«上一篇
文章快速检索     高级检索
下一篇»
  哈尔滨工程大学学报  2020, Vol. 41 Issue (2): 161-165  DOI: 10.11990/jheu.201905128
0

引用本文  

杨士莪. 利用逐次近似法对三维非规则弹性海底条件下声传播特点的分析[J]. 哈尔滨工程大学学报, 2020, 41(2): 161-165. DOI: 10.11990/jheu.201905128.
YANG Shi'e. Characteristics of sound propagation in sea with 3-dimensional irregular elastic bottom[J]. Journal of Harbin Engineering University, 2020, 41(2): 161-165. DOI: 10.11990/jheu.201905128.

基金项目

国防科技创新特区项目

通信作者

杨士莪, E-mail:yangshie@hrbeu.edu.cn

作者简介

杨士莪, 男, 教授, 博士生导师, 中国工程院院士

文章历史

收稿日期:2019-05-31
网络出版日期:2020-03-03
利用逐次近似法对三维非规则弹性海底条件下声传播特点的分析
杨士莪 1,2,3     
1. 哈尔滨工程大学 水声技术重点实验室, 黑龙江 哈尔滨 150001;
2. 海洋信息获取与安全工业和信息化部重点实验室(哈尔滨工程大学), 黑龙江 哈尔滨 150001;
3. 哈尔滨工程大学 水声工程学院, 黑龙江 哈尔滨 150001
摘要:针对三维非规则弹性海底条件下声传播问题,提出了采用逐次近似法的求解计算方法,并就一个特例给出相应的解析解。结果表明在倾斜海底条件下声传播的水平折射效应,和沿海底界面传播的界面波特点。
关键词逐次近似    三维    弹性海底    倾斜海底    水平折射    界面波    声传播    波动方程    
Characteristics of sound propagation in sea with 3-dimensional irregular elastic bottom
YANG Shi'e 1,2,3     
1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2. Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;
3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: Related formulae for solving sound propagation in sea with three-dimensional elastic bottom are given, and the result for one special case had been solved. It shows the horizontal diffraction of sound wave due to inclined bottom, and characteristics of the interface wave.
Keywords: successive approximation    three-dimensional(3D)    elastic ocean bottom    inclined bottom    horizontal diffraction    the interface wave    sound wave propagation    wave equation    

海区环境条件对声波在海中的传播规律有决定性影响,但复杂环境下声场所应满足的波动方程式很难求得相应的解析解,不便于进行理论分析,而利用抛物近似等数值方法又仅能适用于极为有限的条件,因此探索一种波动方程式近似解析解的方法,有实际的学术和应用意义。本文探讨利用逐次近似法,求取在复杂环境条件下波动方程式的近似解析解。

1 基本思路与公式

设在流体及弹性海底介质中的密度、纵波声速和弹性模量分别为ρ1, ρ2, c1, c2, λ, μ,并设水域中点声源位于(0, 0, zs)处所发出声波,在流体和弹性海底介质中的声场势函数分别为ϕ1, ϕ2, ψ,若取声场的时间因子为exp(-iωt),此时各类介质中声场所应满足的方程式将分别为:

$ {\nabla ^2}{\varphi _1} + k_1^2{\varphi _1} = - 4{\rm{ \mathsf{ π} }}\delta \left( {0,0,z - {z_s}} \right) $ (1)
$ {\nabla ^2}{\varphi _2} + k_2^2{\varphi _2} = 0 $ (2)
$ \nabla \times \nabla \times \mathit{\boldsymbol{\psi }} - {\chi ^2}\mathit{\boldsymbol{\psi }} = 0 $ (3)
$ \nabla \cdot \mathit{\boldsymbol{\psi }} = 0 $ (4)

其中k1k2χ分别为液态及海底介质中的纵波波数与弹性海底介质中的横波波数, 并均可为空间坐标(x, y, z)的某种函数。此时海底弹性介质中质点位移s将为$- {\rm{i}}\omega \mathit{\boldsymbol{s}} = \nabla {\phi _2} + \nabla \times \mathit{\boldsymbol{\psi }}$, 其应力张量为:

$ \frac{\mathit{\boldsymbol{T}}}{{ - {\rm{i}}\omega }} = \left[ {\begin{array}{*{20}{l}} {{\tau _{xx}}}&{{\tau _{xy}}}&{{\tau _{xz}}}\\ {{\tau _{yx}}}&{{\tau _{yy}}}&{{\tau _{yz}}}\\ {{\tau _{zx}}}&{{\tau _{zy}}}&{{\tau _{zz}}} \end{array}} \right] $ (5)

为书写简便,以下记:

$ \left\{ {\begin{array}{*{20}{l}} {{M_1} = \frac{{\partial {\varphi _2}}}{{\partial x}} + \frac{{\partial {\psi _z}}}{{\partial y}} - \frac{{\partial {\psi _y}}}{{\partial z}}}\\ {{M_2} = \frac{{\partial {\varphi _2}}}{{\partial y}} + \frac{{\partial {\psi _x}}}{{\partial z}} - \frac{{\partial {\psi _z}}}{{\partial x}}}\\ {{M_3} = \frac{{\partial {\varphi _2}}}{{\partial z}} + \frac{{\partial {\psi _y}}}{{\partial x}} - \frac{{\partial {\psi _x}}}{{\partial y}}} \end{array}} \right. $ (6)

则式(6)中个分量可以表示为:

$ \left\{ \begin{array}{l} {\tau _{xx}} = - \lambda k_2^2{\varphi _2} + 2\mu \frac{{\partial {M_1}}}{{\partial x}}\\ {\tau _{{\rm{yy}}}} = - \lambda k_2^2{\varphi _2} + 2\mu \frac{{\partial {M_2}}}{{\partial y}}\\ {\tau _{zz}} = - \lambda k_2^2{\varphi _2} + 2\mu \frac{{\partial {M_3}}}{{\partial z}}\\ {\tau _{yx}} = {\tau _{xy}} = \mu \left\{ {\frac{{\partial {M_1}}}{{\partial x}} + \frac{{\partial {M_2}}}{{\partial y}}} \right\}\\ {\tau _{zy}} = {\tau _{yz}} = \mu \left\{ {\frac{{\partial {M_2}}}{{\partial y}} + \frac{{\partial {M_3}}}{{\partial z}}} \right\}\\ {\tau _{zx}} = {\tau _{xz}} = \mu \left\{ {\frac{{\partial {M_3}}}{{\partial z}} + \frac{{\partial {M_1}}}{{\partial x}}} \right\} \end{array} \right. $ (7)

依照逐次近似法, 选取合适的小量ε, 将各坐标量改为:

$ X = \varepsilon x,Y = \varepsilon y,Z = z $ (8)

并将各声场势函数分别表示为以下ε的幂级数形式:

$ \left\{ {\begin{array}{*{20}{l}} {{\phi _1} = {{\rm{e}}^{{\rm{i}}\frac{{W\left( {X,Y} \right)}}{\varepsilon }}}\sum\limits_{m = 0}^\infty {{A_m}} (X,Y,Z){{({\rm{i}}\varepsilon )}^m}}\\ {{\phi _2} = {{\rm{e}}^{{\rm{i}}\frac{{W\left( {X,Y} \right)}}{\varepsilon }}}\sum\limits_{m = 0}^\infty {{B_m}} (X,Y,Z){{({\rm{i}}\varepsilon )}^m}}\\ {\vec \psi = {{\rm{e}}^{{\rm{i}}\frac{{W\left( {X,Y} \right)}}{\varepsilon }}}\sum\limits_{m = 0}^\infty {{\mathit{\boldsymbol{C}}_m}} (X,Y,Z){{({\rm{i}}\varepsilon )}^m}} \end{array}} \right. $ (9)

式中:W为各势函数的水平相位项;AmBmCm为各势函数不同阶垂直简正波的幅度项。由于考虑的是垂直简正波的水平相位, 因而在初步近似中对不同类型势函数其水平相位相同[1]

为书写简便计,以下记:

$ \left\{ {\begin{array}{*{20}{l}} {{f_x} = \frac{{\partial f}}{{\partial x}},{f_y} = \frac{{\partial f}}{{\partial y}}}\\ {\sigma = {{\left( {1 + f_x^2 + f_y^2} \right)}^{1/2}}}\\ {{w_x} = \frac{{\partial W}}{{\partial X}},{w_y} = \frac{{\partial W}}{{\partial Y}}} \end{array}} \right. $ (10)

函数W应满足一阶偏微分方程式:

$ {\left( {{w_x}} \right)^2} + {\left( {{w_y}} \right)^2} = {\xi ^2} $ (11)

该方程式不难利用一阶偏微分方程的全积分方法解出[2]。将式(4)代入各自对应的波动方程式,并分别写出各阶ε的同幂次项,最后依次可得:

$ \begin{array}{*{20}{c}} { - {\xi ^2}{A_0} + {A_{0zz}} + k_1^2{A_0} = - 4{\rm{ \mathsf{ π} }}\delta \left( {0,0,Z - {Z_s}} \right)}\\ { - {\xi ^2}{A_1} + {A_{1zz}} + k_1^2{A_1} = - {\xi ^2}{A_0} - 2\left( {{w_x}{A_{0x}} + {w_y}{A_{0y}}} \right)}\\ { \cdots \cdots ,} \end{array} $ (12)
$ \begin{array}{*{20}{c}} { - {\xi ^2}{B_0} + {B_{0zz}} + k_2^2{B_0} = 0}\\ { - {\xi ^2}{B_1} + {B_{1zz}} + k_2^2{B_1} = - {\xi ^2}{B_0} - 2\left( {{w_x}{B_{0x}} + {w_y}{B_{0y}}} \right)}\\ { \cdots \cdots ,} \end{array} $ (13)
$ \begin{array}{*{20}{c}} { - {\xi ^2}{\mathit{\boldsymbol{C}}_0} + {\mathit{\boldsymbol{C}}_{0zz}} + {\chi ^2}{\mathit{\boldsymbol{C}}_0} = 0}\\ { - {\xi ^2}{\mathit{\boldsymbol{C}}_1} + {\mathit{\boldsymbol{C}}_{1zz}} + {\chi ^2}{\mathit{\boldsymbol{C}}_1} = - {\xi ^2}{\mathit{\boldsymbol{C}}_0} - 2\left( {{w_x}{\mathit{\boldsymbol{C}}_{0x}} + {w_y}{\mathit{\boldsymbol{C}}_{0y}}} \right)}\\ { \cdots \cdots ,} \end{array} $ (14)
$ \begin{array}{*{20}{c}} {{w_x}{C_{x0}} + {w_z}{C_{y0}} + {C_{z0z}} = 0}\\ { \cdots \cdots ,} \end{array} $ (15)

取海底界面为z=f(x, y)曲面,记n为海底界面上任意点指向海水方向的单位法线矢量,则有:

$ \mathit{\boldsymbol{n}} = \frac{{\left( {{f_x}\mathit{\boldsymbol{i}} + {f_y}\mathit{\boldsymbol{j}} - \mathit{\boldsymbol{k}}} \right)}}{\sigma } $ (16)

而声场在海底界面处所应满足的边界条件将分别为[3]:

$ \nabla {\phi _1} \cdot \mathit{\boldsymbol{n}} = \left( {\nabla {\phi _2} + \nabla \times \mathit{\boldsymbol{\psi }}} \right) \cdot \mathit{\boldsymbol{n}} $ (17)
$ {\rm{i}}\omega {\rho _1}{\phi _1} = \left( {\mathit{\boldsymbol{T}} \cdot \mathit{\boldsymbol{n}}} \right) \cdot \mathit{\boldsymbol{n}} $ (18)
$ \left( {\mathit{\boldsymbol{T}} \cdot \mathit{\boldsymbol{n}}} \right) \times \mathit{\boldsymbol{n}} = 0 $ (19)

由各势函数所应满足的波动方程式,借助修正的W.K.B.方法,不难写出其零阶近似解(见附录),只是对ϕ1的解则不仅应该满足点源条件,还应满足在海面处其值为零的边界条件。而此时沿海底弹性界面传播的界面波将具有柱面波衰减规律。注意到当考虑海区有不完整水下声道时, 若声速梯度函数形式在声道轴上、下不同, 则ϕ1在声道轴上、下的具体表示也将有所不同, 取声道轴所在深度为h, 此时各零阶垂直简正波的解可表示为[4]

$ {A_0} = \left\{ \begin{array}{l} D{S_0}V_0^{1/3}{N_0},\;\;\;\;0 \le Z < {Z_s}\\ D{S_0}V_0^{1/3}{N_0} + P\left( {{V_0}} \right),\;\;\;\;{Z_s} \le Z < h\\ \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over D} {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over S} }_0}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} _0^{1/3}{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over N} }_0} + \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over P} \left( {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} }_0}} \right),\;\;\;\;h \le Z < f \end{array} \right. $ (20)

其中:

$ \begin{array}{*{20}{c}} {\left\{ {\begin{array}{*{20}{l}} {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over D} = D{{\rm{e}}^{{\rm{i}}\left( {{v_{0h}} - {v_{1h}}} \right)}}}\\ {{N_0} = {\rm{H}}_{1/3}^{(1)}\left( {{V_0}} \right){\rm{H}}_{1/3}^{(2)}\left( {{V_{00}}} \right) - {\rm{H}}_{1/3}^{(1)}\left( {{V_{00}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{V_0}} \right)}\\ {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over N} }_0} = {\rm{H}}_{1/3}^{(1)}\left( {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} }_0}} \right){\rm{H}}_{1/3}^{(2)}\left( {{V_{00}}} \right) - {\rm{H}}_{1/3}^{(1)}\left( {{V_{00}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} }_0}} \right)} \end{array}} \right.}\\ {\left\{ \begin{array}{l} P\left( {{V_0}} \right) = \frac{{{\rm{ \mathsf{ π} i}}}}{2}{\left( {\frac{{{V_0}{V_{0s}}}}{{{Q_0}{Q_{0s}}}}} \right)^{1/2}}{N_{0s}}\\ \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over P} \left( {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} }_0}} \right) = \frac{{{\rm{ \mathsf{ π} i}}}}{2}{{\rm{e}}^{{\rm{i}}\left( {{v_{0h}} - {v_{1h}}} \right)}}{\left( {\frac{{{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} }_0}{V_{0s}}}}{{{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over Q} }_0}{Q_{0{\rm{s}}}}}}} \right)^{1/2}}{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over N} }_{0{\rm{s}}}} \end{array} \right.} \end{array} $ (21)
$ {S_0} = \frac{{V_0^{1/6}}}{{Q_0^{1/2}}},{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over S} }_0} = \frac{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} _0^{1/6}}}{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over Q} _0^{1/2}}} $ (22)
$ {Q_0} = \sqrt {k_1^2 - {\xi ^2}} ,{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over Q} }_0} = \sqrt {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over k} _1^2 - {\xi ^2}} $ (23)
$ \left\{ {\begin{array}{*{20}{l}} {{V_0}(Z) = \int {{Q_0}} (Z){\rm{d}}Z}\\ {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} }_0}(Z) = \int {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over Q} }_0}} (Z){\rm{d}}Z} \end{array}} \right. $ (24)

并解出:

$ {B_0} = FS_0^\prime V{'}_0^{1/3}H_{1/3}^{(1)}\left( {V_0^\prime } \right),S_0^\prime = \frac{{V{'}_0^{1/6}}}{{Q{'}_0^{1/2}}} $ (25)
$ Q_0^\prime = \sqrt {k_2^2 - {\xi ^2}} ,V_0^\prime = \int {Q_0^\prime } {\rm{d}}Z $ (26)
$ {\mathit{\boldsymbol{C}}_0} = \mathit{\boldsymbol{G}}S_0^{\prime \prime }V_0^{\prime \prime 1/3}{\rm{H}}_{1/3}^{(1)}\left( {V_0^{\prime \prime }} \right),S_0^{\prime \prime } = \frac{{V_0^{\prime \prime 1/6}}}{{Q_0^{\prime \prime 1/2}}} $ (27)
$ Q_0^{\prime \prime } = \sqrt {{\chi ^2} - {\xi ^2}} ,V_0^{\prime \prime } = \int {Q_0^{\prime \prime }} {\rm{d}}Z $ (28)
$ {w_x}{G_{x0}} + {w_y}{G_{y0}} + Q_0^{\prime \prime }{G_{z0}} = 0 $ (29)

函数W应满足一阶偏微分方程式:

$ {\left( {\frac{{\partial W}}{{\partial X}}} \right)^2} + {\left( {\frac{{\partial W}}{{\partial Y}}} \right)^2} = {\xi ^2} $ (30)

该方程式不难利用一阶偏微分方程全积分方法解出[5]。将式(10)~(14)所给出的零阶解代入边界条件各式后,可得求解常数$\overset\frown{D}$, F, Gξ的方程组,其中ξ为边界条件矩阵系数行列式为零时的根。通常海水声速的水平梯度远小于其垂直声速梯度,故ε只是10-2~10-3左右量级,仅利用各势函数的零阶近似表达, 即可以获得对声场分布有一定参考价值的结果。在不过分影响所得规律的准确性条件下,为书写简便计,忽略含有Sz求偏导的各${\dot{S}}$项,且Hankel函数均用其渐近展开式表示, 并利用$G_{z}=-\frac{G_{x} w_{x}+G_{y} w_{y}}{Q^{\prime \prime}}$消去Gz, 可写出弹性介质中各应力张量表示, 及由边界条件形成的矩阵R的各项如下(忽略-iω因子):

$ {\tau _{xx}} = F{U_x} - 2\mu \frac{{{w_x}}}{{{Q^{\prime \prime }}}}{P_y} $ (31)
$ {\tau _{yy}} = F{U_y} + 2\mu \frac{{{w_y}}}{{{Q^{\prime \prime }}}}{P_x} $ (32)
$ {\tau _{zz}} = F\left( {\lambda k_2^2 + 2\mu {{Q'}^2}} \right) - 2\mu {Q^{\prime \prime }}\kappa $ (33)
$ {\tau _{xy}} = \mu F{\xi ^2} + \mu {Q^{\prime \prime }}\kappa $ (34)
$ {\tau _{yz}} = \mu F{u_y} + \mu \frac{{{w_x}}}{{{Q^{\prime \prime }}}}{P_y} $ (35)
$ {\tau _{zx}} = \mu F{u_x} - \mu \frac{{{w_y}}}{{{Q^{\prime \prime }}}}{P_x} $ (36)

其中:

$ \left\{ \begin{array}{l} {U_x} = \lambda k_2^2 + 2\mu w_x^2,\;\;\;\;{U_y} = \lambda k_2^2 + 2\mu w_y^2\\ \begin{array}{*{20}{l}} {{u_x} = {{Q'}^2} + w_x^2,{u_y} = {{Q'}^2} + w_y^2}\\ {{P_x} = {G_y}{w_x}{w_y} + {G_x}\left( {{Q^{\prime \prime 2}} + w_x^2} \right)}\\ {{P_y} = {G_x}{w_x}{w_y} + {G_y}\left( {{Q^{\prime \prime 2}} + w_y^2} \right)}\\ {\kappa = {G_x}{w_y} - {G_y}{w_x}} \end{array} \end{array} \right. $ (37)
$ {\Re _{11}} = \mathit{\Omega }\sin \left( {v - {v_0}} \right) - {Q_{0f}}\cos \left( {v - {v_0}} \right) $ (38)
$ {\Re _{12}} = \left( {{f_x}{w_x} + {f_y}{w_y} - Q_{0f}^\prime } \right) $ (39)
$ {\Re _{13}} = - \frac{1}{{{Q^{\prime \prime }}}}\left( {{{\mathit{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Omega } }}_2} - {{\bar \omega }_1}} \right) $ (40)
$ {\Re _{14}} = - \frac{1}{{{Q^{\prime \prime }}}}\left( {{{\mathit{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Omega } }}_1} - {{\bar \omega }_1}} \right) $ (41)
$ {\Re _{21}} = {\omega ^2}{\rho _1}\sin \left( {v - {v_0}} \right) $ (42)
$ {\Re _{22}} = \lambda k_2^2{\sigma ^2} + 2\mu {\zeta _ - }{\mathit{\Omega }^\prime } $ (43)
$ {\Re _{23}} = - \frac{{2\mu {w_y}{\zeta _ - }}}{{{Q^{\prime \prime }}}}\left( {\mathit{\Omega }_1^{\prime \prime } - \bar \omega _1^\prime } \right) $ (44)
$ {\Re _{24}} = - \frac{{2\mu {w_x}{\zeta _ + }}}{{{Q^{\prime \prime }}}}\left( {\mathit{\Omega }_2^{\prime \prime } - \bar \omega _2^\prime } \right) $ (45)
$ {\Re _{31}} = 0 $ (46)
$ {\Re _{32}} = \mu \left( {{\zeta _ - }{\vartheta ^\prime } + {F_x}\vartheta _1^\prime } \right) $ (47)
$ {\Re _{33}} = - \frac{{\mu {w_y}}}{{{Q^{\prime \prime }}}}\left\{ {{\gamma _1}{Q^{\prime \prime 2}} + {\zeta _1}w_x^2} \right\} $ (48)
$ {\Re _{33}} = - \frac{{\mu {w_y}}}{{{Q^{\prime \prime }}}}\left\{ {{\gamma _1}{Q^{\prime \prime 2}} + {\zeta _1}w_y^2} \right\} $ (49)
$ {\Re _{41}} = 0 $ (50)
$ {\Re _{42}} = \mu \left\{ {{\zeta _ - }{\vartheta ^{\prime \prime }} + {F_y}\vartheta _1^{\prime \prime }} \right\} $ (51)
$ {\Re _{43}} = - \frac{{\mu {w_y}}}{{{Q^{\prime \prime }}}}\left\{ {{\gamma _3}{Q^{\prime \prime 2}} - \left( {{f_y}{\zeta _ - } - {F_y}} \right)w_x^2} \right\} $ (52)
$ {\Re _{44}} = \frac{{\mu {w_x}}}{{{Q^{\prime \prime }}}}\left\{ {{\gamma _4}{Q^{\prime \prime 2}} + {\zeta _2}w_y^2} \right\} $ (53)

其中:

$ \mathit{\Omega } = {f_x}{w_x} + {f_y}{w_y},{\mathit{\Omega }^\prime } = {f_x}w_x^2 + {f_y}w_y^2 - {{Q'}^2} $
$ {{\mathit{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Omega } }}_1} = {w_x}\left( {{f_y}{w_y} - {Q^{\prime \prime }}} \right),{{\mathit{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Omega } }}_2} = {w_y}\left( {{f_x}{w_x} - {Q^{\prime \prime }}} \right) $
$ \mathit{\Omega }_1^{\prime \prime } = \left( {{f_x} - {f_y}} \right)w_x^2,\mathit{\Omega }_2^{\prime \prime } = \left( {{f_x} - {f_y}} \right)w_y^2 $
$ {{\bar \omega }_1} = {f_x}\left( {{Q^{\prime \prime 2}} + w_y^2} \right),{{\bar \omega }_2} = {f_y}\left( {{Q^{\prime \prime 2}} + w_x^2} \right) $
$ \bar \omega _1^\prime = \left( {{f_x} - 1} \right){Q^{\prime \prime 2}},\bar \omega _2^\prime = \left( {{f_y} + 1} \right){Q^{\prime \prime 2}} $
$ {\vartheta ^\prime } = {f_x}{Q^{\prime 2}} + w_x^2,\vartheta _1^\prime = {f_x}w_x^2 + {f_y}w_y^2 - {Q^{\prime 2}} $
$ {\vartheta ^{\prime \prime }} = {f_y}{Q^{\prime \prime 2}} + w_y^2,\vartheta _1^{\prime \prime } = {f_x}w_x^2 + {f_y}w_y^2 - {Q^{\prime \prime 2}} $
$ {\gamma _1} = f_x^2 - {f_x} - {\zeta _ + },{\gamma _2} = 4{f_x} + {f_y} - {f_x}{f_y} $
$ {\gamma _3} = {f_x}{f_y} - {f_x} - 4{f_y},{\gamma _4} = f_y^2 - {f_y} - {\zeta _ + } $
$ {\zeta _1} = f_x^2 + 2{f_x} - {f_x}{f_y} - 1, $
$ {\zeta _2} = f_y^2 + 2{f_y} - {f_x}{f_y} - 1 $
2 仿真算例

为进一步描述在不规则海区可能出现的声场分布特点,试考虑给定的如下海区环境条件:令ε=0.01, ω=200π, 取z坐标垂直向下,海面为Z=0平面,声源深度Zs=300 m, 声道轴所在深度h=1 000 m, 海水密度为ρ1=1 g/cm3, 水中声速随深度的变化规律如下:

海水中的声速:

$ {c_1} = \left\{ {\begin{array}{*{20}{l}} {\frac{{1500}}{{{c_{11}}}},}&{0 \le Z < 1000{\rm{m}}}\\ {\frac{{1500}}{{\sqrt {1.1} }}{c_{12}},}&{Z > 1000{\rm{m}}} \end{array}} \right. $

其中:

$ {c_{11}}(Z) = \sqrt {1 + {{10}^{ - 4}}Z[1 + 10\alpha (1000 - Z)]} $
$ \alpha = \sin \frac{{30}}{{1 + {{(X - 1)}^2}{{(Y - 2)}^2}/{{10}^4}}} $
$ {c_{12}}(Z) = \left[ {1 + 0.4 \times {{10}^{ - 4}}(Z - 1000)} \right] $

海底界面方程:

$ Z = 1200 + 1000\tanh (X/100 + Y/70) $

弹性介质密度:

$ {\rho _2} = 1.5(1 + 0.0005Z) $

弹性模量:

$ \lambda = 2 \times {10^4}\left( {1 + {{10}^{ - 5}}X + {{10}^{ - 5}}Y} \right), $
$ \mu = 3 \times {10^6}\left( {1 + {{10}^{ - 5}}X - {{10}^{ - 6}}Y} \right), $

按海区环境条件,可直接写出各简正波的零阶近似如下,对水中声场:

$ Z < 1000, $
$ \begin{array}{*{20}{c}} {{V_0} = \int {\sqrt {{{\left( {\frac{{\rm{ \mathsf{ π} }}}{{7.5}}} \right)}^2}{c_{11}} - {\xi ^2}{\rm{d}}Z} } = }\\ {\int {\sqrt {a + bZ + c{Z^2}} } {\rm{d}}Z = \frac{{(2cZ + b)}}{{4c}}\sqrt {a + bZ + c{Z^2}} + }\\ {\left\{ {\begin{array}{*{20}{l}} { - \frac{{4ac - {b^2}}}{{{{(2\sqrt { - c} )}^3}}}\arcsin \frac{{2cZ + b}}{{\sqrt {{b^2} - 4ac} }}}&{c < 0}\\ {\frac{{4ac - {b^2}}}{{{{(2\sqrt c )}^3}}}\ln (2\sqrt {cR} + 2cZ + b)}&{c > 0} \end{array}} \right.} \end{array} $

其中:

$ a = {\left( {\frac{{\rm{ \mathsf{ π} }}}{{7.5}}} \right)^2} - {\xi ^2}, $
$ b = {\left( {\frac{{\rm{ \mathsf{ π} }}}{{7.5}}} \right)^2}\left( {{{10}^{ - 4}} + \alpha } \right), $
$ c = - {\left( {\frac{{\rm{ \mathsf{ π} }}}{{7.5}}} \right)^2} \times {10^{ - 3}}\alpha ; $
$ Z > 1000,\;令\;u = 0.96 + 0.4 \times {10^{ - 4}}Z $
$ \begin{array}{l} {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over V} }_0} = \int {\sqrt {\frac{{0.1930}}{{{{\left( {0.96 + 0.4 \times {{10}^{ - 4}}Z} \right)}^2}}} - {\xi ^2}} } {\rm{d}}Z = \\ 5 \times {10^4}\int {\frac{{u{\rm{d}}u}}{{\sqrt {0.1930 - {\xi ^2}{u^2}} }}} = \\ - \frac{{2.5 \times {{10}^4}}}{{{\xi ^2}}}\sqrt {0.1930 - {\xi ^2}{{\left( {0.96 + 0.4 \times {{10}^{ - 4}}Z} \right)}^2}} \end{array} $

对海底介质中声场,因海底介质密度随深度依线性变化,故有:

$ \begin{array}{l} k_2^2 = \frac{{{\rho _2}{\omega ^2}}}{{\lambda + 2\mu }} - \frac{3}{4}{\left( {\frac{{\partial {\rho _2}}}{{\partial z}}/{\rho _2}} \right)^2} = \\ \frac{{0.0984\left( {1 + 5 \times {{10}^{ - 4}}Z} \right)}}{{1 + {{10}^{ - 2}}X - {{10}^{ - 3}}Y}} - \frac{{1.875 \times {{10}^{ - 7}}}}{{{{(1 + 0.0005Z)}^2}}} \end{array} $
$ \begin{array}{l} {\chi ^2} = \frac{{{\rho _2}{\omega ^2}}}{\mu } - \frac{3}{4}{\left( {\frac{{\partial {\rho _2}}}{{\partial z}}/{\rho _2}} \right)^2} = \\ \frac{{0.1974\left( {1 + 5 \times {{10}^{ - 4}}Z} \right)}}{{1 + {{10}^{ - 2}}X - {{10}^{ - 3}}Y}} - \frac{{1.875 \times {{10}^{ - 7}}}}{{{{(1 + 0.0005Z)}^2}}} \end{array} $

记:

$ \beta = \frac{{0.0984}}{{1 + {{10}^{ - 2}}X - {{10}^3}Y}}, $
$ \eta = \frac{{0.1974}}{{1 + {{10}^{ - 2}}X - {{10}^{ - 3}}Y}}, $
$ {u^\prime } = 1 + 5 \times {10^{ - 4}}Z; $
$ \begin{array}{l} V_0^\prime = 2000\int {\sqrt {\beta {u^{\prime 3}} - {\xi ^2}{u^{\prime 2}} - 1.875 \times {{10}^{ - 7}}} } \frac{{{\rm{d}}{u^\prime }}}{{{u^\prime }}} \approx \\ 2000\int {\left\{ {\sqrt {\beta {u^{\prime 3}} - {\xi ^2}{u^{\prime 2}}} - \frac{{0.938 \times {{10}^{ - 7}}}}{{\sqrt {{\beta ^2}{u^{\prime 3}} - {\xi ^2}{u^{\prime 2}}} }}} \right\}} \frac{{{\rm{d}}{u^\prime }}}{{{u^\prime }}} = \\ \frac{{4000}}{{3\beta }}{\left( {\beta {u^\prime } - {\xi ^2}} \right)^{\frac{3}{2}}} + \frac{{1.875 \times {{10}^{ - 4}}\sqrt {\beta {u^\prime } - {\xi ^2}} }}{{{\xi ^2}{u^\prime }}} + \\ \frac{{1.875 \times {{10}^{ - 4}}\beta }}{{{\xi ^3}}}\arctan \frac{{\sqrt {\beta {u^\prime } - {\xi ^2}} }}{\xi } \end{array} $

同理:

$ \begin{array}{l} V_0^{\prime \prime } = \frac{{4000}}{{3\eta }}{\left( {\eta {u^\prime } - {\xi ^2}} \right)^{3/2}} + \frac{{1.875 \times {{10}^{ - 4}}\sqrt {\eta {u^\prime } - {\xi ^2}} }}{{{\xi ^2}{u^\prime }}} + \\ \frac{{1.875 \times {{10}^{ - 4}}\eta }}{{{\xi ^3}}}\arctan \frac{{\sqrt {\eta {u^\prime } - {\xi ^2}} }}{\xi } \end{array} $

由于仿真算例所给定的环境条件比较复杂, 利用边界条件所建立的联立方程组直接解算ξ将十分困难, 为简便计, 以下将利用数值计算求得近似解, 为了能保证必要的解算结果的准确度, 将对不同的X, Y坐标值,依次进行逐段近似。

W取二次函数近似,设

$ W = {a_1}X + {a_2}Y + {a_3}{X^2} + {a_4}{Y^2} $

则有:

$ {w_x} = {a_1} + 2{a_3}X, $
$ {w_y} = {a_2} + 2{a_4}Y, $
$ {\xi ^2} = {\left( {{a_1} + 2{a_3}X} \right)^2} + {\left( {{a_2} + 2{a_4}Y} \right)^2} $

利用数值计算近似可得X=Y=0时, a1≈0.24, a2≈0.23;若取X=Y=5, 则求得a1≈0.115, a2≈0.225, a3≈0.001, a4≈0.002, 即此时由于海底系大陆坡, 故声传播开始向y方向偏转;若要求得更大范围声场的形式,则需要进行更多的数值计算。本文只满足于提出一种对复杂海区环境可用的分析方法,为保证文章篇幅的有限,将不再做更多的声场计算结果描述。

附录:不规则半声道海域声场分析

设声源位于(0, 0, zs)处, 声道轴深度为z=h, 声道轴以上海水声速为c0, 声道轴以下海水声速为c1, 海面为绝对软界面, c0, c1均为x, y, z的函数。依修正的W.K.B.方法由逐次近似法,取声场势函数如下:

$ {\varphi _1} = {{\rm{e}}^{{\rm{i}}\frac{{W(x,y)}}{\varepsilon }}}\sum\limits_{m = 0}^\infty {{A_m}} (x,y,z){({\rm{i}}\varepsilon )^m} $ (A1)

Am为不同阶局地简正波。不难直接写出其零阶形式解为:

$ A = \left\{ {\begin{array}{*{20}{l}} {{C_0}{{\left( {\frac{{{v_0}}}{{{Q_0}}}} \right)}^{1/2}}{l_0}}&{0 \le z < {z_s}}\\ {{{\left( {\frac{{{v_0}}}{{{Q_0}}}} \right)}^{1/2}}{E_1}}&{{z_s} < z < h}\\ {{{\left( {\frac{{{v_1}}}{{{Q_1}}}} \right)}^{1/2}}{E_2}}&{h < z} \end{array}} \right. $ (A2)

其中:

$ {Q_j} = \sqrt {k_j^2 - {\xi ^2}} ,{v_j} = \int {{Q_j}} {\rm{d}}z,{S_j} = \frac{{v_j^{1/6}}}{{Q_j^{1/2}}},j = 0,1; $
$ \begin{array}{*{20}{c}} {{l_0} = {\rm{H}}_{13}^{(1)}\left( {{v_0}} \right){\rm{H}}_{13}^{(2)}\left( {{v_{00}}} \right) - {\rm{H}}_{13}^{(1)}\left( {{v_{00}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_0}} \right)}\\ {{E_1} = {C_1}{\rm{H}}_{1/3}^{(1)}\left( {{v_0}} \right) + {C_2}{\rm{H}}_{1/3}^{(2)}\left( {{v_0}} \right)}\\ {{E_2} = {C_3}{\rm{H}}_{1/3}^{(1)}\left( {{v_0}} \right) + {C_4}{\rm{H}}_{1/3}^{(2)}\left( {{v_0}} \right)} \end{array} $ (A3)

由点源条件可得:

$ \begin{array}{*{20}{l}} {{C_0}\left\{ {{\rm{H}}_{1/3}^{(1)}\left( {{v_{0s}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{00}}} \right) - {\rm{H}}_{1/3}^{(1)}\left( {{v_{00}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right)} \right\} = }\\ {{C_1}{\rm{H}}_{1/3}^{(1)}\left( {{v_{0s}}} \right) + {C_2}{\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right)} \end{array} $ (A4)
$ \begin{array}{*{20}{l}} {{C_0}\left\{ {{\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{0s}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{00}}} \right) - {\rm{H}}_{1/3}^{(1)}\left( {{v_{00}}} \right){\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{0s}}} \right)} \right\} - }\\ {\left\{ {{C_1}{\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{0s}}} \right) + {C_2}{\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{{0_s}}}} \right)} \right\} = 2} \end{array} $ (A5)

由声道轴处声压与振速连续条件:

$ \begin{array}{*{20}{l}} {{S_{0h}}v_{0h}^{1/3}\left\{ {{C_1}{\rm{H}}_{1/3}^{(1)}\left( {{v_{0h}}} \right) + {C_2}{\rm{H}}_{1/3}^{(2)}\left( {{v_{0h}}} \right)} \right\} = }\\ {{S_{1h}}v_{1h}^{1/3}\left\{ {{C_3}{\rm{H}}_{1/3}^{(1)}\left( {{v_{1h}}} \right) + {C_4}{\rm{H}}_{1/3}^{(2)}\left( {{v_{1h}}} \right)} \right\}} \end{array} $ (A6)
$ \begin{array}{*{20}{l}} {{{\left( {{Q_{0h}}{v_{0h}}} \right)}^{1/2}}\left\{ {{C_1}{\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{0h}}} \right) + {C_2}{\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{0h}}} \right)} \right\} = }\\ {{{\left( {{Q_{1h}}{v_{1h}}} \right)}^{1/2}}\left\{ {{C_3}{\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{1h}}} \right) + {C_4}{\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{1h}}} \right)} \right\}} \end{array} $ (A7)

$\dot{S}_{0 s}, \dot{S}_{0 h}, \dot{S}_{1 h}$均远小于1上式中一律忽略不计,式(A4)乘以H-2/3(2)(vs)减去式(A5)乘H1/3(2)(vs),可得到:

$ \begin{array}{l} \left\{ {{C_0}{\rm{H}}_{1/3}^{(2)}\left( {{v_{00}}} \right) - {C_1}} \right\}{L_{0s}} = - 2{\left( {{Q_{0s}}{v_{0s}}} \right)^{ - 1/2}}{\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right)\\ {L_{0s}} = {\rm{H}}_{1/3}^{(1)}\left( {{v_{0s}}} \right){\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{0s}}} \right) - {\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{0s}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right)\\ {C_0}{\rm{H}}_{1/3}^{(2)}\left( {{v_{00}}} \right) = {C_1} - \frac{{{\rm{ \mathsf{ π} }}i}}{2}{\left( {\frac{{{v_{0s}}}}{{{Q_{0s}}}}} \right)^{1/2}}{\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right) \end{array} $ (A8)

式(A4)乘以H-2/3(1)(vs)减去式(A5)乘H1/3(1)(vs),可得到:

$ \begin{array}{*{20}{c}} {\left\{ {{C_0}{\rm{H}}_{1/3}^{(1)}\left( {{v_{00}}} \right) - {C_2}} \right\}{L_{0s}} = 2{{\left( {{Q_{0s}}{v_{0s}}} \right)}^{ - 1/2}}{\rm{H}}_{1/3}^{(1)}\left( {{v_{0s}}} \right)}\\ {{C_0}{\rm{H}}_{1/3}^{(1)}\left( {{v_{00}}} \right) = {C_2} + \frac{{{\rm{ \mathsf{ π} i}}}}{2}{{\left( {\frac{{{v_{0s}}}}{{{Q_{0s}}}}} \right)}^{1/2}}{\rm{H}}_{1/3}^{(1)}\left( {{v_{0s}}} \right)} \end{array} $ (A9)

同理利用Q0h=Q1h, 由声道轴上、下声场与法线振速连续条件可得:

$ {C_0}{\left( {\frac{{{v_{0h}}}}{{{Q_{0h}}}}} \right)^{1/2}}{l_{0h}} + \frac{{{\rm{ \mathsf{ π} }}i}}{2}{\left( {\frac{{{v_{0h}}{v_{0s}}}}{{{Q_{0h}}{Q_{0s}}}}} \right)^{1/2}}{l_{0hs}} = {\left( {\frac{{{v_{1h}}}}{{{Q_{1h}}}}} \right)^{1/2}}{E_{2h}} $ (A10)
$ {C_0}{\left( {{Q_{0h}}{v_{0h}}} \right)^{1/2}}{L_{0h}} + \frac{{{\rm{ \mathsf{ π} }}i}}{2}{\left( {\frac{{{Q_{0h}}{v_{0h}}{v_{0s}}}}{{{Q_{0s}}}}} \right)^{1/2}}{L_{0hs}} = {\left( {{Q_{1h}}{v_{1h}}} \right)^{1/2}}{E_{41h}} $ (A11)

式中:

$ {l_{0hs}} = {\rm{H}}_{1/3}^{(1)}\left( {{v_{0h}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right) - {\rm{H}}_{1/3}^{(1)}\left( {{v_{0s}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{0h}}} \right) $
$ {L_{0h}} = {\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{0h}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{00}}} \right) - {\rm{H}}_{1/3}^{(1)}\left( {{v_{00}}} \right){\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{0h}}} \right) $
$ {L_{0hs}} = {\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{0h}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right) - {\rm{H}}_{1/3}^{(1)}\left( {{v_{0s}}} \right){\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{0h}}} \right) $
$ {E_{41h}} = {C_3}{\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{1h}}} \right) + {C_4}{\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{1h}}} \right) $

利用Qh=Qh

联合式(A10)和式(A11)可得:

$ \begin{array}{*{20}{c}} {\left\{ {{C_0}{\rm{H}}_{1/3}^{(2)}\left( {{v_{00}}} \right) + \frac{{{\rm{ \mathsf{ π} }}i}}{2}{\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right){{\left( {\frac{{{v_{0s}}}}{{{Q_{0s}}}}} \right)}^{1/2}}} \right\} \cdot }\\ {\left. {{\rm{H}}_{1/3}^{(1)}\left( {{v_{0h}}} \right){\rm{H}}_{ - 2/3}^{(2)}\left( {{v_{1h}}} \right) - {\rm{H}}_{ - 2/3}^{(1)}\left( {{v_{0h}}} \right){\rm{H}}_{1/3}^{(2)}\left( {{v_{1h}}} \right)} \right\} = }\\ {{C_3}\frac{{ - 4i}}{{{\rm{ \mathsf{ π} }}\sqrt {{v_{0h}}{v_{1h}}} }}} \end{array} $ (A12)

可得:

$ {C_3} \approx \left\{ {{C_0}{\rm{H}}_{1/3}^{(2)}\left( {{v_{00}}} \right) + \frac{{{\rm{ \mathsf{ π} }}i}}{2}{\rm{H}}_{1/3}^{(2)}\left( {{v_{0s}}} \right)\sqrt {\frac{{{v_{0s}}}}{{{Q_{0s}}}}} } \right\}{{\rm{e}}^{{\rm{i}}\left( {{v_{oh}} - {v_{1h}}} \right)}} $

同理

$ {C_4} \approx - \left\{ {{C_0}{\rm{H}}_{1/3}^{(1)}\left( {{v_{00}}} \right) - \frac{{{\rm{ \mathsf{ π} }}i}}{2}{\rm{H}}_{1/3}^{(1)}\left( {{v_{0s}}} \right)\sqrt {\frac{{{v_{0s}}}}{{{Q_{0s}}}}} } \right\}{{\rm{e}}^{{\rm{i}}\left( {{v_{0h}} - {v_{1h}}} \right)}} $
参考文献
[1]
杨士莪. 准分层介质声场的近似算法[J]. 哈尔滨工程大学学报, 1997, 18(1): 1-9.
YANG Shi'e. Approximation of sound field in quasi-layered medium[J]. Journal of Harbin Engineering University, 1997, 18(1): 1-9. (0)
[2]
杨士莪. Theory of underwater sound propagation[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009.
YANG Shi'e. Theory of underwater sound propagation[M]. Harbin: Harbin Engineering University Press, 2009. (0)
[3]
BREKHOVSKIKH L M. Waves in layered media[M]. Beyer R T, trans. 2nd ed. New York: Academic Press, 1980. (0)
[4]
KELLER J B, PAPADAKIS J S. Wave propagation and underwater acoustics[M]. Berlin, Heidelberg: Springer, 1977: 1-13. (0)
[5]
GRADSHTEYN I S, RYZHIK L M. Table of integrals, series, and products[M]. 6th ed. Beijing: World Book Publishing Company, 2004. (0)