10.1016/j.earscirev.2017.09.020
[47]
左国朝, 刘春燕. 北山泥盆纪碰撞造山火山-磨拉石地质构造及地球化学特征[J]. 甘肃地质, 1995, 4(1): 35-43.
Zuo Guochao, Liu Chunyan. Volcano-Molasse Geological Structure and Geochemical Signtures in Devonian Period Collision Orogenic in Beishan[J]. Gansu Geology, 1995, 4(1): 35-43.
[48]
Guo Q Q, Xiao W J, Hou Q L, et al. Construction of Late Devonian Dundunshan Arc in the Beishan Orogen and Its Implication for Tectonics of Southern Central Asian Orogenic Belt[J]. Lithos, 2016, 184/185/186/187: 361-378.
[49]
田健, 辛后田, 滕学建, 等. 内蒙古北山造山带白云山地区上泥盆统墩墩山组火山岩的厘定及其构造意义[J]. 岩石学报, 2020, 36(2): 509-525.
Tian Jian, Xin Houtian, Teng Xuejian, et al. The Determination of Volcanic Rocks in Upper Devonian Dundunshan Formation in the Baiyunshan Area of Beishan Orogenic Belt, Inner Mongolia[J]. Acta Petrologica Sinica, 2020, 36(2): 509-525.
[50]
牛亚卓, 宋博, 周俊林, 等. 中亚造山带北山南部下泥盆统火山-沉积地层的岩相、时代及古地理意义[J]. 地质学报, 2020, 94(2): 615-633.
Niu Yazhuo, Song Bo, Zhou Junlin, et al. Lithofacies and Chronology of Volcano-Sedimentary Sequence in the Southern Beishan Region, Central Asian Orogenic Belt and Its Paleogeographical Implication[J]. Acta Geologica Sinica, 2020, 94(2): 615-633.
[51]
毛启贵, 肖文交, 韩春明, 等. 北山柳园地区中志留世埃达克质花岗岩类及其地质意义[J]. 岩石学报, 2010, 26(2): 584-596.
Mao Qigui, Xiao Wenjiao, Han Chunming, et al. Discovery of Middle Silurian Adakite Granite and Its Tectonic Significance in Liuyuan Area, Beishan Moutains, NW China[J]. Acta Petrologica Sinica, 2010, 26(2): 584-596.
[52]
姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949-3967.
Jiang Hongying, He Zhenyu, Zong Keqing, et al. Zircon U-Pb Dating and Hf Isotopic Studies on the Beishan Complex in the Southern Beishan Orogenic Belt[J]. Acta Petrologica Sinica, 2013, 29(11): 3949-3967.
[53]
贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb定年和Hf同位素:中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 60(4): 389-399.
He Zhenyu, Sun Lixin, Mao Lingjuan, et al. Zircon U-Pb and Hf Isotopic Study of Gneiss and Granodiorite from the Southern Beishan Orogenic Collage:Mesoproterozoic Magmatism and Crustal Growth[J]. Chinese Science Bulletin, 2015, 60(4): 389-399. DOI:10.1360/N972014-00898
[54]
Zhang W, Wu T R, Zheng R G, et al. Post-Collisional Southeastern Beishan Granites:Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and Their Implications for Tectonic Evolution[J]. Journal of Asian Earth Sciences, 2012, 58: 51-63. DOI:10.1016/j.jseaes.2012.07.004
[55]
Zheng R G, Wu T R, Zhang W, et al. Late Paleozoic Subduction System in the Southern Central Asian Orogenic Belt:Evidences from Geochronology and Geochemistry of the Xiaohuangshan Ophiolite in the Beishan Orogenic Belt[J]. Journal of Asian Earth Sciences, 2013, 62: 463-475. DOI:10.1016/j.jseaes.2012.10.033
[56]
赵宏刚, 梁积伟, 王驹, 等. 甘肃北山南带沙枣园复式岩体年代学、地球化学特征及其构造意义[J]. 地质学报, 2020, 94(2): 396-425.
Zhao Honggang, Liang Jiwei, Wang Ju, et al. Geochronology, Geochemical Characteristics and Tectonic Significance of the Shazaoyuan Composite Pluton in the Sounthern Beishan Mountains, Gansu Province, China[J]. Acta Geologica Sinica, 2020, 94(2): 396-425.
[57]
Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
[58]
Pearce J. Sources and Settings of Granitic Rocks[J]. Episodes, 1996, 19(4): 120-125. DOI:10.18814/epiiugs/1996/v19i4/005
[59]
Guo Q Q, Xiao W J, Windley B F, et al. Provenance and Tectonic Settings of Permian Turbidites from the Beishan Mountains, NW China:Implications for the Late Paleozoic Accretionary Tectonics of the Southern Altaids[J]. Journal of Asian Earth Sciences, 2012, 49(3): 54-68.
[60]
Liu X C, Chen B L, Jahn B M, et al. Early Paleozoic (ca 465 Ma) Eclogites from Beishan (NW China) and Their Bearing on the Tectonic Evolution of the Southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2011, 42(4): 715-731.
[61]
Mao Q G, Xiao W J, Fang T H, et al. Late Ordovician to Early Devonian Adakites and Nb-Enriched Basalts in the Liuyuan Area, Beishan, NW China:Implications for Early Paleozoic Slab-Melting and Crustal Growth in the Southern Altaids[J]. Gondwana Research, 2012, 22(2): 534-553. DOI:10.1016/j.gr.2011.06.006
[62]
Su B X, Qin K Z, Sun H, et al. Subduction-Induced Mantle Heterogeneity Beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes[J]. Lithos, 2012, 134/135: 41-51. DOI:10.1016/j.lithos.2011.12.011
[63]
Ao S J, Xiao W J, Windley B F, et al. Paleozoic Accretionary Orogenesis in the Eastern Beishan Orogen:Constraints from Zircon U-Pb and 40Ar/39Ar Geochronology[J]. Gondwana Research, 2016, 30: 224-235. DOI:10.1016/j.gr.2015.03.004
[64]
Song D F, Xiao W J, Windley B F, et al. Metamorphic Complexes in Accretionary Orogens:Insights from the Beishan Collage, Southern Central Asian Orogenic Belt[J]. Tectonophysics, 2016, 688: 135-147. DOI:10.1016/j.tecto.2016.09.012
[65]
Tian Z H, Xiao W J, Shan Y H, et al. Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration During Permo-Triassic Termination of the Altaids[J]. Journal of Structural Geology, 2013, 52(5): 119-135.
[66]
Tian Z H, Xiao W J, Windley B F, et al. Structure, Age, and Tectonic Development of the Huoshishan-Niujuanzi Ophiolitic Mélange, Beishan, Southernmost Altaids[J]. Gondwana Research, 2014, 25(2): 820-841. DOI:10.1016/j.gr.2013.05.006
[67]
张文, 吴泰然, 贺元凯, 等. 甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA-ICP-MS定年及其构造意义[J]. 岩石矿物学杂志, 2010, 29(6): 719-731.
Zhang Wen, Wu Tairan, He Yuankai, et al. LA-ICP-MS Zircon U-Pb Ages of Xijianquanzi Alkali-rich Potassium-High Granites in Beishan, Gansu Province, and Their Tectonic Significance[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 719-731.
[68]
Zhang W, Wu T R, Zheng R G, et al. Post-Collisional Southeastern Beishan Granites:Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and Their Implications for Tectonic Evolution[J]. Journal of Asian Earth Sciences, 2012, 58: 51-63. DOI:10.1016/j.jseaes.2012.07.004
[69]
Gillespie J, Glorie S, Xiao W J, et al. Mesozoic Reactivation of the Beishan, Southern Central Asian Orogenic Belt:Insights from Low-Temperature Thermochronology[J]. Gondwana Research, 2017, 43: 107-122. DOI:10.1016/j.gr.2015.10.004
[70]
Liu Q, Zhao G, Han Y, et al. Detrital Zircon Provenance Constraints on the Final Closure of the Middle Segment of the Paleo-Asian Ocean[J]. Gondwana Research, 2019, 69: 73-88. DOI:10.1016/j.gr.2019.01.001
[71]
Xue S C, Qin K Z, Li C S, et al. Permian Bimodal Magmatism in the Southern Margin of the Central Asian Orogenic Belt, Beishan, Xinjiang, NW China:Petrogenesis and Implication for Post-Subduction Crustal Growth[J]. Lithos, 2018, 314/315: 617-629. DOI:10.1016/j.lithos.2018.06.021
http://dx.doi.org/10.13278/j.cnki.jjuese.20200085
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

孙海瑞, 吕志成, 于晓飞, 李永胜, 杜泽忠, 吕鑫, 公凡影
Sun Hairui, Lü Zhicheng, Yu Xiaofei, Li Yongsheng, Du Zezhong, Lü Xin, Gong Fanying
甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示
Late Paleozoic Tectonic Evolution of Beishan Orogenic Belt: Chronology and Geochemistry Constraints of Early Permian Syenogranitic Porphyry Dyke in Liuyuan Area, Gansu Province
吉林大学学报(地球科学版), 2020, 50(5): 1433-1449
Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1433-1449.
http://dx.doi.org/10.13278/j.cnki.jjuese.20200085

文章历史

收稿日期: 2020-04-12

相关文章

工作空间