﻿ 连续摆动吊舱推进器水动力性能数值模拟
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2021, Vol. 42 Issue (2): 186-192  DOI: 10.11990/jheu.201908041 0

### 引用本文

HU Jian, ZHAO Wang, WANG Zibin, et al. Numerical simulation of the hydrodynamic performance of a pod propeller under azimuthing conditions[J]. Journal of Harbin Engineering University, 2021, 42(2): 186-192. DOI: 10.11990/jheu.201908041.

### 文章历史

Numerical simulation of the hydrodynamic performance of a pod propeller under azimuthing conditions
HU Jian , ZHAO Wang , WANG Zibin , WANG Ya'nan , ZHANG Weipeng
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Keywords: azimuthing condition    sliding grid    podded propulsor    oblique flow    propeller load    hydrodynamic performance    steady condition    trimmer

1 吊舱推进器模型及计算域 1.1 控制方程

 $\frac{{\partial \bar u}}{{\partial x}} + \frac{{\partial \bar v}}{{\partial y}} + \frac{{\partial \bar \omega }}{{\partial z}} = 0$ (1)

 $\rho \left[ {\frac{{\partial \overline {{u_i}} }}{{\partial t}} + \frac{{\partial \overline {{u_i}{u_j}} }}{{\partial {x_j}}}} \right] = - \frac{{\partial \bar p}}{{\partial {x_i}}} + \mu {\nabla ^2}{u_i} + \frac{\partial }{{\partial {x_j}}}( - \rho \overline {u{_i^\prime}u{_j^\prime}} )$ (2)

k的运输方程：

 $\frac{{\partial \rho k}}{{\partial t}} + \frac{\partial }{{\partial {x_j}}}[\rho {u_j}k - (\mu + {\sigma _k}{\mu _t})] = {\tau _{tij}}{S_{ij}} - {\beta ^*}\rho \omega k$ (3)

ω的运输方程：

 $\begin{array}{l} \frac{{\partial \rho \omega }}{{\partial t}} + \frac{\partial }{{\partial {x_j}}}\left[ {\rho {u_j}\omega - (\mu + {\sigma _\omega }{\mu _t})\frac{{\partial \omega }}{{\partial {x_j}}}} \right] = \\ {\kern 1pt} {\kern 1pt} {P_\omega } - \beta \rho {\omega ^2} + 2(1 - {F_1})\frac{{\rho {\sigma _\omega }}}{\omega }\frac{{\partial k\partial \omega }}{{\partial {x_j}\partial {x_j}}} \end{array}$ (4)

 ${\tau _{tij}} = 2{\mu _t}({S_{ij}} - {S_{nn}}{S_{ij}}/3) - 2\rho k{S_{ij}}/3$ (5)

 ${P_\omega } = 2\gamma \rho ({S_{ij}} - \omega {S_{nn}}{S_{ij}}/3){S_{ij}}$ (6)
1.2 几何模型

 Download: 图 1 吊舱和支架的几何参数 Fig. 1 Geometric parameters of pod and support
1.3 计算域划分

1.4 网格划分

 $\Delta y = L{y^ + }\sqrt {74} \cdot {({R_n})^{ - \frac{{13}}{{14}}}}$ (7)

2 网格和时间步验证

 $\left\{ \begin{array}{l} {K_{{\rm{T}}{{\rm{P}}_i}}} = {T_i}/\rho {n^2}{D^4}\\ {K_{{\rm{Q}}{{\rm{P}}_i}}} = {Q_{pi}}/\rho {n^2}{D^5}\\ {K_{{\rm{T}}{{\rm{U}}_i}}} = {F_i}/\rho {n^2}{D^4}\\ {K_{{\rm{QU}}}} = {Q_U}/\rho {n^2}{D^5} \end{array} \right.$ (8)

 $V = \frac{{{{\rm{ \mathsf{ π} }}^{\rm{2}}}}}{{12}}\cos \left( {0.3{\rm{ \mathsf{ π} }}t} \right)$ (9)

2.1 网格验证

2.2 时间步收敛性分析

 Download: 图 5 不同时间步长下螺旋桨y向力矩系数 Fig. 5 y direction moment coefficient of propeller at different time steps

 Download: 图 6 2种斜流角条件下的螺旋桨y向力矩系数 Fig. 6 y direction moment coefficient of propeller under the condition of two oblique flow angles
3 操纵工况载荷计算 3.1 进速系数对吊舱性能的影响

 Download: 图 7 螺旋桨x向推力系数 Fig. 7 x direction thrust coefficient of propeller
3.2 斜流工况

 Download: 图 9 瞬时回转工况和斜流工况中吊舱单元载荷对比 Fig. 9 Comparisons of pod unit loads under maneuvering and oblique flow conditions

 Download: 图 10 在z=0截面上吊舱单元在瞬时回转工况和稳定斜流工况的速度场对比 Fig. 10 Comparison of velocity field of pod unit in instantaneous rotary condition and steady oblique flow conditions at z=0
4 结论

1) 在稳定斜流工况下，螺旋桨x向载荷随斜流角增加而增加，y向载荷随斜流角增加而增加。

2) 在瞬时回转工况下，吊舱单元在向左和向右回转2种状态下的螺旋桨载荷不同，以y向推力系数为例，在0°斜流角时，向左转时其值为-0.01，向右转时其值为-0.04。

3) 在稳定斜流工况和瞬时回转工况下并不相同，以z向的推力系数为例，在0°斜流角时，稳态载荷为0.035，而吊舱单元在向左转时载荷为0.03，向右转时为0.044。

 [1] BAL Ş, GÜNER M. Performance analysis of podded propulsors[J]. Ocean engineering, 2009, 36(8): 556-563. DOI:10.1016/j.oceaneng.2009.01.016 (0) [2] 杨晨俊, 钱正芳, 马骋. 吊舱对螺旋桨水动力性能的影响[J]. 上海交通大学学报, 2003, 37(8): 1229-1233. YANG Chenjun, QIAN Zhengfang, MA Cheng. Influences of pod on the propeller performance[J]. Journal of Shanghai JiaoTong University, 2003, 37(8): 1229-1233. DOI:10.3321/j.issn:1006-2467.2003.08.022 (0) [3] 胡健, 黄胜, 马骋, 等. 船后吊舱推进器的水动力性能研究[J]. 哈尔滨工程大学学报, 2008, 29(3): 217-221. HU Jian, HUANG Sheng, MA Cheng, et al. Hydrodynamic behavior of a pod propeller in a ship's wake[J]. Journal of Harbin Engineering University, 2008, 29(3): 217-221. DOI:10.3969/j.issn.1006-7043.2008.03.003 (0) [4] LIU Pengfei, ISLAM M, VEITCH B. Unsteady hydromechanics of a steering podded propeller unit[J]. Ocean engineering, 2009, 36(12/13): 1003-1014. (0) [5] WU Chengsheng, ZHOU Decai, GAO Lei, et al. CFD computation of ship motions and added resistance for a high speed trimaran in regular head waves[J]. International journal of naval architecture and ocean engineering, 2011, 3(1): 105-110. DOI:10.2478/IJNAOE-2013-0051 (0) [6] SHAMSI R, GHASSEMI H. Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors[J]. International journal of naval architecture and ocean engineering, 2013, 5(2): 287-301. DOI:10.2478/IJNAOE-2013-0133 (0) [7] 王展智, 熊鹰, 孙海涛, 等. 直航和回转工况下吊舱推进器水动力性能数值计算方法研究[J]. 推进技术, 2016, 37(3): 593-600. WANG Zhanzhi, XIONG Ying, SUN Haitao, et al. Numerical study on hydrodynamic performance of podded propulsor in straight forward and steering conditions[J]. Journal of propulsion technology, 2016, 37(3): 593-600. (0) [8] 罗晓园. 全回转吊舱螺旋桨设计及其水动力性能研究[J]. 船舶工程, 2016, 38(2): 34-38. LUO Xiaoyuan. Design of full-rotating podded propeller and study on the characteristic of its hydrodynamics[J]. Ship engineering, 2016, 38(2): 34-38. (0) [9] REICHEL M. Manoeuvring forces on azimuthing podded propulsor model[J]. Polish maritime research, 2007, 14(2): 3-8. DOI:10.2478/v10012-007-0006-0 (0) [10] ISLAM M F, VEITCH B, LIU Pengfei. Experimental research on marine podded propulsors[J]. Journal of naval architecture and marine engineering, 2007, 4(2): 57-71. (0) [11] 赵大刚, 郭春雨, 苏玉民, 等. L型吊舱推进器直航及操舵工况水动力性能试验研究[J]. 上海交通大学学报, 2017, 51(7): 812-818. ZHAO Dagang, GUO Chunyu, SU Yumin, et al. Experimental study of L-type podded propulsors in straight forward motion and azimuthing conditions[J]. Journal of Shanghai JiaoTong University, 2017, 51(7): 812-818. (0) [12] 沈兴荣, 孙群, 卫燕清, 等. 舵角工况下吊舱推进器性能试验研究[J]. 中国造船, 2016, 57(3): 9-18. SHEN Xingrong, SUN Qun, WEI Yanqing, et al. Experimental investigation on hydrodynamic performance of podded propulsor under static azimuthing conditions[J]. Shipbuilding of China, 2016, 57(3): 9-18. (0) [13] 张志荣, 洪方文, 胡芳琳, 等. 吊舱推进器水动力性能CFD预报及其验证[C]//2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集. 杭州, 2008. ZHANG Zhirong, HONG Fangwen, HU Fanglin, et al. CFD prediction and verification of hydrodynamic performance of podded thrusters[C]//Conference on Ship Hydrodynamics and 30th Anniversary of China's Entry into ITTC. Hangzhou, 2008. (0) [14] 谢清程, 易小冬, 王根禄, 等. 吊舱式推进器操舵工况水动力试验研究[J]. 中国造船, 2008, 49(1): 19-24. XIE Qingcheng, YI Xiaodong, WANG Genlu, et al. Experimental investigation on hydrodynamic of azinuthing podded propulsor[J]. Shipbuilding of China, 2008, 49(1): 19-24. (0) [15] ALIMIRZAZADEH S, ROSHAN S Z, SEIF M S. Unsteady RANS simulation of a surface piercing propeller in oblique flow[J]. Applied ocean research, 2016, 56: 79-91. DOI:10.1016/j.apor.2016.01.003 (0) [16] 常欣, 梁宁, 王超, 等. 斜流中螺旋桨非定常水动力性能的数值分析[J]. 哈尔滨工程大学学报, 2017, 38(7): 1048-1055. CHANG Xin, LIANG Ning, CHANG Chao, et al. Numerical analysis of unsteady hydrodynamic performance of propeller in oblique flow[J]. Journal of Harbin Engineering University, 2017, 38(7): 1048-1055. (0) [17] 徐嘉启, 熊鹰, 王展智, 等. HCRSP推进器操舵工况空泡性能数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(12): 1873-1879. XU Jiaqi, XIONG Ying, WANG Zhanzhi, et al. Numerical simulation of cavitation performance of HCRSP in steering conditions[J]. Journal of Harbin Engineering University, 2018, 39(12): 1873-1879. (0) [18] 张维鹏, 胡健, 王晴, 等. 斜流与螺旋桨尾涡联合作用下舵表面脉动压力[J]. 哈尔滨工程大学学报, 2020, 41(8): 1123-1128. ZHANG Weipeng, HU Jian, Wang Qing, et al. Fluctuating pressure on the rudder under oblique flow and propeller wake[J]. Journal of Harbin Engineering University, 2020, 41(8): 1123-1128. (0) [19] 孙聪, 龚杰, 宋科委, 等. 斜流下导管桨水动力性能及流场特性数值分析[J]. 哈尔滨工程大学学报, 2020, 41(11): 1623-1628. SUN Cong, GONG Jie, SONG Kewei, et al. Numerical study on hydrodynamic performance and flow field characteristics of ducted propeller in drift[J]. Journal of Harbin Engineering University, 2020, 41(11): 1623-1628. (0) [20] DUBBIOSO G, MUSCARI R, DI MASCIO A. Analysis of the performances of a marine propeller operating in oblique flow[J]. Computers & fluids, 2013, 75: 86-102. (0) [21] LI H, HUANG Q, PAN G, et al. The transient prediction of a pre-swirl stator pump-jet propulsor and a comparative study of hybrid RANS/LES simulations on the wake vortices[J]. Ocean engineering, 2020, 203: 107224. (0)