﻿ 液-液斜界面R-T失稳特征的实验研究
 高压物理学报   2018, Vol. 32 Issue (5): 054201.  DOI: 10.11858/gywlxb.20180512.

## 引用本文 [复制中英文]

[复制中文]
JIANG Rongbao, HUANG Xilong, ZOU Liyong, SHI Honghui, WU Jun. Experimental Investigation on the Characteristics of Unstability at Liquid-Liquid Tilted Interface Induced by Rayleigh-Taylor Instability[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 054201. DOI: 10.11858/gywlxb.20180512.
[复制英文]

### 文章历史

( 1. 浙江理工大学机械与自动控制学院, 浙江 杭州 310000
2. 中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室, 四川绵阳 621999 )

 ${h_{\rm{i}}} = {\alpha _{\rm{i}}}Ag{t^2}$ (1)

 $Z = \int {\int {g\left( t \right){\rm{d}}t'{\rm{d}}t} }$ (2)

Dimonte等[8]利用直线电机(Liner Electric Motor, LEM)实验研究了复杂加速度下不同密度比流体R-T不稳定性的发展过程，得出对于非恒定加速度且满足Ag＞0，扰动振幅

 ${h_{\rm{i}}} = 2{\alpha _{\rm{i}}}AS$ (3)

 $S = \frac{1}{2}{\left[ {\int {\sqrt g {\rm{d}}t} } \right]^2}$ (4)

1 实验方法 1.1 实验装置

 图 1 实验装置示意 Fig.1 Schematic of experimental apparatus

1.2 测试方法

 图 2 阴影法示意 Fig.2 Schematic of shadowgraph
2 实验结果与分析

 图 3 加速度曲线 Fig.3 Acceleration curves

 图 4 高压段初始压力为0.25 MPa时界面湍流混合区发展阴影图 Fig.4 Evolution of turbulent mixing zone when the initial pressure of the high pressure section is 0.25 MPa

 图 5 界面加速度分解 Fig.5 Acceleration decomposed at the interface

 图 6 高压段初始压力为0.40 MPa时界面湍流混合发展阴影图 Fig.6 Evolution of turbulent mixing zone when the initial pressure of the high pressure section is 0.40 MPa

 图 7 斜界面混合区参数定义 Fig.7 Parameter definiton of mixing zonein obilique interface
 图 8 混合区宽度W随时间的演化 Fig.8 Evolution of width of turbulentmixing zone over time

 图 9 界面倾角γ随时间的演化 Fig.9 Evolution of obliquity of turbulentmixing zone over time
3 结论

 [1] SHARP D H. An overview of Rayleigh-Taylor instability[J]. Physica D:Nonlinear Phenomena, 1984, 12(1): 3-18. [2] ANDRONOV V A, BAKHRAKH S M, MOKOHOV V N, et al. Effect of turbulent mixing on the compression of laser targets[J]. JETP Letters, 1979, 29(1): 56-59. [3] ALON U, HECHT J, OFER D, et al. Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios[J]. Physical Review Letters, 1995, 74(4): 534-536. DOI:10.1103/PhysRevLett.74.534. [4] DIMONTE G. Nonlinear evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J]. Physics of Plasmas, 1999, 6(5): 2009-2015. DOI:10.1063/1.873491. [5] ATZENI S, MEYER-TER-VEHN J. 惯性聚变物理[M]. 沈百飞, 译. 北京: 科学出版社, 2008: 198-253. ATZENI S, MEYER-TER-VEHN J. The physics of inertial fusion[M]. Translated by SHEN B F. Beijing: Science Press, 2008: 198-253. [6] RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceeding of the London Mathematical Society, 2009, 14(1): 200-207. [7] READ K I. Experiment investigation of turbulent mixing by Rayleigh-Taylor instability[J]. Physica D:Nonlinear Phenomena, 1984, 12(1): 45-58. [8] DIMONTE G, SCHNEIDER M. Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories[J]. Physics of Fluids, 2000, 12(2): 304-321. DOI:10.1063/1.870309. [9] DIMONTE G, RAMAPRABHU P, ANDREWS M. Rayleigh-Taylor instability with complex acceleration history[J]. Physical Review E, 2007, 76(4): 1-6. [10] WADDELL J T, NIEDERHAUS C E, JACOBS J W. Experimental study of the Rayleigh-Taylor instability:low atwood number liquid system with single-mode initial perturbations[J]. Physics of Fluids, 2001, 13(5): 1263-1273. DOI:10.1063/1.1359762. [11] HOLFORD J M, DALZIEL S B, YOUNGS D. Rayleigh-Taylor instability at a tilted interface in a laboratory experiments and numerical simulations[J]. Laser and Particle Beams, 2003, 21(4): 419-423. [12] MCFARLAND J A, GREENOUGH J A, RANJAN D. Investigation of the initial perturbation amplitude for the inclined interface Richtmyer-Meshkov instability[J]. Physica Scripta, 2013, 155(21): 14-20. [13] MCFARLAND J A, REILLY D, CREEL S, et al. Experimental investigation of the inclined interface Richtmyer-Meshkov instability before and after reshock[J]. Experiments in Fluids, 2014, 55(3): 16-40. [14] DIMONTE G, YOUNGS D L, DIMITS A. A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations:the alpha-group collaboration[J]. Physics of Fluids, 2004, 16(5): 1668-1693. DOI:10.1063/1.1688328. [15] 黄文斌, 邹立勇, 刘金宏, 等. 初始扰动对于气液界面Rayleigh-Taylor不稳定性发展的影响[J]. 实验流体力学, 2010, 24(3): 39-41. DOI:10.3969/j.issn.1672-9897.2010.03.008. HUANG W B, ZOU L Y, LIU J H, et al. Effects of initial perturbations on Rayleigh-Taylor instability growth at gas liquid interface[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 39-41. DOI:10.3969/j.issn.1672-9897.2010.03.008. [16] 施红辉, 卓启威. Richtmyer-Meshkov不稳定性流体混合区发展的实验研究[J]. 力学学报, 2007, 39(3): 417-421. DOI:10.3321/j.issn:0459-1879.2007.03.016. SHI H H, ZHUO Q W. Evolution of the fluid mixing zone in Richtmyer-Meshkov instability at a gas/liquid interface[J]. Chinese Journal of the Theoretical and Applied Mechanics, 2007, 39(3): 417-421. DOI:10.3321/j.issn:0459-1879.2007.03.016. [17] 刘金宏, 谭多望, 张旭, 等. 斜界面Rayleigh-Taylor不稳定性混合实验研究[J]. 高压物理学报, 2012, 26(6): 688-690. LIU J H, TAN D W, ZHANG X, et al. Experimental investigation of mixing at tilted interface induced by Rayleigh-Taylor instability[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 688-690. [18] YOUNGS D L. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability[J]. Physica D:Nonlinear Phenomena, 1991, 3(12): 586-589.
Experimental Investigation on the Characteristics of Unstability at Liquid-Liquid Tilted Interface Induced by Rayleigh-Taylor Instability
JIANG Rongbao 1, HUANG Xilong 2, ZOU Liyong 2, SHI Honghui 1, WU Jun 2
( 1. Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310000, China;
2. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Physics, CAEP, Mianyang 621999, China )
Abstract: In this research, we experimentally investigated the characteristics of the turbulent mixing zone induced by Rayleigh-Taylor (R-T) instability under different accelerations.We used the high-speed shadowgraph to study the evolution of the interface composed with the silicone oil/potassium iodide solution, and analyzed the width of the mixing zone and the obliquity of the interface quantitatively.According to the experimental results, the difference in the evolution of width between horizontal interface and oblique interface exhibits mainly in late stage, and the evolution law is basically same with that in the early and middle stages.There are two different trends in the evolution of the interfacial obliquity.The interfacial obliquity increases with time parabolicaly at first, and then increases linearly.As a result, the fluid interface turns over in the later stage of evolution.There is a competitive relationship between the turbulent mixing induced by R-T instability and K-H instability respectively.
Keywords: Rayleigh-Taylor instability    turbulent mixing    shadowgraph method    titled interface