2. 自然资源部油气资源战略研究中心, 北京 100034
2. Oil and Gas Resources Strategic Research Center, Ministry of Natural Resources, Beijing 100034, China
0 引言
目前我国已发现的天然气藏大多属于中、低渗透储层,统计表明,我国年天然气总产量的1/5左右来自低孔、低渗的致密砂岩气藏[1]。苏里格东区气田属于典型的低孔、低渗透、低丰度的气田,东二区主要目的层下石盒子组盒8段、山西组山1段纵向多种岩性叠置、横向存在分区性, 以及砂体相对孤立、储层分布连续性差,给气田的开发及后期钻探部署带来很大的难度。随着该气田的深入开发,产水类型逐步复杂化[2-3]。因此,厘清苏东地区主力层段盒8和山1段气水分布及产水控制因素是气田高效持续开发的核心问题。目前,针对盒8段和山1段气水分布及产水控制因素尚无人做过详细的研究,其技术难点表现在气水识别难度较大、水的来源及出水机理的研究还很薄弱等方面。因此,当务之急是从实际生产数据入手,对气水分布及产水控制因素进行分析,系统劈分出产水井的层位及产量并分析出水原因。
1 地质控制因素分析 1.1 工区概况及生产需求苏里格气田东区地处内蒙古自治区鄂尔多斯市乌审旗和陕西省榆林市榆阳区境内,南接乌审旗和靖边气田,东邻榆林气田。区域构造位于鄂尔多斯盆地伊陕斜坡中北部和伊盟隆起南部(图 1)。苏里格气田东区勘探面积约11 000 km2。目的层位为下石盒子组盒8段、山西组山1段,兼探上石盒子组盒4段、盒6段,山西组山2段,本溪组及下古生界生界马家沟组马54层(图 2),具典型的多层系含气特征[1-3]。本次研究工区主要为东二区,面积约3 000 km2,研究目的层位为下石盒子组盒8段和山西组山1段。苏里格气田东区积液井数逐年攀升,占气田总井数73%。产水已经成为困扰苏东区块开发的一大难题,给气田开发动态分析、气藏评价及井位加密部署带来一定的困难,迫切需要对产水有一个彻底的认识。在此基础上,进行控水增气,以达到延长无水或低水采气期、提高采收率和科学开发天然气藏的目的。
1.2 构造和气源条件的控制作用苏里格气田东二区(以下简称“苏东二区”)上古生界烃源岩主要发育于海陆交互相的石炭系—二叠系含煤层系,具广覆式沉积特征;烃源岩主要以山西组、太原组和本溪组煤层、暗色泥岩为主,太原组和本溪组石灰岩次之。苏东二区平均含气饱和度山13层为61.37%,山12层为60.57%,山11层为58.87%,盒8下段为57.67%,盒8上段为55.73%,山1段至盒8上段累计产气量见图 3。距烃源岩最近的山1段天然气充注程度最高,具向上含气饱和度呈逐渐降低的趋势,具有近距离成藏、垂向充注的运移及富集特征[4-7]。本区生烃强度分布在(8~28)×108 m3/km2之间,产量高的层位均位于南部生烃强度高值区,生烃强度高值区水气比相对较低,生烃强度明显控制了苏东地区宏观的气水分布。根据盒8底部反射层及钻井资料分析,苏东二区的区域构造为一宽缓的西倾斜坡(图 3),坡降一般为3~10 m/km。在单斜背景上发育着多排近北东向的低缓鼻隆,鼻隆幅度一般为10~20 m,宽度为3~6 km。通过研究发现,工区的高产气井绝大多数发育在微幅构造的高点上,部分发育在近烃源岩的低洼部位,说明构造和气源条件控制了气水分布的宏观格局。
1.3 储层物性对气水分布的控制作用致密砂岩储层物性对于气井产气及出水影响很大。研究表明,天然气的充注与储层的物性明显相关,物性好的砂体毛细管阻力小,天然气更易于驱替储集条件好的砂岩储层中的地层水,形成气层;物性稍差的砂体毛细管阻力相对较大,天然气可驱替部分地层水,形成含气水层;而物性最差的砂体毛细管阻力很大,天然气通常难以进入,形成水层[8-12]。研究区内有效储层孔隙度主要分布在5%~18%之间,平均为9%;渗透率主要分布在(0.10~5.00)×10-3 μm2之间,平均为0.70×10-3 μm2。气层段均为孔渗条件较好的砂岩体,气水层及含气水层孔渗相对中等,孔隙度介于7%~14%之间,渗透率为(0.50~2.00)×10-3 μm2之间。利用百余口钻井、录井及测井资料统计了山1段至盒8上段发育的干层、气层、含气层、气水层及含气水层,统计结果(图 4)证实,绝大多数气层、气水层、含气水层均分布在高于物性下限值所决定的范围之中,干层、含气层多分布在物性下限值以下的范围,说明物性参数对气水分布起着关键的控制作用。
1.4 泥岩隔层对气水分布的控制作用本区古河道的迁移,造成气藏具有砂泥交互的沉积格局,上覆泥岩为致密砂岩提供了良好的盖层及侧向封堵条件;同时泥岩隔层的发育,也造成储层纵向上的储层非均质性,使得气水在储层中的分布复杂化[13-18]。本次研究结果表明,下伏山1段泥岩隔层厚度对上部盒8段的产气量具有明显的控制作用。由图 5可以看出,随着山1段泥岩隔层厚度的增大,盒8段日产气量有减小的趋势;说明下伏山1段的厚层泥岩抑制了深部烃源岩生成的天然气向盒8段充注,即山1段泥岩厚的区域,其上部盒8段的天然气充注程度低,导致气井产气量低。
2 生产方式的控制作用 2.1 配产及生产压差对气井产水的控制作用配产和生产压差对气井产水具有很大影响。在气藏合理配产过程中,需要考虑压敏及速敏效应的影响。配产越低,对储层的伤害越小;另一方面,产量要能满足携液要求。气井配产低可以有效降低由于压敏效应在井筒附近形成的附加压力损失,扩大压降作用范围,使低渗区动力更充分,提高单井采出程度。生产压差过大,会增加层内水的出水量和出水速率[19-21]。实践表明,控制产量的生产井,生产动态优于放压生产井。苏东27-30H2井目的层盒8下段,试气日产气15.8×104 m3/d,无阻流量31.3×104 m3/ d;初期配产4.0×104 m3/ d,稳定生产37 d;之后配产调整为8.0×104 m3/ d,气井开始出水,日产水约15.0×104m3/d,持续约59 d,累产水740.4×104 m3;再之后配产调整为4.5×104 m3/d,气井稳定生产,截至目前累计产气量3 854.4×104 m3。根据苏里格气田气井分类标准,无阻流量大于10.0×104 m3/d的为Ⅰ类高产气井,对于这类高产气井按照经验法配产,其配产为无阻流量的1/6~1/4,配产调整后的4.5×104 m3/d更接近于无阻流量的1/6,配产合理。当开井生产时,井筒天然气的流速未达到临界携液流速,因此气井能够稳定生产较长时间产气而不出水(图 6)。
2.2 开发井类型对产水的控制作用水平井开发气,可增加气井的泄流面积、减小生产压差、降低水气比,最终实现延长无水或低水采气期,从而达到提高采收率[22-23]。经地质统计计算:盒8上段水平井产气量是直井的5.6倍,盒8下段水平井产气量是直井的3.3倍,山1段水平井产气量是直井的4.5倍(图 7)。单井累产水较直井有所提高:盒8上段水平井产水量是直井的2.5倍,盒8下段水平井产水量是直井的1.6倍,山1段水平井产水量是直井的1.9倍(图 8)。
本区采用水平井开发,水气比与直井相比有明显降低:盒8上段水平井是直井的0.45,盒8下段水平井是直井的0.48,山1段水平井是直井的0.41。说明本区采用水平井开发气藏,单井累产气较直井有较大提高,平均单井水气比降低一半以上,增产及避水效果明显。
3 结论1) 地质构造和生烃强度控制本区气水分布的宏观格局,高产气井绝大多数发育在近烃源岩的低洼部位或微幅构造高点上;天然气更易于在储集条件好的砂岩储层中的形成气层,本区气层储层物性孔隙度介于7%~14%之间,渗透率在(0.50~2.00)×10-3 μm2之间;泥岩隔层等因素造成气水分布的复杂化。
2) 苏东二区致密砂岩气藏产能开发方式影响很大。在气藏合理配产过程中,需要考虑压敏及速敏效应的影响。配产越低,对储层的伤害越小。实践表明,控制出水产量的生产井,生产动态优于放压生产井。
3) 投产时间、配产方式及生产压差等因素直接影响气井产能及气井出水类型。采用水平井开发,可增加气井的泄流面积、减小生产压差、提高产能、降低水气比,可以实现延长无水或低水采气期,从而提高采收率。
[1] |
付金华, 范立勇, 刘新社, 等. 苏里格气田成藏条件及勘探开发关键技术[J]. 石油学报, 2019, 40(2): 240-256. Fu Jinhua, Fan Liyong, Liu Xinshe, et al. Gas Accumulation Conditions and Key Exploration and Development in Technologies in the Sulige Gas Field[J]. Acta Petrolei Sinica, 2019, 40(2): 240-256. |
[2] |
何自新, 付金华, 席胜利, 等. 苏里格大气田成藏地质特征[J]. 石油学报, 2003, 24(2): 6-12. He Zixin, Fu Jinhua, Xi Shengli, et al. Geological Features of Reservoir Formation of Sulige Gas Field[J]. Acta Petrolei Sinica, 2003, 24(2): 6-12. |
[3] |
Yu Z, Sun L Y, Wu X N, et al. Characteristics and Controlling Factors of the Middle Array of Ordovician Majiagou Reservoirs to the West of Jingbian Gas Gield, Ordos Basin[J]. Marine Origin Petroleum Geology, 2012, 17(4): 49-56. |
[4] |
费世祥, 冯强汉, 安志伟, 等. 苏里格气田中区下石盒子组盒8段沉积相研究[J]. 天然气勘探与开发, 2014, 36(2): 17-22. Fei Shixiang, Feng Qianghan, An Zhiwei, et al. Sedimentary Facies of Shihezi 8 Member in Middlearea, Sulige Gasfield[J]. Natural Gas Exploration and Development, 2014, 36(2): 17-22. |
[5] |
朱志良, 张万, 张成功, 等. 苏里格气田苏59井区气水分布规律研究[J]. 重庆科技学院学报, 2015, 17(4): 1-5. Zhu Zhiliang, Zhang Wan, Zhang Chenggong, et al. Study on Gas-Water Distribution Law in Su 59 Well Area of Sulige Gas Field[J]. Journal of Chongqing University of Science and Technology, 2015, 17(4): 1-5. |
[6] |
代金友, 李建霆, 王宝刚, 等. 苏里格气田西区气水分布规律及其形成机理[J]. 石油勘探与开发, 2012, 39(5): 524-529. Dai Jinyou, Li Jianting, Wang Baogang, et al. Gas and Water Distribution in the Western Area of Sulige Gas Field and Its Formation Mechanism[J]. Petroleum Exploration and Development, 2012, 39(5): 524-529. |
[7] |
郭建林.苏里格气田相对高产富集储层分布规律研究[D].北京: 中国地质大学(北京), 2008. Guo Jianlin. Study on the Distribution of Relatively High-Yield and Enriched Reservoirs in the Sulige Gas Field[D]. Beijing: China University of Geosciences(Beijing), 2008. http://cdmd.cnki.com.cn/Article/CDMD-10491-2008068105.htm |
[8] |
李进步, 付斌, 赵忠军, 等. 苏里格气田致密砂岩气藏储层表征技术及其发展展望[J]. 天然气工业, 2015, 35(12): 35-41. Li Jinbu, Fu Bin, Zhao Zhongjun, et al. Characterization Technology for Tight Sandstone Gasreservoirs in the Sulige Gas Field, Ordos Basin, and Its Development Prospect[J]. Natural Gas Industry, 2015, 35(12): 35-41. |
[9] |
Yang H, Han J, Sun C, et al. A Development Model and Petroleum Exploration of Karst Reservoirs of Ordovician Yingshan Formation in the Northern Slope of Tazhong Palaeouplift[J]. Acta Petrolei Sinica, 2011, 32(2): 199-205. |
[10] |
金文辉.低渗透砂岩气藏气水分布规律研究[D].成都: 成都理工大学, 2013. Jin Wenhui.Study on Gas-Water Distribution Law of Low Permeability Sandstone Gas Reservoir[D]. Chengdu: Chengdu University of Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10616-1013263639.htm |
[11] |
管岩, 田国庆, 薛萧敏, 等. 储层非均质性对低渗透气藏富集规律的影响:以鄂尔多斯盆地苏里格气田苏X区盒8段为例[J]. 国外测井技术, 2019, 40(5): 48-51. Guan Yan, Tian Guoqing, Xue Xiaomin, et al. Influence of Reservoir Heterogeneity on Enrichment Law of Low Permeability Gas Reservoirs:Taking the P2h8 of Su X Block of Sulige Gas Field in Ordos Basin as an Example[J]. World Well Logging Technology, 2019, 40(5): 48-51. |
[12] |
窦伟坦, 刘新社, 杜涛. 鄂尔多斯盆地苏里格气田地层水成因及气水分布规律[J]. 石油学报, 2010, 31(5): 767-773. Dou Weitan, Liu Xinshe, Du Tao. Formation of Water and Gas-Water Distribution in the Sulige Gas Field, Ordos Basin[J]. Acta Petroleum Sinica, 2010, 31(5): 767-773. |
[13] |
李仲冬.榆林子洲地区山2段地层水成因及分布规律研究[D].成都: 成都理工大学, 2008. Li Zhongdong. Study on the Genesis and Distribution of Stratigraphic Water in the Shan 2 Member of the Yulinzizhou Area[D]. Chengdu: Chengdu University of Technology, 2008. |
[14] |
金文辉, 周文. 苏西盒8气藏气井产水成因剖析[J]. 物探化探计算技术, 2012, 34(6): 708-712. Jin Wenhui, Zhou Wen. Analysis of the Genesis of Gas Production in Suxi Box 8 Gas Reservoir[J]. Geophysical and Geochemical Exploration Technology, 2012, 34(6): 708-712. |
[15] |
Zhang Hualiang, Janson X, Liu Li, et al. Lithofacies, Diagenesis, and Reservoir Quality Evaluation of Wolfcamp Unconventional Succession in the Midland Basin, West Texas[M]. Houston Texas: AAPG Annual Convention and Exhibition, 2017.
|
[16] |
李洪玺. 榆林气田陕141井区气井生产动态特征分析[J]. 天然气工业, 2005, 25(12): 89-91. Li Hongxi. Analysis of Dynamic Characteristics of Gas Well Production in Shaan 141 Well Area of Yulin Gas Field[J]. Natural Gas Industry, 2005, 25(12): 89-91. |
[17] |
王蕾蕾, 何顺利, 代金友. 苏里格气田西区产水类型研究[J]. 天然气勘探与开发, 2010, 33(4): 41-44. Wang Leilei, He Shunli, Dai Jinyou. Research on Water Production Types in the West Area of Sulige Gas Field[J]. Natural Gas Exploration and Development, 2010, 33(4): 41-44. |
[18] |
袁恩来.大牛地气田老区山1气藏气水分布特征研究[D].成都: 成都理工大学, 2011. Yuan Enlai. Study on Gas-Water Distribution Characteristics of Shan 1 Gas Reservoir in the Old Area of Daniudi Gas Field[D]. Chengdu: Chengdu University of Technology, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10616-1011235417.htm |
[19] |
费世祥, 陈兴官, 靳锁宝, 等. 鄂尔多斯盆地苏里格气田有效砂体展布规律与开发方式研究:以苏东南区为例[J]. 天然气勘探与开发, 2018, 41(4): 55-61. Fei Shixiang, Chen Xingguan, Jin Suobao, et al. Distribution Laws and Development Modes of Effective Sandbodies in Sulige Gas Field:Examples from Southeast Sulige Block[J]. Natural Gas Exploration and Development, 2018, 41(4): 55-61. |
[20] |
孙恩慧, 杨威, 汪巍, 等. 底水油藏高含水期油水两相水平井产能预测[J]. 石油化工应用, 2019, 38(9): 21-26. Sun Enhui, Yang Wei, Wang Wei, et al. Application Productivity Analysis Method of Oil and Water Two-Phase Horizontal Well of High Water Cut Stage in Bottom Water Reservoir[J]. Petrochemical Industry, 2019, 38(9): 21-26. |
[21] |
曹海, 詹国卫, 余小群, 等. 深层页岩气井产能的主要影响因素:以四川盆地南永川区块为例[J]. 天然气工业, 2019, 39(增刊1): 118-122. Cao Hai, Zhan Guowei, Yu Xiaoqun, et al. Main Factors Affecting the Productivity of Deep Shale Gas Wells[J]. Natural Gas Industry, 2019, 39(Sup.1): 118-122. |
[22] |
彭神奇, 董文玉, 景琛. 大牛地气田大8-大10井区水平井产能影响因素[J]. 中外能源, 2019, 24(11): 51-57. Peng Shenqi, Dong Wenyu, Jing Chen. Influencing Factors of Horizontal Well Productivity in Da8-Da10 Well Block of Daniudi Gas Field[J]. Sino-Global Energy, 2019, 24(11): 51-57. |
[23] |
王羲. 低渗气藏分支水平井气水两相产能影响因素分析[J]. 钻采工艺, 2019, 42(3): 41-43. Wang Xi. Study on Gas-Water Produtivty of Multi-Lateral Horizontal Wells in Low Permibility Gas Reservoir and Facters[J]. Drilling & Production Technology, 2019, 42(3): 41-43. |