文章快速检索    
  国际放射医学核医学杂志  2018, Vol. 42 Issue (3): 274-279.  DOI: 10.3760/cma.j.issn.1673-4114.2018.03.015
0

引用本文 

杜芬, 胡珊, 梁梦, 程艳. 18F-FDG PET/CT显像在甲状腺偶发瘤良恶性诊断中的研究进展[J]. 国际放射医学核医学杂志 , 2018, 42(3): 274-279. DOI: 10.3760/cma.j.issn.1673-4114.2018.03.015
Du Fen, Hu Shan, Liang Meng, Cheng Yan. Development in the diagnosis of benign and malignant thyroid incidentalomas by 18F-FDG PET/CT imaging[J]. Int J Radiat Med Nucl Med, 2018, 42(3): 274-279. DOI: 10.3760/cma.j.issn.1673-4114.2018.03.015

通信作者

程艳, Email:chengyan_1976@163.com

文章历史

收稿日期:2017-10-24
18F-FDG PET/CT显像在甲状腺偶发瘤良恶性诊断中的研究进展
杜芬1, 胡珊1, 梁梦1, 程艳1,2     
1. 030001 太原, 山西医科大学第一医院核医学科;
2. 030001 太原, 山西省分子影像精准诊疗协同创新中心
摘要:PET/CT作为一种集功能代谢及解剖形态信息于一身的影像学诊断方法,在疾病良恶性诊断、肿瘤分期与再分期和疗效与预后评价中的应用越来越广泛。目前,甲状腺偶发瘤的发现愈来愈多,引起了临床医师的密切关注。笔者分别就PET/CT检查中发现的局灶性及弥漫性甲状腺偶发瘤的发生率、恶性率、良恶性病变的影像学特征及研究新进展等方面进行综述。
关键词: 甲状腺肿瘤     氟脱氧葡萄糖F18     正电子发射断层显像计算机体层摄影术    
Development in the diagnosis of benign and malignant thyroid incidentalomas by 18F-FDG PET/CT imaging
Du Fen1, Hu Shan1, Liang Meng1, Cheng Yan1,2     
1. Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China;
2. Molecular Imaging Precision Medicine Collaborative Innovation Center of Shanxi Province, Taiyuan 030001, China
Corresponding author: Cheng Yan, Email:chengyan_1976@163.com
Abstract: PET/CT is an imaging technique that integrates the functional metabolism and anatomical morphological information. This technology has been widely applied in differentiating malignant and benign tumors, cancer staging and restaging, and monitoring treatment response and prognosis. PET/CT has attracted considerable attention among clinicians because of the increasing number of thyroid incidentalomas. This article presents a review of the incidence, malignant rate, imaging features, and latest development of focal and diffuse thyroid incidentalomas using PET/CT imaging studies.
Key words: Thyroid neoplasms     Fluorodeoxyglucose F18     Positron emission tomography computed tomography    

“偶发瘤”最初特指偶然发现的肾上腺增生性病变,现适用于全身各个部位,指通过影像学检查(超声、CT、MRI、PET/CT等)偶然发现的病变[1]。甲状腺偶发瘤(thyroid incidentalomas,TI)指患者因非甲状腺疾病行影像学检查时意外发现的甲状腺病变[2],于PET/CT显像中表现为甲状腺内局限性或弥漫性18F-FDG摄取增高[3]。正常甲状腺18F-FDG摄取低且均匀,平均SUV为1.31±0.30[4],这主要与甲状腺的组织学特征有关,正常甲状腺由3×106个直径约200 μm的滤泡所组成,每个滤泡由单层立方上皮细胞及胶质构成,且胶质体积是上皮细胞的3倍,故18F-FDG摄取较其他上皮细胞成分多、葡萄糖代谢速度相同的软组织低[5]。随着PET/CT在肿瘤诊断、分期与再分期和疗效监测与评价中的广泛应用,TI的发病率也随之提升[6-7]。据2015年中国肿瘤数据统计结果显示,甲状腺癌是女性中发展最快的六类肿瘤之一[8],TI也可能为促进因素之一。目前PET/CT在甲状腺中主要用于分化型甲状腺癌术后全身碘扫描阴性及甲状腺球蛋白明显增高等生化反应不全的患者[9],PET/CT显像阳性提示甲状腺癌细胞可能失去了摄碘能力,处于恶性程度更高的失分化状态[10]。另外Pattison等[11]认为临床不干预18F-FDG摄取阳性的TI是潜在恶性肿瘤患者的死亡预测因素。因此我们应高度重视18F-FDG PET/CT检查中发现的TI,特别是良恶性的诊断。

根据18F-FDG摄取情况TI可分为局灶性甲状腺偶发瘤(focal thyroid incidentalomas,fTI)和弥漫性甲状腺偶发瘤(focal and diffuse thyroid incidentalomas,dTI)两种类型。fTI指甲状腺一叶内单发或多发的局限性18F-FDG摄取增高灶,dTI指甲状腺双叶弥漫性18F-FDG摄取增高[4]

1.1 fTI的发生率及恶性率

既往研究报道fTI的发生率为0.74%~5.20%,恶性率达14.00%~55.00%[12-16]。各项研究中发生率及恶性率相差较大的原因可能是:①研究对象的选择不一致,如Lee等[13]选择的是肿瘤(宫颈癌)患者,Chen等[14]选择的是健康人群,Ho等[16]的研究中包括两类人群,这3项研究的发生率分别为5.2%、1.2%及3.7%,恶性率分别为23.5%、14.0%及14.0%。Choi等[17]认为恶性病史者较健康者的发生率及恶性率高,恶性病史是第二恶性疾病(罹患第二原发癌)的风险因素;但Bae等[2]研究结果与其相反。②研究诊断标准不同,部分以细针穿刺细胞学检查(fine needle aspiration cytology,FNAC)或病理结果为准,部分在前有基础上增加了超声检查结果。且既往研究[6, 17-22]发现恶性fTI中95.9%为原发肿瘤,以甲状腺乳头状癌(papillary thyroid carcinoma,PTC)最常见,约占84.0%~89.0%,髓样癌及未分化癌罕见;转移性癌较少见,少于1%,其中约3.9%~24.2%的转移性癌于尸检中发现,常来源于肾细胞癌、乳腺癌、肺癌、胃癌、食管癌及黑色素瘤等[18, 23-26]。甲状腺血运丰富,其转移性癌的发生率应较高,但事实并非如此,原因可能是:①高碘及高氧环境抑制了肿瘤细胞的生长;②甲状腺血流速度快、缺乏过滤功能,抑制了肿瘤细胞与甲状腺的接触。良性fTI主要包括甲状腺嗜酸性细胞瘤、滤泡腺瘤、结节样增生、亚急性甲状腺炎、甲状旁腺腺瘤等[17, 27-29]

超声检查中甲状腺结节的发生率达19.0%~46.0%,恶性率为1.5%~10.0%[17];非18F-FDG PET/CT核医学检查(99Tcm-MIBI、99Tcm-替曲膦等)中,TI的发生率为0.14%,恶性率为16.10%[18];而前文提及的PET/CT中fTI恶性率为14%~55%[12-16],相对其他检查高;同时有研究提示PET/CT诊断恶性疾病的准确率达93%,而PET的准确率为78%~85%[9]。主要因PET/CT集功能显像及解剖定位于一身,不仅可提供病灶的分子代谢水平,还能够对高代谢病灶准确定位并能大致提供病灶内部密度、边界、与邻近组织的关系等信息,更有利于病变良恶性的诊断。

1.2 SUVmax与fTI

众多研究显示,恶性fTI SUVmax较良性高[2, 20-21, 30]。Bae等[2]、Demir等[20]和Agrawal等[30]分别以SUVmax=3.5、5.3、9.1为cut-off值来鉴别良恶性,其诊断灵敏度分别为80.0%、82.0%、81.6%,特异度分别为66.1%、65.0%、100%,但两者间SUVmax均有部分重叠。在上述研究中SUVmax的cut-off值相差较大,纳入样本量也较小。随后Qu等[31]对1292例患者进行Meta分析,结果显示恶性fTI SUVmax较良性高,根据239例患者提供的具体SUVmax分析得出以SUVmax=3.3为cut-off值,而且SUVmax愈高,恶性可能性愈大,其诊断灵敏度为82.4%,但两者间SUVmax存在重叠,特异度仅为36.8%。而Bertagna等[32]通过综述分析认为无安全cut-off值;Pattison等[33]、Makis等[34]和Hagenimana等[35]的研究也得出类似结果。此外,Bonabi等[22]和Yaylali等[36]回顾性研究结果提示良恶性fTI间SUVmax差异无统计学意义。因此SUVmax能否用于fTI的良恶性鉴别及是否存在安全cut-off值仍存在争议。可能原因在于SUVmax为半定量参数,非恶性病变所特有,与细胞增殖能力(葡萄糖转运体数量)、血流量及病灶直径呈正相关[37],另外在甲状腺嗜酸性细胞瘤中,因其线粒体丰富而表现为18F-FDG高摄取,在良性fTI中也会出现高SUVmax [7, 20, 27],导致良恶性间SUVmax存在重叠。虽然以上各研究得出SUVmax cut-off值相差较大甚至认为无安全cut-off值存在,但多数研究皆表明SUVmax对fTI良恶性的诊断有较大临床价值。

PET/CT双时相显像法对良恶性病变的鉴别诊断具有较大临床价值,特别是对肺癌和结直肠癌的诊断。Lee等[37]采用双时相显像法来鉴别fTI的良恶性,结果发现以SUVmax延迟=3.9及清除指数RI=[(SUVmax延迟-SUVmax常规)/SUVmax常规]×100%=12.5%为cut-off值时,诊断fTI恶性的灵敏度分别为87.5%、88.9%,特异度分别为75.0%、66.3%;SUVmax延迟减低或保持不变,良性可能性大;并认为RI的诊断效能更高。D′Souza等[38]也进行了类似研究,结果发现恶性fTI较良性SUVmax延迟明显增高;以RI=10%为cut-off值,诊断灵敏度及特异度分别为84.6%与85.6%。两项研究结果均表明PET/CT双时相显像法对fTI良恶性的诊断具有较大价值。而Kim等[39]和Hsiao等[40]研究结果显示SUVmax常规、SUVmax延迟及RI三者在fTI良恶性诊断之间的差异无统计学意义;Bertagna等[32]通过对大量研究的综述也得出类似结论。这可能由于SUVmax延迟的变化与肿瘤的分化程度有关:分化程度差者,SUVmax延迟明显升高;分化程度好者,SUVmax延迟不变甚至下降[41]。而上述内容提及的恶性fTI中,最常见类型为PTC,其分化程度好,PET/CT双时相显像法的应用可能会受限。因此目前尚未推荐使用PET/CT双时相显像法来鉴别fTI的良恶性。

除应用双时相显像外,Barrio等[10]将良恶性fTI的TL/TBG(thyroid lesion SUVmax/thyroid background SUVmean)、TL/BP(thyroid lesion SUVmax/blood pool SUVmean)及TL/L(thyroid lesion SUVmax/liver SUVmean)进行比较,结果发现上述指标在恶性组中明显高于良性组,且当TL/TBG>2.0时,诊断灵敏度及特异度分别为88%和76%,他们认为TL/TBG指标的诊断效能更高。但目前此类研究尚少,仍需要更多的数据来验证其是否可以应用到临床。

1.3 PET/CT中CT特征与fTI

另有学者提出SUVmax结合CT特征对fTI的良恶性鉴别更有价值[17, 37]。大量研究表明可疑恶性甲状腺结节CT表现为:微小钙化;密度不均匀;形态不规则或分叶状;边界不清楚等[42]。超声中恶性征象也包括微小钙化、针尖样簇状分布的钙化[43]。关志伟等[44]也提出砂粒样钙化是诊断甲状腺癌特异性较高的指标。但并非一旦出现钙化就意味着恶性,诸研究中提示钙化形态及大小较钙化率对诊断更有意义,环形、弧形和粗大钙化(直径≥3 cm)以良性结节多见[45-47]。PET/CT图像中出现钙化有助于fTI良恶性的诊断,但针对钙化不应一概而论,应结合其形态和大小进一步分析,有利于提高其诊断特异度和灵敏度。

Choi等[17]研究发现恶性fTI中88.9%的CT值较周围正常组织低;这个结果在Pampaloni等[3]的研究中也得到证实,若CT值极低,多为良性的囊性结节;而局灶性18F-FDG摄取增高处无相应CT改变,100%为良性[6, 17]。Choi等[17]以SUVmax+CT值及单独SUVmax绘制受试者特征工作曲线,前者曲线下面积明显高于后者(分别为0.878±0.049和0.701±0.079)。Han等[5]认为恶性fTI的SUVmax与CT值成反比,SUVmax高,CT值低,可能原因在于甲状腺密度减低不仅是甲状腺滤泡中碘浓度减低,还包括甲状腺细胞胶质减少及滤泡上皮细胞或间质细胞增生,而SUVmax主要反映细胞葡萄糖代谢水平,CT值反映碘浓度,进而导致SUVmax与CT值呈现反比关系。由此可知SUVmax结合CT值能较大程度的提高PET/CT对fTI良恶性的诊断效能,若出现高SUVmax+低CT值,提示恶性可能性更大。

目前良恶性fTI间的大小是否存在界限,尚有较大争议[3]。Yaylali等[36]发现恶性病变的直径较良性大。Kim等[48]发现病灶体积≥1 cm3+SUVmax>6.0时,恶性可能性大,其诊断灵敏度、特异度及阳性预测值分别达60.8%,97.7%及96.8%。而Qu等[31]通过对664例患者的病灶大小(超声测量)进行Meta分析,结果显示两者间大小无明显差异。现研究认为病灶大小是影响SUVmax值的一个重要独立因素,两者间存在正相关性,原发肿瘤体积越大,癌细胞数目越多,糖代谢会更加旺盛以维持肿瘤细胞的生物学活动并为不断增殖和分化提供足够的能量,SUVmax则越高[49]。因此目前认为病灶大小尚不是良恶性的预测因素,但其可能会通过SUVmax间接对fTI良恶性的诊断产生一定影响。

另外,Sharma等[15]研究结果提示,当PET/CT图中的病变出现周围组织浸润时,考虑恶性可能性大。而有关病变边界、内部密度均匀性等在研究中少有描述,这可能与PET/CT中使用的是低剂量CT而非诊断剂量CT,扫描层厚相对较厚,图像质量略有降低,影响了病灶的一些形态学特征观察有关。

2 dTI

据文献报道,dTI的发生率约为0.7%~6.2%[6, 9, 22, 50],众研究通过实验室及超声检查提示,弥漫性18F-FDG摄取以桥本甲状腺炎(Hashimoto thyroiditis,HT)最多见,偶也见于毒性弥漫性甲状腺肿等良性病变。Rothman等[51]发现9.5%的桥本甲状腺功能减低症患者出现弥漫性18F-FDG摄取增高。这可能是由于自身免疫过程攻击甲状腺滤泡上皮细胞,出现淋巴细胞浸润、组织损伤、炎症反应及血流量增加等改变而致18F-FDG摄取增高[3, 5, 52]。相对fTI而言,多数医师认为dTI为良性病变而未行FNAC等细胞学检查明确诊断。但也有研究显示dTI恶性率约为4.4%~11.6%[6, 53],如甲状腺淋巴瘤,约占1%~5%[18, 54]。Resende等[54]在HT患者中发现其中9.03%伴PTC,1.26%伴甲状腺滤泡状癌,1.62%伴髓样癌,0.49%伴未分化癌,0.37%伴甲状腺淋巴瘤。Avgoustou等[55]研究发现6.5%~43.8%的PTC伴HT,而11.0%~53.8%的HT会发展成为PTC,并认为HT为PTC的高危因素。目前HT向PTC发展过程尚不明确,有学者发现多数PTC伴有淋巴细胞浸润,而HT的病变基础为慢性淋巴细胞浸润导致的炎症反应,这不仅为恶性病变创造有利生长环境,同时炎症反应过程中通过活性氧损伤细胞DNA后可出现基因突变,最终发展为PTC[56]。也有学者认为HT由于自身免疫过程攻击甲状腺滤泡上皮细胞,引起淋巴细胞浸润,导致细胞死亡(包括坏死及凋亡)增加,而细胞凋亡在肿瘤发展过程中起重要作用,因此HT可能通过慢性炎症细胞的浸润导致细胞死亡及细胞增殖加速,进一步向甲状腺癌转化[52]。故dTI尚不能完全排除恶性可能,若病灶体积较小,在HT弥漫性18F-FDG摄取的背景下易因部分容积效应被掩盖。

3 小结

综上所述,SUVmax对fTI良恶性的诊断有较大临床价值,但良恶性间尚无明确cut-off值,而PET/CT双时相显像法、TL/TBG指标等在fTI的诊断上尚未推荐使用。若在高SUVmax基础上出现以下CT特征怀疑恶性可能性大:①微小钙化或簇状钙化;②低CT值(密度);③周围组织浸润;但最终仍需行FNAC进一步明确诊断。在PET/CT诊断下,dTI的发生率和恶性率较低,以HT最多见,但不排除可能合并恶性病变或于后期发展成为恶性的可能,后期需密切观察。

利益冲突 本研究有署名作者按以下贡献声明独立开展,不涉及任何利益冲突。

作者贡献声明 杜芬负责文献资料查询及论文撰写;胡珊负责文献资料查询;梁梦负责论文指导;程艳负责论文指导和审校。

参考文献
[1] Soelberg KK, Bonnema SJ, Brix TH, et al. Risk of malignancy in thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography: a systematic review[J]. Thyroid, 2012, 22(9): 918–925. DOI:10.1089/thy.2012.0005
[2] Bae JS, Chae BJ, Park WC, et al. Incidental thyroid lesions detected by FDG-PET/CT:prevalence and risk of thyroid cancer[J]. World J Surg Oncol, 2009, 7: 63. DOI:10.1186/1477-7819-7-63
[3] Pampaloni MH, Win AZ. Prevalence and Characteristics of Incidentalomas Discovered by Whole Body FDG PETCT[J]. Int J Mol Imaging, 2012, 2012: 476763. DOI:10.1155/2012/476763
[4] Nakamoto Y, Tatsumi M, Hammoud D, et al. Normal FDG distribution patterns in the head and neck:PET/CT evaluation[J]. Radiology, 2005, 234(3): 879–885. DOI:10.1148/radiol.2343030301
[5] Han YM, Kim YC, Park EK, et al. Diagnostic value of CT density in patients with diffusely increased FDG uptake in the thyroid gland on PET/CT images[J]. AJR Am J Roentgenol, 2010, 195(1): 223–228. DOI:10.2214/AJR.09.3319
[6] Soelberg KK, Bonnema SJ, Brix TH, et al. Risk of malignancy in thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography:a systematic review[J]. Thyroid, 2012, 22(9): 918–925. DOI:10.1089/thy.2012.0005
[7] Chun AR, Jo HM, Lee SH, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography[J]. Endocrinol Metab (Seoul), 2015, 30(1): 71–77. DOI:10.3803/EnM.2015.30.1.71
[8] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115–132. DOI:10.3322/caac.21338
[9] Czepczyński R, Stangierski A, Oleksa R, et al. Incidental 18F-FDG uptake in the thyroid in patients diagnosed with PET/CT for other malignancies[J]. Nucl Med Rev Cent East Eur, 2011, 14(2): 68–72. DOI:10.5603/NMR.2011.00018
[10] Barrio M, Czernin J, Yeh MW, et al. The incidence of thyroid cancer in focal hypermetabolic thyroid lesions:an 18F-FDG PET/CT study in more than 6000 patients[J]. Nucl Med Commun, 2016, 37(12): 1290–1296. DOI:10.1097/MNM.0000000000000592
[11] Pattison DA, Bozin M, Gorelik A, et al. 18F-fluorodeoxyglycose-avid thyroid incidentalomas: the importance of contextual interpretation[J/OL]. J Nucl Med, 2017[2017-10-24]. http://jnm.snmjournals.org/content/early/2017/10/11/jnumed.117.198085. DOI:10.2967/jnumed.117.198085.
[12] Hagenimana N, Dallaire J, Vallée É, et al. Thyroid incidentalomas on 18FDG-PET/CT: a metabolico-pathological correlation[J]. J Otolaryngol Head Neck Surg, 2017, 46(1): 22. DOI:10.1186/s40463-017-0200-8
[13] Lee WM, Kim BJ, Kim MH, et al. Characteristics of thyroid incidentalomas detected by pre-treatment 18F-FDG PET or PET/CT in patients with cervical cancer[J]. J Gynecol Oncol, 2012, 23(1): 43–47. DOI:10.3802/jgo.2012.23.1.43
[14] Chen YK, Ding HJ, Chen KT, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for cancer screening in healthy subjects[J]. Anticancer Res, 2005, 25(2B): 1421–1426.
[15] Sharma SD, Jacques T, Smith S, et al. Diagnosis of incidental thyroid nodules on 18F-fluorodeoxyglucose positron emission tomography imaging: are these significant?[J]. J Laryngol Otol, 2015, 129(1): 53–56. DOI:10.1017/S0022215114003107
[16] Ho TY, Liou MJ, Lin KJ, et al. Prevalence and significance of thyroid uptake detected by 18F-FDG PET[J]. Endocrine, 2011, 40(2): 297–302. DOI:10.1007/s12020-011-9470-5
[17] Choi JY, Lee KS, Kim HJ, et al. Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT:clinical significance and improved characterization[J]. J Nucl Med, 2006, 47(4): 609–615.
[18] Agrawal K, Weaver J, Ngu R, et al. Clinical significance of patterns of incidental thyroid uptake at 18F-FDG PET/CT[J]. Clin Radiol, 2015, 70(5): 536–543. DOI:10.1016/j.crad.2014.12.020
[19] 李雪娜, 尹雅芙, 杜补林, 等. 18F-FDG PET/CT显像偶发甲状腺癌的葡萄糖代谢与临床病理学的相关性研究[J]. 中国癌症杂志, 2016, 26(6): 527–532. DOI:10.19401/j.cnki.1007-3639.2016.06.008
Li XN, Yin YF, Du BL, et al. The correlation study between the glucose metabolism of 18F-FDG PET/CT incidental thyroid cancer and clinicopathologic characteristics[J]. Chin Oncol, 2016, 26(6): 527–532. DOI:10.19401/j.cnki.1007-3639.2016.06.008
[20] Demir Ö, Köse N, Özkan E, et al. Clinical significance of thyroid incidentalomas identified by 18F-FDG PET/CT: correlation of ultrasonograpy findings with cytology results[J]. Nucl Med Commun, 2016, 37(7): 715–720. DOI:10.1097/MNM.0000000000000495
[21] Kang KW, Kim SK, Kang HS, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects[J]. J Clin Endocrinol Metab, 2003, 88(9): 4100–4104. DOI:10.1210/jc.2003-030465
[22] Bonabi S, Schmidt F, Broglie MA, et al. Thyroid incidentalomas in FDG-PET/CT: prevalence and clinical impact[J]. Eur Arch Otorhinolaryngol, 2012, 269(12): 2555–2560. DOI:10.1007/s00405-012-1941-7
[23] Mirza AA, Pai E, Srinivas KG, et al. Diagnostic Dilemma in a Thyroid Incidentaloma: Second Primary versus Metastatic Nodule?[J]. J Clin Diagn Res, 2016, 10(6): PD10–12. DOI:10.7860/JCDR/2016/18279.8011
[24] 王佩国, 王平. 甲状腺转移癌(附9例报告)[J]. 中国肿瘤临床, 2005, 32(13): 775–776. DOI:10.3969/j.issn.1000-8179.2005.13.016
Wang PG, Wang P. Metaset carcinoma of the thyroids[J]. Chin J Clin Oncol, 2005, 32(13): 775–776. DOI:10.3969/j.issn.1000-8179.2005.13.016
[25] Osawa M, Takigawa N, Kiura K, et al. Isolated metastasis of lung cancer to the thyroid gland[J]. Lung Cancer, 2007, 58(1): 156–158. DOI:10.1016/j.lungcan.2007.04.014
[26] Lam KY, Lo CY. Metastatic tumors of the thyroid gland:a study of 79 cases in Chinese patients[J]. Arch Pathol Lab Med, 1998, 122(1): 37–41.
[27] Thuillier P, Roudaut N, Crouzeix G, et al. Malignancy rate of focal thyroid incidentaloma detected by FDG PET-CT: results of a prospective cohort study[J]. Endocr Connect, 2017, 6(6): 413–421. DOI:10.1530/EC-17-0099
[28] Targe M, Basu S. Focal thyroid incidentaloma on whole body fluorodeoxyglucose positron emission tomography/computed tomography in known cancer patients:A case-based discussion with a series of three examples[J]. J Cancer Res Ther, 2015, 11(4): 1029. DOI:10.4103/0973-1482.154029
[29] 吴江, 朱虹, 王新刚, 等. 18F-FDG PET/CT显像在甲状腺病变的应用:与病理对比分析[J]. 中国临床医学影像杂志, 2013, 24(4): 242–246. DOI:10.3969/j.issn.1008-1062.2013.04.006
Wu J, Zhu H, Wang XG, et al. Application of 18F-FDG PET/CT in thyroid disease and correlative with histopathological results[J]. J Chin Clin Med Imaging, 2013, 24(4): 242–246. DOI:10.3969/j.issn.1008-1062.2013.04.006
[30] Agrawal K, Weaver J, Ul-Hassan F, et al. Incidence and Significance of Incidental Focal Thyroid Uptake on 18F-FDG PET Study in a Large Patient Cohort: Retrospective Single-Centre Experience in the United Kingdom[J]. Eur Thyroid J, 2015, 4(2): 115–122. DOI:10.1159/000431319
[31] Qu N, Zhang L, Lu ZW, et al. Risk of malignancy in focal thyroid lesions identified by 18F-fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography:evidence from a large series of studies[J]. Tumour Biol, 2014, 35(6): 6139–6147. DOI:10.1007/s13277-014-1813-4
[32] Bertagna F, Treglia G, Piccardo A, et al. Diagnostic and clinical significance of 18F-FDG-PET/CT thyroid incidentalomas[J]. J Clin Endocrinol Metab, 2012, 97(11): 3866–3875. DOI:10.1210/jc.2012-2390
[33] Pattison DA, Bozin M, Gorelik A, et al. 18F-fluorodeoxyglycose-avid thyroid incidentalomas: the importance of contextual interpretation[J/OL]. J Nucl Med, 2017[2017-10-23]. http://jnm.snmjournals.org/content/early/2017/10/11/jnumed.117.198085. DOI:10.2967/jnumed.117.198085.
[34] Makis W, Ciarallo A. Thyroid Incidentalomas on 18F-FDG PET/CT:Clinical Significance and Controversies[J]. Mol Imaging Radionucl Ther, 2017, 26(3): 93–100. DOI:10.4274/mirt.94695
[35] Hagenimana N, Dallaire J, Vallée É, et al. Thyroid incidentalomas on 18FDG-PET/CT: a metabolico-pathological correlation[J]. J Otolaryngol Head Neck Surg, 2017, 46(1): 22. DOI:10.1186/s40463-017-0200-8
[36] Yaylali O, Kirac FS, Yuksel D, et al. Evaluation of focal thyroid lesions incidentally detected in fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography images[J]. Indian J Cancer, 2014, 51(3): 236–240. DOI:10.4103/0019-509X.146737
[37] Lee S, Park T, Park S, et al. The Clinical Role of Dual-Time-Point 18F-FDG PET/CT in Differential Diagnosis of the Thyroid Incidentaloma[J]. Nucl Med Mol Imaging, 2014, 48(2): 121–129. DOI:10.1007/s13139-013-0247-z
[38] D'Souza MM, Marwaha RK, Sharma R, et al. Prospective evaluation of solitary thyroid nodule on 18F-FDG PET/CT and high-resolution ultrasonography[J]. Ann Nucl Med, 2010, 24(5): 345–355. DOI:10.1007/s12149-010-0357-y
[39] Kim SJ, Kim BH, Jeon YK, et al. Limited diagnostic and predictive values of dual-time-point 18F FDG PET/CT for differentiation of incidentally detected thyroid nodules[J]. Ann Nucl Med, 2011, 25(5): 347–353. DOI:10.1007/s12149-011-0468-0
[40] Hsiao YC, Wu PS, Chiu NT, et al. The use of dual-phase 18F-FDG PET in characterizing thyroid incidentalomas[J]. Clin Radiol, 2011, 66(12): 1197–1202. DOI:10.1016/j.crad.2011.08.005
[41] 陈聪霞, 李文婵, 刘甫庚, 等. 腺癌性孤立性肺结节的18F-FDG PET/CT表现[J]. 中华核医学与分子影像杂志, 2011, 31(6): 382–385. DOI:10.3760/cma.j.issn.0253-9780.2011.06.008
Chen CX, Li WC, Liu PG, et al. The features of solitary pulmonary nodules of adenocarcinoma on 18F-FDG PET/CT[J]. Chin J Nucl Med Mol Imaging, 2011, 31(6): 382–385. DOI:10.3760/cma.j.issn.0253-9780.2011.06.008
[42] 沈伟明, 张黄华, 倪耿欢. 多层螺旋CT对甲状腺良恶性肿瘤的诊断及鉴别诊断价值[J]. 医学影像学杂志, 2015, 25(9): 1690–1692.
Shen WM, Zhang HH, Ni GH. The value of MSCT in diagnosis and differential diagnosis of benign and malignant thyroid tumors[J]. J Med Imaging, 2015, 25(9): 1690–1692.
[43] Bakhshayesh KM, Doroudinia A, Joukar F, et al. Hypermetabolic Thyroid Incidentaloma on Positron Emission Tomography:Review of Laboratory, Radiologic, and Pathologic Characteristics[J]. J Thyroid Res, 2017, 2017: 7176934. DOI:10.1155/2017/7176934
[44] 关志伟, 徐白萱, 陈英茂, 等. 大规模人群FDG PET/CT意外发现甲状腺高代谢结节的回顾性分析[J]. 中华核医学与分子影像杂志, 2012, 32(1): 32–35. DOI:10.3760/cma.j.issn.2095-2848.2012.01.010
Guan ZW, Xu BX, Chen YM, et al. Retrospective evaluation of focal hypermetabolic thyroid nodules incidentally identified by 18F-FDG PET/CT in a large population[J]. Chin J Nucl Med Mol Imaging, 2012, 32(1): 32–35. DOI:10.3760/cma.j.issn.2095-2848.2012.01.010
[45] 马春旭, 袁卫红. 甲状腺结节影像学诊断研究进展[J]. 国际放射医学核医学杂志, 2014, 38(1): 48–52. DOI:10.3760/cma.j.issn1673-4114.2014.01.010
Ma CX, Yuan WH. Advanced research on imaging diagnosis of thyroid nodule[J]. Int J Radiat Med Nucl Med, 2014, 38(1): 48–52. DOI:10.3760/cma.j.issn1673-4114.2014.01.010
[46] 韩志江, 项晶晶, 包凌云, 等. 甲状腺钙化性病变的超声和CT联合诊断[J]. 国际放射医学核医学杂志, 2016, 39(4): 416–421. DOI:10.19300/j.2016.J4246
Han ZJ, Xiang JJ, Bao LY, et al. Combined ultrasound and CT in diagnosis of thyroid calcified lesions[J]. Int J Radiat Med Nucl Med, 2016, 39(4): 416–421. DOI:10.19300/j.2016.J4246
[47] 朱林波, 王淑侠, 徐卫平, 等. 18F-氟代脱氧葡萄糖正电子成像术/计算机断层扫描对甲状腺结节鉴别诊断的价值[J]. 中华诊断学电子杂志, 2014, 2(4): 249–251. DOI:10.3877/cma.j.issn.2095655X.2014.04.002
Zhu LB, Wang SX, Xu WP, et al. Diagnostic vaule of 18F-FDG PET/CT in the differential diagnosis of thyroid nodules[J]. Chin J Diagnostics (Electronic Edition), 2014, 2(4): 249–251. DOI:10.3877/cma.j.issn.2095655X.2014.04.002
[48] Kim TH, Ji YB, Song CM, et al. SUVmax of 18F-FDG PET/CT in the differential diagnosis of benign and malignant thyroid nodules according to tumor volume[J]. World J Surg Oncol, 2015, 13: 217. DOI:10.1186/s12957-015-0635-1
[49] 郑冬, 牛力璇, 田嘉禾, 等. 18F-FDG PET/CT最大标准化摄取值与舌鳞状细胞癌临床特征的关系[J]. 中国医学影像学杂志, 2017, 25(7): 481–486. DOI:10.3969/j.issn.1005-5185.2017.07.001
Zheng D, Niu LX, Tian JH, et al. Relationship between maximum standardized uptake value of 18F-FDG PET/CT and clinical features of tongue squamous cell carcinoma[J]. Chin J Med Imaging, 2017, 25(7): 481–486. DOI:10.3969/j.issn.1005-5185.2017.07.001
[50] Brindle R, Mullan D, Yap BK, et al. Thyroid incidentalomas discovered on positron emission tomography CT scanning-Malignancy rate and significance of standardised uptake values[J]. Eur J Surg Oncol, 2014, 40(11): 1528–1532. DOI:10.1016/j.ejso.2014.05.005
[51] Rothman IN, Middleton L, Stack BC, et al. Incidence of diffuse FDG uptake in the thyroid of patients with hypothyroidism[J]. Eur Arch Otorhinolaryngol, 2011, 268(10): 1501–1504. DOI:10.1007/s00405-011-1512-3
[52] Kurata S, Ishibashi M, Hiromatsu Y, et al. Diffuse and diffuse-plus-focal uptake in the thyroid gland identified by using FDG-PET:prevalence of thyroid cancer and Hashimoto's thyroiditis[J]. Ann Nucl Med, 2007, 21(6): 325–330. DOI:10.1007/s12149-007-0030-2
[53] Yang Z, Shi W, Zhu B, et al. Prevalence and risk of cancer of thyroid incidentaloma identified by fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography[J]. J Otolaryngol Head Neck Surg, 2012, 41(5): 327–333.
[54] Resende de Paiva C, Grønhøj C, Feldt-Rasmussen U, et al. Association between Hashimoto's Thyroiditis and Thyroid Cancer in 64, 628 Patients[J]. Front Oncol, 2017, 7: 53. DOI:10.3389/fonc.2017.00053
[55] Avgoustou C, Avgoustou E. Coexistence of Hashimoto's thyroiditis and papillary thyroid carcinoma[J]. Hellenic J Surg, 2017, 89(2): 73–78. DOI:10.1007/s13126-017-0387-1
[56] Lai X, Xia Y, Zhang B, et al. A meta-analysis of Hashimoto's thyroiditis and papillary thyroid carcinoma risk[J]. Oncotarget, 2017, 8(37): 62414–62424. DOI:10.18632/oncotarget.18620