﻿ 爆炸反应装甲防护包络的数值仿真
 高压物理学报   2018, Vol. 32 Issue (5): 055106.  DOI: 10.11858/gywlxb.20180523.

## 引用本文 [复制中英文]

[复制中文]
SUN Jianjun, LI Rujiang, WAN Qinghua, ZHANG Ming, YANG Yue, SUN Miao. Numerical Simulation of Protective Envelope of Explosive Reaction Armor[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055106. DOI: 10.11858/gywlxb.20180523.
[复制英文]

### 文章历史

( 中北大学环境与安全工程学院, 山西 太原 030051 )

1 实验 1.1 实验装置

 图 1 实验布局 Fig.1 Experimental setup
1.2 弹着点选取

 图 2 弹着点示意 Fig.2 Schematic of hit points
1.3 实验结果

 图 3 实验结果 Fig.3 Experimental results
2 数值仿真与分析 2.1 模型的建立

 图 4 数值计算模型 Fig.4 Simulation model
2.2 材料参数及算法选择

2.3 数值仿真结果与分析 2.3.1 数值计算方法验证

 图 5 仿真与实验结果对比 Fig.5 Comparison between simulation and experimental results

2.3.2 纵向中轴线不同弹着点处的抗弹性能分析

 图 6 纵向中轴线不同弹着点处反应装甲对射流的干扰(t=89 μs) Fig.6 Interference of ERA to jet at different impact points on longitudinal axis (t=89 μs)

 图 7 纵向中轴线不同弹着点处射流在后效靶侵彻的模拟结果 Fig.7 Simulated witness targets penetrated by jet at different impact points on longitudinal axis

 图 8 纵向抗弹性能变化 Fig.8 Change of longitudinal anti-elastic performance
2.3.3 水平方向上不同弹着点处的抗弹性能分析

 图 9 水平方向不同弹着点处反应装甲对射流的干扰(t=89 μs) Fig.9 Interference of ERA to jet at different impact points in horizontal direction (t=89 μs)

 图 10 水平方向不同弹着点处射流时后效靶侵彻的模拟结果 Fig.10 Simulated witness targets penetrated by jet at different impact points in horizontal direction

 图 11 水平方向抗弹性能变化 Fig.11 Change of horizontal anti-elastic performance
2.3.4 非中心区域的抗弹性能分析

 图 12 非中心区与纵向中轴线的抗弹性能对比 Fig.12 Comparison of anti-elastic performance between non-central zone and longitudinal axis
2.3.5 边界区域的抗弹性能分析

3 有效防护区分析

 图 13 ERA防护结构示意图 Fig.13 Schematic of ERA protective structure

4 结论

 [1] MAYSELESS M, EHRLICH Y, FALCOVITZ Y, et al. Interaction of shaped charge jets with reactive armor[C]//Proceedings of the 8th International Symposium on Ballistics. Orlando, Florida, 1984, 7: 15-20. [2] HELD M, MAYSELESS M, ROTOTAEV E. Explosive reactive armor[C]//17th International Symposium on Ballistic. Midrand, South Africa, 1998: 32-40. [3] HELD M. Momentum theory of explosive reactive armours[J]. Propellants, Explosives, Pyrotechnics, 2001, 26(2): 91-96. DOI:10.1002/(ISSN)1521-4087. [4] HELD M. Stopping power of ERA sandwiches as a function of explosive layer thickness or plate velocities[J]. Propellants, Explosives, Pyrotechnics, 2006, 31(3): 234-238. DOI:10.1002/(ISSN)1521-4087. [5] MAYSELESS M. Effectiveness of explosive reactive armor[J]. Journal of Applied Mechanics, 2011, 78(5): 051006. DOI:10.1115/1.4004398. [6] ISMAIL M M, RAYAD A M, ALWANY H, et al. Optimization of performance of explosive reactive armors[C]//21st International Symposium on Ballistics. Adelaide, Australia, 2004: 227-232. [7] 吴成, 蒋建伟, 冯顺山, 等. 爆炸反应装甲运动规律的数值仿真及研究[J]. 兵工学报, 2002, 23(1): 35-38. WU C, JIANG J W, FENG S S, et al. A study on the moving features of explosive reactive armor by numerical simulation and experiments[J]. Acta Armamentarii, 2002, 23(1): 35-38. [8] 甄金朋. 平板装药飞板运动规律的数值模拟及研究[D]. 太原: 中北大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10110-2010262860.htm [9] 刘宏伟, 夏松林, 赵靖. V形反应装甲与射流作用过程分析[D]. 兵器材料科学与工程, 2011(4): 20-22. LIU H W, XIA S L, ZHAO J. Interaction process between jet and V-shaped double ERA[J]. Ordnance Material Science and Engineering, 2011(4): 20-22. http://www.cqvip.com/QK/95120X/201104/38832989.html [10] 武海军, 陈利, 王江波, 等. 反应装甲对射流干扰的数值模拟研究[J]. 北京理工大学学报, 2006, 26(7): 565-568. WU H J, CHEN L, WANG J B, et al. Numerical simulation on reactive armor disturbing jet[J]. Transactions of Beijing Institute of Technology, 2006, 26(7): 565-568.
Numerical Simulation of Protective Envelope of Explosive Reaction Armor
SUN Jianjun , LI Rujiang , WAN Qinghua , ZHANG Ming , YANG Yue , SUN Miao
( School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China )
Abstract: In this work, the three-dimensional finite element analysis software LS-DYNA was used to numerically simulate the ballistic performance of explosive reactive armor at different impact points, and the comparative experiments were also carried out in order to obtain the protective envelope of the explosive reaction armor, i.e., the ballistic performance at different impact points on the contact surface between the explosive reaction armor and the jet.The results show that the simulation results agree well with the experimental data.Studies indicate that there is a large difference in the ballistic performance at different impact points.Instead of the responsive armor's symmetrical center and its vicinity, the area with better ballistic performance is located 22.7 and 46.9 times of the jet diameter away from the bottom of the explosive reaction armor.The effective ballistic performance area of the explosive reaction armor accounts for approximately 65.8%, and its ballistic performance increased by about 37.5% compared to that of the border area.Furthermore, the protective capability at the lower part of the reaction armor is better than that at the upper part.
Keywords: explosive reactive armor    impact point    protective envelope    anti-ballistic performance