文章快速检索  
  高级检索
青海同仁兰采地区花岗闪长岩LA-ICP-MS锆石U-Pb年代学、地球化学特征及其地质意义
任文恺1,2, 王生云3, 陈礼标1,2, 吴少锋1,2, 张海青1,2     
1. 青海省第四地质勘查院, 西宁 810029;
2. 青海省页岩气资源重点实验室, 西宁 810029;
3. 核工业北京地质研究院, 北京 100029
摘要: 西秦岭造山带发育北西向展布的同仁—泽库构造岩浆岩带,位于青海同仁县以西兰采地区的花岗闪长岩是该构造岩浆岩带的一部分。本文对兰采地区的花岗闪长岩进行了LA-ICP-MS锆石U-Pb年代学及地球化学特征研究。结果表明:兰采地区花岗闪长岩的结晶年龄为(231.4±2.9)Ma(MSWD=0.024),即形成于晚三叠世早期;稀土元素总量为138.76×10-6~197.19×10-6,具有右倾的稀土元素配分模式,富集轻稀土而亏损重稀土((La/Yb)N值为11.53~17.19),Eu具有负异常;富集Rb、K、Th、U等大离子亲石元素,相对亏损Nb、Ta、Ti等高场强元素,Sr、Ba、P呈明显负异常,属于准铝质、高钾钙碱性系列I型花岗岩类。结合区域地质及前人研究成果,认为兰采地区花岗闪长岩的源区物质为变基性岩类,幔源岩浆的参与可能对该岩体的形成具有重要意义,形成于以整体挤压为主、局部剪切伸展为辅的地壳逐渐加厚的动力学背景下。
关键词: 花岗闪长岩    地球化学    锆石U-Pb年代学    兰采地区    青海    
LA-ICP-MS Zicon U-Pb Geochronology, Geochemistry and Geological Significance of Granodiorites in Lancai Area, Tongren, Qinghai
Ren Wenkai1,2, Wang Shengyun3, Chen Libiao1,2, Wu Shaofeng1,2, Zhang Haiqing1,2     
1. The Fourth Geological Exploration Institute of Qinghai Province, Xining 810029, China;
2. Key Laboratory of Shale Gas Resources in Qinghai Province, Xining 810029, China;
3. Beijing Research Institute of Uranium Geology, Beijing 100029, China
Abstract: The geochemical characteristics and the LA-ICP-MS zircon U-Pb ages of the granodiorites in Lancai area, Tongren, Qinghai were studied, and the petrogenesis and tectonic significance were discussed. The results show that the crystallization age of Lancai granodiorite is (231.4±2.9) Ma (MSWD = 0.024). The ∑REE of the granitoide is 138.76×10-6-197.19×10-6. The REE patterns is rightward inclined with negative Eu anomaly. The trace element geochemistry is characterized evidently by the negative anomalies of Nb, Ta, Ti, Sr, Ba, P, etc. and positive anomalies of Rb, K, Th, U, etc. The granodiorites show the characteristics of metaluminous and belong to high-K calc-alkaline series. Lancai granodiorite is I-type granitoids. Based on the existing research results, Lancai granodiorite may be formed through partial melting of basic rocks in the crustal thickening geodynamic environment characterized mainly by compression on the whole and local shear extension, and the mantle-derived magmas may play an important role in the formation of the granodiorite.
Key words: granodiorites    geochemistry    zicon U-Pb dating    Lancai area    Qinghai    

0 引言

研究区位于青海省同仁县以西、共和盆地以东的兰采地区,大地构造位于西秦岭造山带。西秦岭既是连接秦岭、祁连山、昆仑山造山带的纽带,又是中央造山带东西转接的关键,也是中国大陆完成南北拼接的重要衔接部位,因而成为研究中国大陆动力学特征的热点地区[1-5]。西秦岭地区侵入岩广泛发育,以印支期中酸性侵入岩为主,燕山期、加里东期、华西力期和新元古代中酸性侵入岩零星分布,仅出露在局部地区[6-9]。超基性岩、基性岩发育十分有限,仅出露在主要的断裂带或缝合带内,其侵位年龄为256~251 Ma[10];火山活动相对较弱,仅二叠纪、三叠纪、侏罗纪、白垩纪、古近纪、新近纪等几个时代的火山岩有出露[11-16]。近年来,大量学者对共和盆地周缘的花岗岩类进行了系统的研究[17-22]。截至目前,对兰采地区花岗岩类还未开展过岩石学、地球化学及年代学等方面的研究。鉴于此,本文对兰采地区花岗闪长岩开展了岩石学、岩石地球化学和同位素年代学研究,并结合前人对西秦岭及同仁地区花岗岩的研究成果,探讨其形成时代、岩浆来源及构造背景,以期为研究秦、祁结合部的构造演化提供新资料和地质依据。

1 区域地质背景与岩体地质

西秦岭造山带北以青海南山断裂、武山断裂与祁连地块相邻,南以阿尼玛卿缝合带、勉略缝合带与松潘—甘孜地块相接,西以瓦洪山断裂与东昆仑及柴达木地块相隔,东部则以徽成盆地与东秦岭佛坪穹窿相连(在图幅外)[23-25]。研究区位于西秦岭构造带(图 1),行政区划主体隶属青海省黄南藏族自治州同仁县兰采乡。区内出露地层主要为中—下三叠统隆务河组、中三叠统古浪堤组和日脑热组以及古近系西宁组。发育的岩浆岩属于同仁—泽库构造岩浆岩带的一部分,主要有花岗闪长岩、二长花岗岩、斑状花岗岩、钾长花岗岩和斑状钾长花岗岩。

a据文献[6]修编;b据文献[8]修编。 图 1 西秦岭造山带大地构造位置图(a)及西秦岭印支期岩浆岩分布图(b) Fig. 1 Sketch map showing tectonic sitting of the West Qinling orogenic belt (a) and distribution map of indochinese magmatic rock inthe West Qinling (b)

花岗闪长岩在研究区内分布广泛,主轴呈北西西向展布,表现为不规则岛弧状,长约45 km,出露面积约55 km2,侵入至下中三叠统隆务河组中,局部侵入晚三叠世火山岩中(图 2)。野外可观察到花岗闪长岩岩枝穿插于地层中,岩体边部细粒岩化,岩体中可见暗色包体。花岗闪长岩呈灰—灰白色,中粗粒花岗结构,块状构造,岩石主要由碱性长石(主要为条纹长石,少量为微斜长石)(20%~35%)、石英(20%~25%)、斜长石(30%~45%)和角闪石(5%~10%)组成,含少量黑云母(图 3),副矿物主要为榍石、锆石和磷灰石。

图 2 研究区地质简图 Fig. 2 Simplified geological map of the study area
a.花岗闪长岩标本照片;b.花岗闪长岩镜下正交偏光。Q.石英;Pl.斜长石;Am.角闪石;Bi.黑云母。 图 3 兰采地区花岗闪长岩岩标本及镜下照片 Fig. 3 Images of specimen and microscopic of the granodioritein Lancai area
2 分析方法

对本文研究的花岗闪长岩在野外进行随机采样,所采样品新鲜、无蚀变或后期变化。岩石的主量元素和微量元素均在澳实分析检测(广州)有限公司检测。其中,运用ME-XRF26d X荧光光谱仪熔融法进行了岩石的主量元素分析,运用ME-MS81熔融法电感耦合等离子体质谱测定了稀土及微量元素质量分数。锆石的U-Pb同位素测试在西北大学大陆动力学国家重点实验室完成,采用德国Microlas公司的Geolas200M激光剥蚀系统与Elan6100DR CICP-MS联机进行测定。激光剥蚀束斑直径为30 μm,频率为8 Hz,详细的仪器参数设置及分析技术参见文献[26]。单点分析的同位素比值及年龄误差为1σ,加权平均年龄误差为95%置信度。年龄计算及谐和图用Isoplot(ver 3)程序完成[27]。详细分析步骤和数据处理方法见文献[28]。

3 锆石U-Pb年代学特征

花岗闪长岩样品中大部分锆石颗粒为无色透明,少量锆石显示出黄褐色,锆石中包体、裂隙较为发育,自形半自形,颗粒大小变化较大,长宽比介于1:1~2:1之间,锆石外形大多以柱状为主,晶型较好,少数锆石为浑圆状。CL图像(图 4a)显示绝大多数锆石内部结构具有明显的韵律环带,表现出岩浆成因锆石的特点[29-30]。锆石Th/U值介于0.06~0.92(平均值为0.68)之间,亦证明该锆石具有典型岩浆成因的特征[31]

图 4 研究区花岗闪长岩部分锆石阴极发光图像、测点位置(a)及U-Pb定年谐和图(b) Fig. 4 CL images, testing point locations(a)and U-Pb concordia diagrams(b)of the some zircons of granodiorite in the study area

花岗闪长岩样品的LA-ICP-MS锆石U-Pb定年结果见表 1。从图 4b中可以看出,分析结果集中分布在谐和线上或谐和线附近,样品去除1个继承锆石测点和2个不谐和测点,其余27个测点的锆石206Pb/238U加权平均年龄值为(231.4±2.9)Ma(95%置信度,MSWD=0.024),代表花岗闪长岩的岩浆结晶年龄,表明兰采地区花岗闪长岩形成于晚三叠世早期。

表 1 兰采地区花岗闪长岩LA-ICP-MS锆石U-Pb年龄测定结果 Table 1 LA-ICP-MS zircon U-Pb data of the granodiorites in L ancai area
样品号 wB/10-6 Th/U 同位素比值 表面年龄/Ma
Pb 232Th 238 U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
211.01 12.35 176.03 252.43 0.70 0.048 80 0.004 26 0.217 50 0.021 78 0.036 80 0.001 22 140 193 225 18 233 8
211.02 18.40 332.08 359.82 0.92 0.051 30 0.003 90 0.261 30 0.020 16 0.036 90 0.001 20 256 166 236 16 234 7
211.03 12.48 175.41 244.88 0.72 0.053 80 0.006 14 0.272 80 0.030 93 0.036 80 0.001 38 361 239 245 25 233 9
211.04 12.48 171.22 257.23 0.67 0.052 10 0.004 61 0.265 30 0.023 61 0.036 90 0.001 24 291 190 239 19 234 8
211.05 8.34 103.84 171.60 0.61 0.058 20 0.005 14 0.292 90 0.025 93 0.036 50 0.001 26 535 183 261 20 231 8
211.06 11.34 139.48 238.85 0.58 0.052 50 0.004 60 0.263 80 0.023 27 0.036 40 0.001 20 308 188 238 19 231 8
211.07 13.72 223.59 263.79 0.85 0.052 30 0.004 26 0.264 40 0.021 70 0.036 70 0.001 19 300 175 238 17 232 7
211.08 16.48 198.67 345.85 0.57 0.050 50 0.003 82 0.255 10 0.019 58 0.036 70 0.001 16 217 166 231 16 232 7
211.09 9.20 120.69 193.24 0.62 0.053 70 0.005 41 0.271 10 0.027 29 0.036 60 0.001 26 358 213 244 22 232 8
211.10 9.77 99.65 205.81 0.48 0.053 30 0.006 00 0.267 90 0.030 04 0.036 50 0.001 32 340 237 211 24 231 8
211.11 11.64 157.95 236.07 0.67 0.052 50 0.004 62 0.264 10 0.023 34 0.036 50 0.001 19 308 188 238 19 231 7
211.12 15.02 229.60 294.73 0.78 0.050 40 0.003 89 0.254 40 0.019 85 0.036 60 0.001 15 214 169 230 16 232 7
211.13 4.08 35.47 87.90 0.40 0.048 50 0.008 90 0.243 30 0.044 23 0.036 40 0.001 52 125 382 221 36 230 9
211.14 15.67 260.17 301.07 0.86 0.051 40 0.003 94 0.258 10 0.019 99 0.036 40 0.001 13 258 167 233 16 231 7
211.15 9.95 162.47 192.91 0.84 0.049 60 0.005 89 0.248 60 0.029 44 0.036 40 0.001 25 176 256 225 24 230 8
211.16 11.98 162.00 244.65 0.66 0.051 30 0.004 66 0.257 30 0.023 40 0.036 40 0.001 19 255 196 233 19 230 7
211.17 8.59 113.24 175.82 0.64 0.047 80 0.005 68 0.239 60 0.028 40 0.036 40 0.001 26 86 261 218 23 230 8
211.18 167.05 23.92 394.77 0.06 0.121 60 0.002 92 5.738 90 0.169 62 0.342 30 0.009 38 1 980 42 1 937 26 1 898 45
211.19 7.05 103.07 148.31 0.69 0.050 80 0.013 65 0.251 50 0.066 42 0.035 90 0.002 23 231 525 228 54 228 14
211.20 9.66 148.04 185.73 0.80 0.053 00 0.007 07 0.266 10 0.035 15 0.036 40 0.001 37 331 277 240 28 231 9
211.21 8.18 98.09 164.38 0.60 0.053 40 0.007 38 0.267 20 0.036 56 0.036 30 0.001 40 345 286 241 29 230 9
211.22 9.31 100.24 188.28 0.53 0.061 50 0.006 76 0.309 50 0.033 74 0.036 50 0.001 29 655 220 274 26 231 8
211.23 19.81 233.73 399.74 0.58 0.052 20 0.003 92 0.261 80 0.019 78 0.036 40 0.001 11 296 163 236 16 230 7
211.24 9.53 140.97 183.11 0.77 0.054 20 0.006 39 0.274 10 0.032 04 0.036 70 0.001 31 379 246 216 26 232 8
211.25 13.47 200.91 250.34 0.80 0.049 90 0.005 42 0.250 20 0.026 96 0.036 40 0.001 25 190 235 227 22 230 8
211.26 11.51 143.75 227.98 0.63 0.051 00 0.005 49 0.257 00 0.027 49 0.036 50 0.001 23 243 230 232 22 231 8
211.27 10.82 143.10 208.85 0.69 0.050 80 0.009 11 0.255 30 0.045 10 0.036 50 0.001 63 232 369 231 37 231 10
211.28 9.39 117.77 182.59 0.64 0.051 10 0.006 15 0.259 70 0.030 93 0.036 90 0.001 31 217 255 231 25 233 8
211.29 10.24 132.97 195.25 0.68 0.047 80 0.006 28 0.241 50 0.031 43 0.036 70 0.001 34 87 286 220 26 232 8
211.30 7.37 84.31 138.83 0.61 0.053 30 0.008 14 0.268 40 0.040 44 0.036 50 0.001 47 343 313 241 32 231 9
4 岩石地球化学特征 4.1 主量元素特征

兰采地区花岗闪长岩的主量元素和微量元素分析结果见表 2表 3。从表 2中可以看出,花岗闪长岩w(SiO2)为62.51%~69.71%,w(Al2O3)为14.24%~15.70%,碱质质量分数中等,w(K2O+Na2O)为5.79%~7.33%,并且K2O/Na2O为1.18~1.83,相对富钾;相对贫MnO(0.05%~0.09%)、TiO2 (0.34%~0.61%)和P2O5(0.05%~0.11%)质量分数,中等的w(TFe2O3)(2.76%~5.27%)。花岗闪长岩分异指数(ID)变化范围为62.08~78.90,里特曼指数(σ)变化范围为1.59~2.01,碱度率(AR)变化范围为1.81~2.55。从TAS图解(图 5a)[32]可以看出,4件岩石样品投影点落入花岗闪长岩区域,1件岩石样品投影点落入花岗岩区域,与镜下观察结果基本一致。铝饱和指数图解(图 5b)[33]显示,A/CNK变化于0.93~1.01之间,花岗闪长岩为准铝质岩石。在w(K2O)-w(SiO2)图解(图 5c)[33]中,花岗闪长岩样品落入高钾钙碱性系列区域。另外,在花岗闪长岩主量元素与SiO2相关图中可以看出,Fe2O3、MnO、TiO2、MgO、CaO、P2O5随着SiO2的增加而降低(图略),可能是与斜长石、角闪石、磁铁矿和磷灰石等矿物的结晶分异作用有关。并且w(P2O5)与w(SiO2)的负相关性(图 5d)也体现了其具有I型花岗岩的成因特点。

表 2 兰采地区花岗闪长岩主量元素分析结果 Table 2 Major elements contents of granodiorites in Lancai area
样号 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 Cr2O3 BaO SO3 SrO 烧失量 总计 ID A/CNK A/NK AR σ A/MF C/MF R1 R2 Mg#
PM1-1 62.51 15.70 5.27 3.06 4.48 2.59 3.76 0.09 0.61 0.11 0.02 0.05 < 0.01 0.03 1.38 99.66 62.94 0.95 1.88 1.92 2.01 1.08 0.56 2 267 960 53.74
PM3-1 63.67 15.46 4.70 3.47 4.59 2.66 3.13 0.08 0.50 0.10 0.03 0.04 < 0.01 0.03 1.67 100.13 62.08 0.96 1.99 1.81 1.59 1.05 0.56 2 485 986 59.63
PM4-1 63.53 15.25 4.51 3.37 4.64 2.76 3.18 0.07 0.47 0.09 0.02 0.04 < 0.01 0.03 1.60 99.56 63.03 0.93 1.91 1.85 1.68 1.07 0.59 2 442 987 59.92
PM5-1 65.08 15.08 3.93 2.90 4.07 2.76 3.47 0.07 0.42 0.08 0.02 0.03 < 0.01 0.03 1.59 99.53 67.06 0.96 1.82 1.97 1.72 1.22 0.60 2 492 897 59.61
PM9-1 69.71 14.24 2.76 1.56 2.56 2.59 4.74 0.05 0.34 0.05 0.01 0.04 < 0.01 0.02 0.95 99.62 78.90 1.01 1.52 2.55 1.99 1.90 0.62 2 578 641 53.07
注:主量元素质量分数单位为%。ID为CIPW标准矿物计算的6种标准矿物质量分数之和, ID =石英(Qz)+正长石(Or)+钠长石(Ab)+霞石(Ne)+白榴石(Lc)+六方钾霞石(Kp);A/CNK=Al2O3/(CaO+Na2O+K2O),摩尔数;A/NK=Al2O3/(Na2O+K2O),摩尔数;AR=(Al2O3+CaO+Na2O+K2O)/ (Al2O3+CaO-Na2O-K2O),质量分数;σ=(Na2O+K2O)2/(SiO2-43),质量分数;Mg#=MgO/(MgO+1.085 TFe2O3)×100,摩尔数;A/MF=Al2O3/(TFeO+MgO),摩尔数;C/MF=CaO/(TFeO+MgO),摩尔数;R1= 4Si-11(Na+K)-2(Fe+Ti),阳离子数;R2= 6Ca+2Mg+Al,阳离子数。
表 3 兰采地区花岗闪长岩微量、稀土元素分析结果 Table 3 Analysis results of trace and rear earth elements contents of granodiorites in Lancai area
样号 V Cr Ga Rb Sr Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y W Th U Nb Ta Zr Hf ΣREE LREE HREE LREE/HREE (La/Yb)N δEu δCe
PM1-1 111 110 23.40 233.00 259.00 20.60 383 37.90 83.40 8.82 31.10 5.69 0.97 5.00 0.73 4.33 0.85 2.34 0.36 2.30 0.35 24.40 4.00 28.10 3.46 10.80 1.20 175 5.40 184.14 167.88 16.26 10.32 11.82 0.54 1.08
PM3-1 85 160 19.20 173.50 221.00 16.35 316 31.50 63.80 6.85 23.60 4.36 0.85 3.74 0.59 3.44 0.74 1.98 0.31 1.96 0.31 20.90 1.00 18.35 2.22 8.00 1.00 121 3.70 144.03 130.96 13.07 10.02 11.53 0.63 1.02
PM4-1 98 170 17.70 151.00 220.00 19.20 326 31.00 61.70 6.21 22.20 4.30 0.83 3.93 0.50 3.22 0.66 1.79 0.27 1.86 0.29 20.50 1.00 18.05 1.84 7.60 1.00 129 3.80 138.76 126.24 12.52 10.08 11.95 0.61 1.03
PM5-1 83 160 18.90 191.50 217.00 16.45 313 37.50 73.00 6.72 22.40 3.99 0.76 3.33 0.52 3.00 0.63 1.74 0.27 1.75 0.28 21.50 6.00 19.65 3.89 8.30 1.00 129 4.30 155.89 144.37 11.52 12.53 15.37 0.62 1.04
PM9-1 55 80 16.20 258.00 160.50 30.60 379 38.10 80.20 7.58 24.50 4.65 0.63 3.75 0.53 3.35 0.66 1.90 0.29 2.01 0.27 21.70 3.00 27.40 3.46 8.30 1.10 131 4.50 168.42 155.66 12.76 12.20 13.60 0.45 1.09
注:稀土、微量元素质量分数单位为10-6
图 5 兰采地区花岗闪长岩主量元素图解 Fig. 5 Major elements diagram for granodiorites in Lancai area
4.2 稀土及微量元素特征

表 3和球粒陨石标准化的稀土元素配分曲线(图 6a)可以看出:曲线表现为右倾斜的V型曲线,兰采地区花岗闪长岩的稀土元素质量分数较低(w(ΣREE)=138.76×10-6 ~ 184.14×10-6,均值为158.25×10-6);轻重稀土元素分馏明显(LREE/HREE=10.02~12.53,(La/Yb)N=11.53~15.37),显示出轻稀土元素相对富集(w(LREE)=126.24×10-6 ~167.88×10-6)、重稀土元素相对亏损的特征(w(HREE) = 11.52×10-6 ~16.26×10-6);Eu具有中等的负异常,δEu为0.45~0.63,平均值为0.58。同时将样品的稀土元素质量分数和配分曲线与上地壳的平均成分进行对比可以发现,其稀土元素质量分数和配分曲线形态与上地壳几乎完全一致,表明其来源可能与地壳物质有关。

标准值据文献[34]。 图 6 兰采地区花岗闪长岩REE配分型式(a)和微量元素蛛网图(b) Fig. 6 Chondrite-normalized rare earth element patterns(a)and primitive mantle-normalized trace element patterns (b) for granodiorites in Lancai area

在原始地幔标准化蛛网图(图 6b)中,花岗闪长岩的微量元素变化特征基本一致,具有相对一致的配分型式,表明其为同时代、同来源的产物。样品均表现为富集大离子亲石元素(LILE)Rb、K和高场强元素(HFSE)Th、U,相对亏损Ba、Sr和HSFE中的Nb、Ta、Ti、P。Ti、P的明显亏损表明兰采地区花岗闪长质岩浆演化过程中存在含P、Ti矿物的分离结晶作用,Ba元素的亏损可能与岩体经历了与斜长石和黑云母的分离结晶作用有关,Nb、Ta的亏损表明岩浆为地壳来源或曾受到地壳物质的混染。同样将微量元素蛛网图与上地壳的平均成分进行对比,其微量元素特征与上地壳特征十分吻合,从而说明成岩过程中地壳物质参与了成岩作用。

5 讨论 5.1 岩石成因及岩浆源区性质

兰采地区花岗闪长岩中普遍出现了I型花岗岩中的典型标志型矿物角闪石,而未见富铝矿物,CIPW标准矿物中几乎不存在刚玉分子,以上特征说明兰采地区花岗闪长岩具有I型花岗岩的矿物学特征。

Chappell等[35-36]通过研究Lachlan褶皱带中的花岗岩类指出,S型花岗岩的铝饱和指数(A/CNK)一般大于1.1,I型花岗岩的铝饱和指数小于1.1。兰采地区花岗闪长岩A/CNK为0.93~1.01(均值为0.96)。Chappell[37]在Lachlan褶皱带花岗岩的研究中发现,I型花岗岩中的w(P2O5)会随w(SiO2)的增加而降低。实验研究也证明磷灰石在准铝质弱过铝质的(A/CNK<1.1)I型花岗质岩浆中的溶解度很低,因此在分异过程中磷灰石趋向于早期结晶,最终导致I型花岗岩中w(P2O5)与w(SiO2)呈负相关关系,而在强过铝质S型花岗质岩浆中磷灰石溶解度的变化与其相反[38]。另外,Ⅰ型花岗岩中Y质量分数高,且与Rb质量分数呈正相关关系[39]。结合以上特征,本文研究的兰采花岗闪长岩属于准铝质弱过铝质岩石,w(P2O5)与w(SiO2)负相关(图 4d),w(Rb)与w(Y)正相关(图 7a)。在ACF和w(Zr)-w(SiO2)图解(图 7bc)中,花岗闪长岩样品均落入I型花岗岩区域。因此,认为兰采花岗闪长岩属于I型花岗岩类。

图 7 兰采地区花岗闪长岩岩石成因判别图 Fig. 7 Discrimination diagrams of genesis type for granodiorites in Lancai area

兰采地区花岗闪长岩的主量和微量元素特征显示其具有壳源的特征。实验岩石学已证明,地壳中碎屑岩类的部分熔融产生化学成分偏酸性的过铝质花岗岩类[40-42],而地壳中玄武质岩石的部分熔融产生化学成分偏基性的准铝质花岗岩类[40, 43-46]。在A/MF-C/MF图解(图 7d)中,样品落入基性岩的部分熔融区域,Nb/Ta值(平均8.09)也十分接近下地壳(8.3)[47],指示其可能来自于地壳中变基性岩的部分熔融。已有研究表明,幔源物质的参与导致了西秦岭印支期花岗岩具有高Mg#(44~65)特点[47-51]。兰采地区花岗闪长岩的Mg#(53.07~59.92)明显高于玄武质下地壳部分熔融产生的熔体(Mg#<45[45, 52]),这暗示在兰采地区花岗闪长岩形成过程中可能有幔源物质的贡献。此外,兰采地区花岗闪长岩中发育暗色包体,佐证了幔源物质在兰采地区花岗闪长岩起源与成因中的作用。因此,可以认为兰采地区花岗闪长岩主要来自下地壳高K变基性岩的部分熔融,且幔源岩浆的底侵作用可能在该花岗岩闪长岩形成中扮演了重要角色。

5.2 构造背景及形成机制

目前研究认为,秦岭造山带沿南秦岭勉略带—大别山的碰撞主要发生在中生代早期,形成南秦岭造山带,并最终完成了扬子板块与华北板块的全面碰撞[53-57],是秦岭花岗岩的强烈岩浆活动期[23, 58],形成了巨量的中生代花岗岩。多数学者认为,中央造山带南缘以阿尼玛卿—勉略缝合带所代表的古特提斯洋于晚古生代末封闭[59],但对于西秦岭地区该洋盆闭合或大陆碰撞的时间仍存在争议,从而导致对西秦岭印支期造山过程及花岗岩类形成背景的认识产生分歧:一种观点认为,西秦岭三叠纪花岗岩类均形成于后碰撞环境,并且印支早期花岗岩形成于俯冲陆壳或洋壳断离环境,而印支晚期花岗岩则形成于地壳加厚导致的岩石圈拆沉环境[21, 47, 51];另一种观点认为,秦岭地区的初始碰撞可能发生在中三叠世末期[60-61],而扬子板块的斜向俯冲和顺时针旋转则可能造成了两大板块自东向西碰撞的穿时性[62];还有观点认为陆陆碰撞可能发生于三叠纪末期,秦岭造山带三叠纪花岗岩类形成于活动陆缘弧环境[63]

兰采地区花岗闪长岩的地球化学特征显示为高钾钙碱性系列岩石,而高钾钙碱性系列岩石可以出现在不同的地球动力学环境中,它既可以产生在将碰撞事件主峰期分开的张弛阶段,也可以产生在从挤压体制转变成拉张体制的过程中[64-65]。本次获得花岗闪长岩样品的LA-ICP-MS锆石U-Pb定年结果为(231.4±2.9) Ma。在w(Nb)-w(Y)图解(图 8a)中,数据点落入火山弧花岗岩和同碰撞花岗岩重叠区域内。在w(Rb)-w(Y+Nb)图解(图 8b)中,数据点落入火山弧花岗岩和同碰撞花岗岩界线附近。在Rb/10-Hf-3Ta判别图解(图 8c)中,投点落入碰撞大地构造背景的花岗岩区域。在R2-R1图解(图 8d)中,投点落入破坏性活动板块边缘花岗岩靠近同碰撞花岗岩区域。考虑到地球化学数据的多解性,我们进一步从西秦岭区域基础地质资料中去寻求对构造背景的认识。前人[60, 66-68]的研究表明,阿尼玛卿—勉略残余海盆在241~237 Ma快速缩小,237~228 Ma仅在西秦岭南段的迭部—松潘一带还有残留海存在。赖绍聪等[69]依据勉略带变火山岩的变质年龄(226.9~219.4 Ma),论证了勉略洋的闭合时间或者勉略缝合带的形成时间应该为226~219 Ma。西秦岭印支早期岩浆岩中发育了高镁安山岩(234 Ma[61]),高镁安山质岩石均被解释为俯冲沉积物熔体与地幔楔相互作用的产物。同时,南秦岭光头山岩体中还保存了与洋壳俯冲相关的残留独居石(249~240 Ma[70]),以上证据同样指示西秦岭地区古特提斯洋闭合时间应晚于234 Ma。黄雄飞等[8]的研究表明,西秦岭宕昌过铝质和富Rb而低Yb的同碰撞火山岩形成于229 Ma,指示西秦岭地区华北板块与扬子板块的初始碰撞可能接近229 Ma。另一方面,憨班岩体中的高Sr/Y二云母花岗岩(225 Ma)是西秦岭地区目前唯一发现的印支期二云母花岗岩,形成于同碰撞陆壳加厚环境,从而进一步限制了西秦岭东段地区大陆碰撞的时间应早于225 Ma[71]。因而,本文认为西秦岭在中三叠世末晚三叠世初,深部动力学体制上发生了伸展向挤压过渡的重大转换,并由此导致地壳开始缩短加厚,这可能暗示了华北板块与扬子板块之间的大陆同碰撞作用的开始,并在印支晚期逐渐转入后碰撞松弛阶段。兰采地区花岗闪长岩(231 Ma)显示出了板块碰撞前花岗岩向同碰撞花岗岩过渡的特点,指示西秦岭地区华北板块与扬子板块的初始碰撞可能接近231 Ma,反映了以整体挤压为主、局部剪切伸展为辅的地壳逐渐加厚的深部动力学环境。

WPG.板内花岗岩; VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;ORG.洋脊花岗岩。 图 8 兰采地区花岗闪长岩微量元素构造环境判别图解 Fig. 8 Diagrams of the trace elements tectonic setting for granodiorites in Lancai area
6 结论

1) 兰采花岗闪长岩的LA-ICP-MS锆石U-Pb加权平均年龄为(231.4±2.9) Ma(MSWD=0.024),形成于晚三叠世早期。

2) 兰采花岗闪长岩为准铝质、高钾钙碱性I型花岗岩类,其源区物质可能为变基性岩类,幔源岩浆的参与可能对该岩体的形成具有重要意义。

3) 兰采花岗闪长岩形成于以整体挤压为主、局部剪切伸展为辅的地壳逐渐加厚的动力学背景下。

参考文献
[1]
任纪舜, 张正坤, 牛宝贵, 等.论秦岭造山带-中朝与扬子陆块的拼合过程[C]//叶连俊, 钱祥麟, 张国伟.秦岭造山带学术讨论会论文选集.西安: 西北大学出版社, 1991: 99-110.
Ren Jishun, Zhang Zhengkun, Niu Baogui, et al. On the Amalgamation Process of Qinling Orogenic Belt, China Korea and Yangtze Landmass[C]//Ye Lianjun, Qian Xianglin, Zhang Guowei. Selected Papers of Qinling Orogenic Belt Symposium. Xi'an: Northwest University Press, 1991: 99-110.
[2]
张二朋, 牛道韫, 霍有光, 等. 秦巴地区主要地质-构造特征梗概[J]. 西北地质科学, 1992, 13(2): 31-46.
Zhang Erpeng, Niu Daoyun, Huo Youguang, et al. Outline of Main Geological Structural Features in Qinba Area[J]. Northwest Geosciences, 1992, 13(2): 31-46.
[3]
张二朋, 牛道韫, 霍有光, 等. 秦巴及邻区地质-构造特征概论[M]. 北京: 地质出版社, 1993: 1-12, 226-275.
Zhang Erpeng, Niu Daoyun, Huo Youguang, et al. An Introduction to the Geological Structural Characteristics of Qinba and Its Adjacent Areas[M]. Beijing: Geological Publishing House, 1993: 1-12, 226-275.
[4]
江新胜, 潘桂棠, 颜仰基, 等. 秦、祁、昆交接区三叠纪沉积相格架及构造古地理演化[J]. 四川地质学报, 1996, 16(3): 204-208.
Jiang Xinsheng, Pan Guitang, Yan Yangji, et al. Triassic Sedimentary Facies Framework and Tectonic Paleogeographic Evolution in the Qin Qi Kun Junction Area[J]. Journal of Sichuan Geology, 1996, 16(3): 204-208.
[5]
陈虹, 胡健民, 武国利, 等. 南秦岭构造带中段晚中生代陆内变形特征与侧向挤出构造[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1906-1927.
Chen Hong, Hu Jianmin, Wu Guoli, et al. Late Mesozoic Intra-Continental Deformation and Lateral Extrusion in Central Segment of the Southern Qinling Belt[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(6): 1906-1927.
[6]
冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带结构造山过程及动力学[M]. 西安: 西安地图出版社, 2002: 1-263.
Feng Yimin, Cao Xuanduo, Zhang Erpeng, et al. Structural Orogenic Process and Dynamics of the West Qinling Orogenic Belt[M]. Xi'an: Xi'an Map Press, 2002: 1-263.
[7]
冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, 2003, 36(1): 1-10.
Feng Yimin, Cao Xuanduo, Zhang Erpeng, et al. Evolution, Structural Pattern and Nature of the West Qinling Orogenic Belt[J]. Northwest Geology, 2003, 36(1): 1-10. DOI:10.3969/j.issn.1009-6248.2003.01.001
[8]
黄雄飞, 莫宣学, 喻学惠, 等. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2013, 29(11): 3968-3980.
Huang Xiongfei, Mo Xuanxue, Yu Xuehui, et al. Zircon U-Pb Chronology, Geochemistry of the Late Triassic Acid Volcanic Rocks in Tanchang Area, West Qinling and Their Geological Significance[J]. Acta Petrologica Sinica, 2013, 29(11): 3968-3980.
[9]
孙延贵, 郭安林, 马小红.秦昆三向联结构造与构造过程[C]//青海省地质学会.青藏高原东北部地质研究: 青海省地质学会成立四十周年文集.北京: 地质出版社, 2005: 11-17.
Sun Yangui, Guo Anlin, Ma Xiaohong.The Three-Way Connection Structure and Structural Process Between Qin and Kun[C]//Geological Society of Qinghai Province. Geological Research in the Northeast of Qinghai Tibet Plateau-Collection of the 40th Anniversary of the Establishment of Geological Society of Qinghai Province. Beijing: Geological Publishing House, 2005: 11-17.
[10]
王绘清, 朱云海, 林启祥, 等. 青海尖扎-同仁地区隆务峡蛇绿岩的形成时代及意义:来自辉长岩锆石LA-ICP-MS U-Pb年龄的证据[J]. 地质通报, 2010, 29(1): 86-92.
Wang Huiqing, Zhu Yunhai, Lin Qixiang, et al. LA-ICP-MS Zircon U-Pb Dating of the Gabbro from Longwu Gorge Ophiolite, Jianzha-Tongren Area, Qinghai, China and Its Geological Significance[J]. Geological Bulletin of China, 2010, 29(1): 86-92. DOI:10.3969/j.issn.1671-2552.2010.01.011
[11]
寇晓虎, 朱云海, 张克信, 等. 青海省同仁地区上二叠统石关组上部火山岩的新发现及其地球化学特征和构造环境意义[J]. 地球科学:中国地质大学学报, 2007, 32(1): 45-58.
Kou Xiaohu, Zhu Yunhai, Zhang Kexin, et al. New Discovery of Volcanic Rocks in the Upper Part of the Upper Permian Shiguan Formation in Tongren Area, Qinghai Province and Its Geochemical Characteristics and Tectonic Environmental Significance[J]. Geosciences:Journal of China University of Geosciences, 2007, 32(1): 45-58.
[12]
曾宜君, 黄思静, 熊昌利, 等. 川西色达早侏罗世郎木寺组火山岩特征及构造惫义[J]. 成都理工大学学报(自然科学版), 2009, 36(1): 78-86.
Zeng Yijun, Huang Sijing, Xiong Changli, et al. The Characteristics of Volcanic Rocks and the Structure of Langmusi Formation in Early Jurassic, Seda, Western Sichuan[J]. Journal of Chengdu University of Science and Technology (Natural Science Edition), 2009, 36(1): 78-86. DOI:10.3969/j.issn.1671-9727.2009.01.013
[13]
Kou Xiaohu, Zhang Kexin, Zhu Yunhai, et al. Middle Permian Seamount from Xiahe Area, Gansu Province, Northwest China:Zircon U-Pb Age, Biostratigraphy and Tectonic Implications[J]. Journal of Earth Science, 2009, 20(2): 364-380. DOI:10.1007/s12583-009-0030-3
[14]
黄雄飞, 喻学惠, 莫宣学, 等. 甘肃西秦岭甘加地区OIB型钾质拉斑玄武岩的发现:对西秦岭晚中生代大陆裂谷作用的启示[J]. 地学前缘, 2013, 20(3): 204-216.
Huang Xiongfei, Yu Xuehui, Mo Xuanxue, et al. The Discovery of OIB Type Potash Tholeiite in Ganjia Area, Western Qinling, Gansu Province-Implications for Late Mesozoic Continental Rifting in Western Qinling[J]. Earth Science Frontiers, 2013, 20(3): 204-216.
[15]
喻学惠, 莫宣学, 赵志丹, 等. 甘肃西秦岭两类新生代钾质火山岩:岩石地球化学与成因[J]. 地学前缘, 2009, 16(2): 79-89.
Yu Xuehui, Mo Xuanxue, Zhao Zhidan, et al. Two Types of Cenozoic Potash Rolcanic Rocks in the West Qinling Mountains, Gansu Province:Petrochemistry and Genesis[J]. Earth Science Frontiers, 2009, 16(2): 79-89. DOI:10.3321/j.issn:1005-2321.2009.02.005
[16]
潘桂堂, 丁俊, 姚东生. 1:1500000青藏高原及邻区地质图(附说明书)[M]. 成都: 成都地图出版社, 2004.
Pan Guitang, Ding Jun, Yao Dongsheng. 1:5000000 Geological Map of Qinghai Tibet Plateau and Its Adjacent Areas (with Instructions)[M]. Chengdu: Chengdu Cartographic Publishing House, 2004.
[17]
刘成东, 莫宣学, 罗照华, 等. 东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J]. 地球学报, 2003, 24(6): 584-588.
Liu Chengdong, Mo Xuanxue, Luo Zhaohua, et al. Pb-Sr-Nd-O Isotopic Characteristics of Granitoids in the East Kunlun Orogenic Belt[J]. Journal of Earth, 2003, 24(6): 584-588. DOI:10.3321/j.issn:1006-3021.2003.06.020
[18]
Liu C D, Mo X X, Luo Z H. Crust-Mantle Magma Mixing in Last Kulun:Evidence from Zircon SHRIPM Chronology[J]. Chinese Science Bulletin, 2004, 49: 596-602. DOI:10.1360/csb2004-47-6-596
[19]
谌宏伟, 罗照华, 莫宣学, 等. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J]. 中国地质, 2005, 32(3): 386-395.
Chen Hongwei, Luo Zhaohua, Mo Xuanxue, et al. Magmatic Underplating Mechanism of Triassic Magmatic Migmatitic Granite in the East Kunlun Orogenic Belt[J]. Chinese Geology, 2005, 32(3): 386-395. DOI:10.3969/j.issn.1000-3657.2005.03.006
[20]
张宏飞, 靳兰兰, 张利, 等. 西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J]. 中国科学:D辑:地球科学, 2005, 35(10): 10-22.
Zhang Hongfei, Jin Lanlan, Zhang Li, et al. Limitation ofGranitoid Geochemistry and Pb-SR-Nd Isotopic Composition on Basement Properties and Structural Properties in the West Qinling Mountains[J]. Chinese Science:Series D:Earth Sciences, 2005, 35(10): 10-22.
[21]
张宏飞, 陈岳龙, 徐旺春, 等. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J]. 岩石学报, 2006, 22(12): 2910-2922.
Zhang Hongfei, Chen Yuelong, Xu Wangchun, et al. Genesis and Tectonic Significance of Indosinian Granitoids Around Gonghe Basin, Qinghai[J]. Acta Petrologica Sinica, 2006, 22(12): 2910-2922.
[22]
金维浚, 张旗, 何登发, 等. 西秦岭埃达克岩的SHRIMP定年及其构造意义[J]. 岩石学报, 2005, 21(3): 959-966.
Jin Weijun, Zhang Qi, He Dengfa, et al. Shrimp Dating of Adakites in the Western Qinling Mountains and Its Tectonic Significance[J]. Acta Petrologica Sinica, 2005, 21(3): 959-966.
[23]
张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-806.
Zhang Guowei, Zhang Benren, Yuan Xuecheng, et al. Qinling Orogenic Belt and Continental Dynamics[M]. Beijing: Science Press, 2001: 1-806.
[24]
张国伟, 董云鹏, 姚安平. 关于中国大陆动力学与造山带研究的几点思考[J]. 中国地质, 2002, 29(1): 7-13.
Zhang Guowei, Dong Yunpeng, Yao Anping. Some Thoughts on the Study of Continental Dynamics and Orogenic Belt in China[J]. Chinese Geology, 2002, 29(1): 7-13.
[25]
Zhang H F, Jin L L, Zhang L, et al. Geochemical and Pb-Sr-Nd Isotopic Compositions of Granitoids from Western Qinling Belt:Constraints on Basement Nature and Tectonic Affinity[J]. Science in China:Series D, 2007, 50(2): 184-196. DOI:10.1007/s11430-007-2015-3
[26]
Liu X M, Gao S, Diwu C R, et al. Simultaneous In-Situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20pm Spot Size[J]. Chinese Science Bulletin, 2007, 52(9): 1257-1264. DOI:10.1007/s11434-007-0160-x
[27]
Ludwig K R. ISOPLOT 3.0:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley:Geochronology Center Special Publication, 2003, 4.
[28]
袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48(14): 1511-1520.
Yuan Honglin, Wu Fuyuan, Gao Shan, et al. Zircon Laser Probe U-Pb Dating and REE Composition Analysis of Cenozoic Intrusions in Northeast China[J]. Science Bulletin, 2003, 48(14): 1511-1520. DOI:10.3321/j.issn:0023-074X.2003.14.008
[29]
Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon[J]. Journal of Microscopy, 1993, 171: 223-232. DOI:10.1111/j.1365-2818.1993.tb03379.x
[30]
吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
Wu Yuanbao, Zheng Yongfei. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation[J]. Science Bulletin, 2004, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
[31]
Belousova E A, Griffin W, Suzanne Y, et al. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. DOI:10.1007/s00410-002-0364-7
[32]
Middlemost. Naming Materials in the Magma/Igneous Rock Mass System[J]. Earth-Science Reviews, 1994, 37: 215-224. DOI:10.1016/0012-8252(94)90029-9
[33]
Peccerillo R, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contrib Mineral Petrol, 1976, 58: 63-81. DOI:10.1007/BF00384745
[34]
McDonough S. Chemical and Isotopic Systematic of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
[35]
Chappell B W, White A J R. Two Contrasting Granite Types[J]. Pacific Geology, 1974, 8: 173-174.
[36]
Chappell B W, White A J R. Two Contrasting Granite Types:25 Years Later[J]. Australian Journal of Earth Sciences, 2001, 48: 489-499. DOI:10.1046/j.1440-0952.2001.00882.x
[37]
Chappell B W. Aluminium Saturation in I and S-Type Granites and the Characterization of Fractionated Haplogranites[J]. Lithos, 1999, 46: 535-551. DOI:10.1016/S0024-4937(98)00086-3
[38]
Wolf M B, London D. Apatite Dissolution into Peraluminous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms[J]. Geochimica et Cosmochimica Acta, 1994, 58(19): 4127-4145. DOI:10.1016/0016-7037(94)90269-0
[39]
Li X H, Li Z X, Sinclair J A. Revisiting the "Yanbian Terrane ":Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block South China[J]. Precambrian Research, 2006, 151(1/2): 14-30.
[40]
Johannes W, Holtz F. Petrogenesis and Experiment Petrology of Granitic Rock[C]. Berlin: Springer-Verlag, 1996: 1-254.
[41]
Patino-Douce A E, Harris N. Experimental Constraints on Himalayan Anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710. DOI:10.1093/petroj/39.4.689
[42]
Alberto E. Patiño D. Melting of Crustal Rocks During Continental Collision and Subduction[J]. Netherlands:Kluwer Academic Publisher, 1998, 27-55.
[43]
Beard J S, Lofgren G E. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. DOI:10.1093/petrology/32.2.365
[44]
Wolf M B, Wyllie P J. Dehydration-Melting of Amphibolite at 10 kbar:The Effects of Temperature and Time[J]. Contributions to Mineralogy and Petrology, 1994, 115(4): 369-383. DOI:10.1007/BF00320972
[45]
Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36: 891-931. DOI:10.1093/petrology/36.4.891
[46]
Sisson T W, Ratajeski K, Hankins W B. Voluminous Granitic Magmas from Common Basaltic Sources[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661. DOI:10.1007/s00410-004-0632-9
[47]
张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(3): 304-316.
Zhang Chengli, Wang Tao, Wang Xiaoxia. Genesis and Tectonic Setting of Early Mesozoic Granites in Qinling Mountains Orogenic Belt[J]. Chinese Journal of Geology, 2008, 14(3): 304-316. DOI:10.3969/j.issn.1006-7493.2008.03.003
[48]
Qin J F, Lai S C, Grapes R. Geochemical Evidence for Origin of Magma Mixing for the Triassic Monzonitic Granite and Its Enclaves at Mishuling in the Qinling Orogen (Central China)[J]. Lithos, 2009, 112(3/4): 259-276.
[49]
Guo X Q, Yan G, Wang Z Q. Middle Triassic arc Magmatism Along the Northeastern Margin of the Tibet:U-Pb and Lu-Hf Zircon Characterization of the Gangcha Complex in the West Qinling Terrane, Central China[J]. Journal of the Geological Society, 2012, 169(3): 327-336. DOI:10.1144/0016-76492011-083
[50]
Zhu L M, Zhang G W, Chen Y J. Zircon U-Pb Ages and Geochemistry of the Wenquan Mo-Bearing Granitioids in West Qinling, China:Constraints on the Geodynamic Setting for the Newly Discovered Wenquan Mo Deposit[J]. Ore Geology Reviews, 2011, 39(1/2): 46-62.
[51]
Luo B J, Zhang H F, Lu X B. U-Pb Zircon Dating, Geochemical and Sr-Nd-Hf Isotopic Compositions of Early Indosinian Intrusive Rocks in West Qinling, Central China:Petrogenesis and Tectonic Implications[J]. Contributions to Mineralogy and Petrology, 2012, 164(4): 551-569. DOI:10.1007/s00410-012-0748-2
[52]
Rushmer T. Partial Melting of Two Ampbibolites:Contrastingn Experimental Results Under Fluid Absent Conditions[J]. Contrib Mineral Petrol, 1991, 107: 41-59. DOI:10.1007/BF00311184
[53]
Li S G, Xiao Y L, Liu D L. Collision of the North China and Yangtze Blocks and Form Action of Coesite-Bearing Eclogites:Timing and Processes[J]. Chemical Geology, 1993, 109: 89-111. DOI:10.1016/0009-2541(93)90063-O
[54]
张宏飞, 张本仁, 赵志丹, 等. 东秦岭商丹构造带陆壳俯冲碰撞:花岗质岩浆源区同位素示踪证据[J]. 中国科学:D辑:地球科学, 1996, 26(3): 231-236.
Zhang Hongfei, Zhang Benren, Zhao Zhidan, et al. Subduction Collision of Continental Crust in Shangdan Structural Belt, East Qinling Mountains:Evidence of Isotopic Tracing of Granitic Magma Source Area[J]. Chinese Science:Series D:Earth Science, 1996, 26(3): 231-236.
[55]
张国伟, 董云鹏, 姚安平. 秦岭造山带基本组成与结构及其构造演化[J]. 陕西地质, 1997, 15(2): 1-14.
Zhang Guowei, Dong Yunpeng, Yao Anping. Basic Composition, Structure and Tectonic Evolution of Qinling Orogenic Belt[J]. Geology of Shaanxi, 1997, 15(2): 1-14.
[56]
Hacker B R, Ratsehbacher L, Webb L, et al. U-Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 215-230.
[57]
郑永飞. 超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J]. 科学通报, 2008, 53(18): 2129-2152.
Zheng Yongfei. Research Progress of UHP Metamorphism and Continental Collision:Taking Dabie Sulu Orogenic Belt as an Example[J]. Science Bulletin, 2008, 53(18): 2129-2152. DOI:10.3321/j.issn:0023-074X.2008.18.001
[58]
Meng Q R, Zhang G W. Timing of Collision of the North and South China Blocks:Controversy and Reconciliation[J]. Geology, 1999, 27(2): 123-126. DOI:10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2
[59]
Li S G, Sun W D, Zhang G W. Chronology and Geochemistry of Metavolcanic Rocks from Heigouxia Valley in the Mianlue Tectonic Zone, South Qinling:Evidence for a Paleozoic Oceanic Basin and Its Close Time[J]. Science in China:Series D, 1996, 39(3): 300-310.
[60]
Meng Q R, Wang E, Hu J M. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin:Implication for Continued Clockwise Rotation of the South China Block[J]. Geological Society of America Bulletin, 2005, 117(3/4): 396-410.
[61]
Li X W, Mo X X, Yu X H, et al. Petrology and Geochemistry of the Early Mesozoic Pyroxene and Esites in the Maixiu Area, West Qinling, China:Products of Subduction or Syn-Collision[J]. Lithos, 2013, 172/173: 158-174. DOI:10.1016/j.lithos.2013.04.010
[62]
Liu S F, Steel R, Zhang G W. Mesozoic Sedimentary Basin Development and Tectonic Implication, Northern Yangtze Block, Eastern China:Record of Continent-Continent Collision[J]. Journal of Asian Earth Sciences, 2005, 25(1): 9-27.
[63]
Li N, Chen Y J, Santosh M, et al. Compositional Polarity of Triassic Granitoids in the Qinling Orogen, China:Implication for Termination of the Northernmost Paleo-Tethys[J]. Gondwana Research, 2015, 27(1): 244-257. DOI:10.1016/j.gr.2013.09.017
[64]
Barbarin B. A Review of the Relationships Between Granitoid Types, Their Origins and Their Geodynamic Environments[J]. Lithos, 1999, 46(3): 605-626. DOI:10.1016/S0024-4937(98)00085-1
[65]
肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002: 1-294.
Xiao Qinghui, Deng Jinfu, Ma Daquan, et al. Thinking and Methods of Granite Research[M]. Beijing: Geological Publishing House, 2002: 1-294.
[66]
Zhou D, Graham S A. The Songpan-Ganzi Complex of the West Qinling Shan as a Triassic Remnant Ocean Basin the Tectonic Evolution of Asia[M]. New York: Cambridge University Press, 1996: 281-299.
[67]
潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997: 1-218.
Pan Guitang, Chen Zhiliang, Li Xingzhen, et al. Formation and Evolution of the Eastern Tethys Geological Structure[M]. Beijing: Geological Publishing House, 1997: 1-218.
[68]
闫臻, 王宗起, 李继亮, 等. 西秦岭楔的构造属性及其增生造山过程[J]. 岩石学报, 2012, 28(6): 1808-1828.
Yan Zhen, Wang Zongqi, Li Jiliang, et al. Tectonic Properties and Accretive Orogenic Process of Wedge in the West Qinling Mountains[J]. Acta Petrologica Sinica, 2012, 28(6): 1808-1828.
[69]
赖绍聪, 秦江峰. 南秦岭勉略缝合带蛇绿岩与火山岩[M]. 北京: 地质出版社, 2010: 1-257.
Lai Shaocong, Qin Jiangfeng. Ophiolite and Volcano in Mian Lüe Suture Zone, Southern Qinling Mountains[M]. Beijing: Geological Publishing House, 2010: 1-257.
[70]
陈旭, 刘树文, 李秋根, 等. 西秦岭勉县北部光头山二长花岗岩独居石电子探针U-Th-Pb化学法定年及其地质意义[J]. 地质通报, 2009, 28(7): 888-895.
Chen Xu, Liu Shuwen, Li Qiugen, et al. U-Th-Pb Chemical Legal Year and Its Geological Significance of Monazite from Guangtoushan Adamellite in the North of Mianxian County, Western Qinling[J]. Geological Bulletin, 2009, 28(7): 888-895. DOI:10.3969/j.issn.1671-2552.2009.07.008
[71]
黄雄飞.西秦岭印支期花岗质岩浆作用与造山带演化[D].北京: 中国地质大学(北京), 2016.
Huang Xiongfei. Indosinian Granitic Magmatism and Orogenic Evolution in the West Qinling[D]. Beijing: China University of Geosciences (Beijing), 2016. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067638.htm
http://dx.doi.org/10.13278/j.cnki.jjuese.20180228
吉林大学主办、教育部主管的以地学为特色的综合性学术期刊
0

文章信息

任文恺, 王生云, 陈礼标, 吴少锋, 张海青
Ren Wenkai, Wang Shengyun, Chen Libiao, Wu Shaofeng, Zhang Haiqing
青海同仁兰采地区花岗闪长岩LA-ICP-MS锆石U-Pb年代学、地球化学特征及其地质意义
LA-ICP-MS Zicon U-Pb Geochronology, Geochemistry and Geological Significance of Granodiorites in Lancai Area, Tongren, Qinghai
吉林大学学报(地球科学版), 2020, 50(4): 1059-1074
Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1059-1074.
http://dx.doi.org/10.13278/j.cnki.jjuese.20180228

文章历史

收稿日期: 2018-08-28

相关文章

工作空间