文章快速检索    
  国际放射医学核医学杂志  2018, Vol. 42 Issue (3): 269-273.  DOI: 10.3760/cma.j.issn.1673-4114.2018.03.014
0

引用本文 

陈挺, 张宏, 田梅. 18F-FDG PET/CT代谢半定量参数在非小细胞肺癌预后评估中的价值[J]. 国际放射医学核医学杂志 , 2018, 42(3): 269-273. DOI: 10.3760/cma.j.issn.1673-4114.2018.03.014
Chen Ting, Zhang Hong, Tian Mei. Prognostic evaluation of patients with non-small cell lung cancer by using semi-quantitative metabolic parameters of 18F-FDG PET/CT[J]. Int J Radiat Med Nucl Med, 2018, 42(3): 269-273. DOI: 10.3760/cma.j.issn.1673-4114.2018.03.014

通信作者

田梅, Email:meitian@zju.edu.cn

文章历史

收稿日期:2018-02-24
18F-FDG PET/CT代谢半定量参数在非小细胞肺癌预后评估中的价值
陈挺, 张宏, 田梅     
310000 杭州, 浙江大学医学院附属第二医院核医学科
摘要:准确的预后评估对于非小细胞肺癌(NSCLC)治疗方案的选择至关重要。18F-FDG PET/CT可同时提供功能显像及解剖学显像信息,在NSCLC患者的诊疗过程,尤其是在NSCLC患者的预后评估方面起着重要作用。笔者主要就近年来18F-FDG PET/CT代谢半定量参数在NSCLC患者预后评估中的价值进行综述。
关键词: 癌,非小细胞肺     正电子发射断层显像计算机体层摄影术     氟脱氧葡萄糖F18     预后    
Prognostic evaluation of patients with non-small cell lung cancer by using semi-quantitative metabolic parameters of 18F-FDG PET/CT
Chen Ting, Zhang Hong, Tian Mei     
Department of Nuclear Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
Corresponding author: Tian Mei, Email:meitian@zju.edu.cn
Abstract: Accurate diagnosis and prognostic evaluation are essential for the management of patients with non-small cell lung cancer(NSCLC). PET/CT, as a new imaging modality which can provide functional and anatomical imaging simultaneously, plays an important role in theranostics of these patients. This review focuses on the prognostic evaluation of patients with NSCLC by using semi-quantitative metabolic parameters of 18F-FDG PET/CT.
Key words: Carcinoma, non-small-cell lung     Positron emission tomography computed tomography     Fluorodeoxyglucose F18     Prognosis    

肺癌是世界上发病率和病死率最高的恶性肿瘤之一[1],其中非小细胞肺癌(non-small cell lung cancer,NSCLC)占肺癌患者总数的85%[2]。据美国癌症学会统计数据显示,NSCLC患者5年生存率仅为18%[3]。准确的预后评估,是选择个体化治疗方案的先决条件,也是提高患者生存率及生活质量的必备条件。目前,对于NSCLC的影像学诊断及评估主要基于传统显像模式,包括CT及MRI。传统显像模式一方面主要依赖于病灶形态学变化,无法提供代谢相关信息;另一方面,显像部位局限,无法同时提供全身其他转移病灶信息。而PET/CT可同时显示分子水平的全身代谢信息及肿瘤的形态特征,特别是18F-FDG PET/CT,在NSCLC的分期、治疗规划及疗效监测中均有重要价值[4],通过18F-FDG PET/CT半定量参数测定,包括SUV、肿瘤代谢体积(metabolic tumor volume,MTV)及病灶糖酵解总量(total lesion glycolysis,TLG),可为NSCLC提供良好的预后评估[5-7]。笔者就近年来上述代谢半定量参数在NSCLC的预后评估中的价值作一综述。

1 18F-FDG PET/CT显像基础

18F-FDG是临床上最常用的放射性核素显像剂,其与葡萄糖的结构相似,可经细胞膜上的葡萄糖转运蛋白非选择性地进入细胞,胞内的18F-FDG在己糖激酶作用下磷酸化生成6-磷酸-18F-FDG(18F-FDG-PO4)。18F-FDG-PO4不能进一步被磷酸果糖激酶识别,可在细胞内滞留,其滞留量与细胞葡萄糖消耗量基本一致,因而能够反映体内葡萄糖的利用和摄取水平。

肿瘤组织中普遍存在细胞快速增生、细胞膜葡萄糖载体增多(主要为葡萄糖转运蛋白1和葡萄糖转运蛋白3)和细胞内磷酸化酶活性增高等生物学特征,使得肿瘤细胞内的糖酵解代谢明显增加[8]18F-FDG在肿瘤细胞内的摄取及浓聚程度与肿瘤细胞代谢活跃程度呈正相关;此外,也有研究证明18F-FDG的摄取与肿瘤侵袭性及细胞增殖活跃程度呈正相关[9-10]。因此,18F-FDG PET/CT在提供解剖学显像的同时,还可提供分子水平的功能显像,在肿瘤的诊疗过程中占据重要地位。

2 18F-FDG PET/CT代谢参数及其影响因素

18F-FDG PET/CT代谢半定量参数主要包括SUV、MTV和TLG。其中,SUV为半定量指标,是18F-FDG PET/CT显像中最常用的代谢活性参数,其主要包括SUVmax和平均标准化摄取值(mean standardized uptake value, SUVmean);MTV和TLG是反映肿瘤负荷的代谢参数。关于18F-FDG PET/CT代谢半定量参数及其影响因素的具体情况详见表 1

表1 18F-FDG PET/CT代谢半定量参数及其影响因素 Table 1 Semi-quantitative metabolic parameters of 18F-FDG PET/CT and the related impact factors
3 18F-FDG PET/CT代谢半定量参数在NSCLC患者预后评估中的应用 3.1 SUV

SUV是18F-FDG PET/CT诊断肿瘤病变时最常用的半定量指标,其中SUVmax的测量方法具有简易性、精确性和可重复性的特点,结果相对可靠。大量研究结果表明,对于早期诊断并接受手术治疗的NSCLC患者,原发肿瘤SUVmax对于患者的预后评估效果良好[16-19]。Yoo等[20]研究发现,未出现纵隔淋巴结转移的80例Ⅰ~Ⅱ期NSCLC患者在接受手术治疗后,原发肿瘤病灶高SUVmax组(SUVmax>4,P=0.004)更易出现肿瘤复发,作者提出对于早期NSCLC患者且SUVmax>4时可于术后行辅助性放化疗。

对于失去手术机会的晚期NSCLC患者,病灶SUVmax的预测效果仍不明确。有研究者报道,出现远处转移的NSCLC患者接受化疗前的血清胸苷激酶1水平与原发肿瘤SUVmax水平呈正相关,并且两者均是患者总体生存期(overall survival, OS)的独立危险因素[21]。另一研究者则提出,对初始治疗方案为放疗或放化疗的患者,通过单因素分析并未发现原发肿瘤高SUVmax与患者低生存率间存在显著联系(P=0.22)[22]

近年来也有基于SUVmax相关参数评估NSCLC患者预后的研究。Jin等[23]利用双时相PET/CT计算115例患者的肿瘤△SUVmax(后时相SUVmax-前时相SUVmax)和△SUVmax变化率[(后时相SUVmax-前时相SUVmax)/前时相SUVmax],发现上述两参数均与晚期NSCLC患者的无进展生存期(progression-free survival, PFS)密切相关,提出肿瘤△SUVmax和△SUVmax变化率为晚期NSCLC患者疾病进展的独立危险因素。在另一项用SUVmax相关参数评估NSCLC患者预后的研究中,Billè等[24]收集并分析了413例接受手术治疗的患者(Ⅰ期222例,Ⅱ期95例,ⅢA期79例,ⅢB期及Ⅳ期8例),统计分析发现原发肿瘤与肝SUVmax的比值以及原发肿瘤与主动脉弓血池SUVmax的比值均与术后患者的PFS无显著相关性。

3.2 MTV

MTV是一个体积代谢参数,反映肿瘤病灶中具有一定代谢活性的肿瘤体积。有研究者通过随访529例早期NSCLC并接受手术的患者(ⅠA期176例,ⅠB期197例,ⅡA期107例及ⅡB期49例),结果发现高MTV是患者术后复发及OS的独立危险因素[25]

对于失去手术切除机会的晚期NSCLC患者,研究结果提示MTV较SUVmax对患者的预后评估更加准确[26-27]。Ohri等[6]提出对于接受放疗或放化疗的晚期NSCLC患者,MTV是患者预后OS的独立危险因素(MTV每增加10 cm3:HR = 1.04;95% CI = 1.03~1.06; P < 0.001),同时也发现高MTV可增加局部病灶衰竭的概率(MTV每增加10 cm3:HR = 1.16;95% CI = 1.08~1.23;P < 0.001)。该研究团队在另一项研究中也证实MTV与肿瘤侵袭性密切相关[28]。有研究者报道,对晚期NSCLC患者行治疗前后PET/CT对比显像,结果发现治疗前后的△MTV变化率[(治疗前MTV-治疗后MTV)/治疗前MTV]与患者预后OS存在显著相关性[29-30];Huang等[31]提出当△MTV>29.7%时,接受放化疗的晚期NSCLC患者将拥有更长的OS。

MTV作为同时结合肿瘤形态及功能代谢的复合参数,能够更加准确地反映肿瘤的代谢负荷,较SUVmax可为晚期NSCLC患者的预后评估提供更多的参考。

3.3 TLG

TLG也是近年来PET/CT代谢参数评估预后的研究热点之一,是反映肿瘤病灶摄取程度和代谢体积的复合指标。针对可行手术切除的早期NSCLC患者,有研究者报道与SUVmax和MTV相比,TLG在术后肿瘤复发的预测及患者的OS评估上都更为准确[32-33]

由于TLG可反映患者整体代谢负荷,故对于晚期NSCLC患者的预后评估具有优势。Moon等[34]对52例接受一线化疗的晚期NSCLC患者随访2年,结果发现△TLG变化率[(治疗前TLG-治疗后TLG)/治疗前TLG]对于患者的OS及PFS预后评估有重要参考价值,提出△TLG变化率=50%是区分高低危人群的最佳分界值。Soussan等[35]和Usmanij等[36]发现△TLG变化率的等级是评估晚期NSCLC患者PFS的重要分层因素。

在仅服用吉非替尼进行靶向治疗的患者中,TLG同样显示出良好的预后评估价值。Keam等[37]发现,虽然在低、中、高TLG组(高TLG组:> 455.1,中TLG组:102.8~455.1,低TLG组:< 102.8)中吉非替尼治疗的有效率差异无统计学意义(68.0%、76.0%和68.0%;P=0.274),但高TLG组患者的PFS较短(高TLG组:7.2个月;中TLG组:11.9个月;低TLG组:24.2个月; P<0.001),OS也较短(P=0.005)。

4 小结及展望

18F-FDG PET/CT代谢半定量参数在NSCLC的预后评估中占据重要地位。SUV、MTV及TLG在早期NSCLC患者预后评估中的价值已得到肯定;MTV及TLG可反映全身代谢及所累及的肿瘤体积,可作为晚期NSCLC患者预后评估中的补充,为准确评估后治疗方案的选择提供参考依据;SUVmax及其他相关参数在晚期NSCLC患者的预后评估中的效果仍有待进一步的临床研究进行总结探讨。

利用18F-FDG PET/CT半定量参数评估预后尚存在几点不足:(1)MTV分界值尚无统一标准,需进一步大样本量临床试验探讨;(2)炎症病变及肿瘤性病变均可以表现为18F-FDG高摄取,从而影响MTV及TLG的测量;(3)少数类型的肿瘤,如肺泡细胞癌等,并不表现为18F-FDG高摄取,可能会导致预后评估的不准确。

核医学分子显像作为分子影像组学的重要组成部分,其代表性显像模式PET已在临床上得到广泛应用。目前,除临床应用最广泛的18F-FDG外,其他正电子显像剂如11C-蛋氨酸(11C-MET)、11C-乙酸(11C-Acetate)、11C-胆碱(11C-Choline)、18F-脱氧胸苷(18F-FLT)等也逐渐进入临床。将不同种类的正电子显像剂组合应用,可从不同角度反映肿瘤细胞的分子水平生物化学变化,从而进一步提高肿瘤诊断的灵敏度和特异度[38]

随着核医学技术的发展及各种新型肿瘤分子探针的不断出现,PET在肿瘤诊疗过程中的应用将会得到越来越多地拓展及推广,对肿瘤的生物学特征及其在体行为也将有更加精准的描述和评估,PET/CT显像将在肿瘤的精准诊治方面发挥更大的指导作用。

利益冲突 本研究由署名作者按以下贡献声明独立开展,不涉及任何利益冲突。

作者贡献声明 陈挺负责资料整理、综述初稿撰写;张宏负责综述修改与审阅;田梅负责主题建立、审阅和定稿。

参考文献
[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87–108. DOI:10.3322/caac.21262
[2] Vansteenkiste J, Crinò L, Dooms C, et al. 2nd ESMO Consensus Conference on Lung Cancer:early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up[J]. Ann Oncol, 2014, 25(8): 1462–1474. DOI:10.1093/annonc/mdu089
[3] Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7–30. DOI:10.3322/caac.21387
[4] Grootjans W, de Geus-Oei LF, Troost EG, et al. PET in the management of locally advanced and metastatic NSCLC[J]. Nat Rev Clin Oncol, 2015, 12(7): 395–407. DOI:10.1038/nrclinonc.2015.75
[5] Ohtaka K, Hida Y, Kaga K, et al. Outcome analysis of 18F-fluorodeoxyglucose positron-emission tomography in patients with lung cancer after partial volume correction[J]. Anticancer Res, 2013, 33(11): 5193–5198.
[6] Ohri N, Duan F, Machtay M, et al. Pretreatment FDG-PET metrics in stage Ⅲ non-small cell lung cancer: ACRIN 6668/RTOG 0235[J]. J Natl Cancer Inst, 2015, 107(4): djv004[2018-02-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4402361. DOI:10.1093/jnci/djv004.
[7] Ooi H, Chen CY, Hsiao YC, et al. Fluorodeoxyglucose Uptake in Aadvanced Non-small Cell Lung Cancer With and Without Pulmonary Lymphangitic Carcinomatosis[J]. Anticancer Res, 2016, 36(8): 4313–4320.
[8] Tian M, Zhang H, Nakasone Y, et al. Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study[J]. Eur J Nucl Med Mol Imaging, 2004, 31(1): 5–12. DOI:10.1007/s00259-003-1316-9
[9] Okada M, Tauchi S, Iwanaga K, et al. Associations among bronchioloalveolar carcinoma components, positron emission tomographic and computed tomographic findings, and malignant behavior in small lung adenocarcinomas[J]. J Thorac Cardiovasc Surg, 2007, 133(6): 1448–1454. DOI:10.1016/j.jtcvs.2007.02.023
[10] Novello S, Giaj LM, Vavalà T. Functional imaging in predicting response to antineoplastic agents and molecular targeted therapies in lung cancer: a review of existing evidence[J]. Crit Rev Oncol Hematol, 2012, 83(2): 208–215. DOI:10.1016/j.critrevonc.2011.09.009
[11] Boellaard R, Krak NC, Hoekstra OS, et al. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values:a simulation study[J]. J Nucl Med, 2004, 45(9): 1519–1527.
[12] Westerterp M, Pruim J, Oyen W, et al. Quantification of FDG PET studies using standardised uptake values in multi-centre trials:effects of image reconstruction, resolution and ROI definition parameters[J]. Eur J Nucl Med Mol Imaging, 2007, 34(3): 392–404. DOI:10.1007/s00259-006-0224-1
[13] Yan H, Wang R, Zhao F, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced non-small cell lung cancer treated by non-surgical therapy[J]. Acta Radiol, 2011, 52(6): 646–650. DOI:10.1258/ar.2011.100462
[14] Chen HH, Chiu NT, Su WC, et al. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer[J]. Radiology, 2012, 264(2): 559–566. DOI:10.1148/radiol.12111148
[15] Ludwig V, Komori T, Kolb D, et al. Cerebral lesions incidentally detected on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography images of patients evaluated for body malignancies[J]. Mol Imaging Biol, 2002, 4(5): 359–362. DOI:10.1016/S1536-1632(02)00024-0
[16] Domachevsky L, Groshar D, Galili R, et al. Survival Prognostic Value of Morphological and Metabolic Variables in Patients with Stage Ⅰ and Ⅱ Non-Small Cell Lung Cancer[J]. Eur Radiol, 2015, 25(11): 3361–3367. DOI:10.1007/s00330-015-3754-8
[17] Agarwal M, Brahmanday G, Bajaj SK, et al. Revisiting the prognostic value of preoperative 18F-fluoro-2-deoxyglucose 18F-FDG positron emission tomography (PET) in early-stage (Ⅰ & Ⅱ) non-small cell lung cancers (NSCLC)[J]. Eur J Nucl Med Mol Imaging, 2010, 37(4): 691–698. DOI:10.1007/s00259-009-1291-x
[18] Goodgame B, Pillot GA, Yang Z, et al. Prognostic value of preoperative positron emission tomography in resected stage I non-small cell lung cancer[J]. J Thorac Oncol, 2008, 3(2): 130–134. DOI:10.1097/JTO.0b013e318160c122
[19] Hanin FX, Lonneux M, Cornet J, et al. Prognostic value of FDG uptake in early stage non-small cell lung cancer[J]. Eur J Cardiothorac Surg, 2008, 33(5): 819–823. DOI:10.1016/j.ejcts.2008.02.005
[20] Yoo IeR, Chung SK, Park HL, et al. Prognostic value of SUVmax and metabolic tumor volume on 18F-FDG PET/CT in early stage non-small cell lung cancer patients without LN metastasis[J]. Biomed Mater Eng, 2014, 24(6): 3091–3103. DOI:10.3233/BME-141131
[21] Korkmaz T, Seber S, Okutur K, et al. Serum thymidine kinase 1 levels correlates with FDG uptake and prognosis in patients with non small cell lung cancer[J]. Biomarkers, 2013, 18(1): 88–94. DOI:10.3109/1354750X.2012.738250
[22] Lin MY, Wu M, Brennan S, et al. Absence of a relationship between tumor 18F-fluorodeoxyglucose standardized uptake value and survival in patients treated with definitive radiotherapy for non-small-cell lung cancer[J]. J Thorac Oncol, 2014, 9(3): 377–382. DOI:10.1097/JTO.0000000000000096
[23] Jin F, Zhu H, Fu Z, et al. Prognostic value of the standardized uptake value maximum change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography imaging in patients with advanced non-small-cell lung cancer[J]. Onco Targets Ther, 2016, 9: 2993–2999. DOI:10.2147/OTT.S104919
[24] Billè A, Okiror L, Skanjeti A, et al. The prognostic significance of maximum standardized uptake value of primary tumor in surgically treated non-small-cell lung cancer patients:analysis of 413 cases[J]. Clin Lung Cancer, 2013, 14(2): 149–156. DOI:10.1016/j.cllc.2012.04.007
[25] Hyun SH, Choi JY, Kim K, et al. Volume-based parameters of 18F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection[J]. Ann Surg, 2013, 257(2): 364–370. DOI:10.1097/SLA.0b013e318262a6ec
[26] Hyun SH, Ahn HK, Ahn MJ, et al. Volume-Based Assessment with 18F-FDG PET/CT Improves Outcome Prediction for Patients with Stage ⅢA-N2 Non-Small Cell Lung Cancer[J]. AJR Am J Roentgenol, 2015, 205(3): 623–628. DOI:10.2214/AJR.14.13847
[27] Zhang H, Wroblewski K, Jiang Y, et al. A new PET/CT volumetric prognostic index for non-small cell lung cancer[J]. Lung Cancer, 2015, 89(1): 43–49. DOI:10.1016/j.lungcan.2015.03.023
[28] Ohri N, Piperdi B, Garg MK, et al. Pre-treatment FDG-PET predicts the site of in-field progression following concurrent chemoradiotherapy for stage Ⅲ non-small cell lung cancer[J]. Lung Cancer, 2015, 87(1): 23–27. DOI:10.1016/j.lungcan.2014.10.016
[29] Huang W, Liu B, Fan M, et al. The early predictive value of a decrease of metabolic tumor volume in repeated 18F-FDG PET/CT for recurrence of locally advanced non-small cell lung cancer with concurrent radiochemotherapy[J]. Eur J Radiol, 2015, 84(3): 482–488. DOI:10.1016/j.ejrad.2014.11.020
[30] Han EJ, Yang YJ, Park JC, et al. Prognostic value of early response assessment using 18F-FDG PET/CT in chemotherapy-treated patients with non-small-cell lung cancer[J]. Nucl Med Commun, 2015, 36(12): 1187–1194. DOI:10.1097/MNM.0000000000000382
[31] Huang W, Fan M, Liu B, et al. Value of metabolic tumor volume on repeated 18F-FDG PET/CT for early prediction of survival in locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy[J]. J Nucl Med, 2014, 55(10): 1584–1590. DOI:10.2967/jnumed.114.142919
[32] Melloni G, Gajate AM, Sestini S, et al. New positron emission tomography derived parameters as predictive factors for recurrence in resected stageⅠnon-small cell lung cancer[J]. Eur J Surg Oncol, 2013, 39(11): 1254–1261. DOI:10.1016/j.ejso.2013.07.092
[33] Park SY, Cho A, Yu WS, et al. Prognostic value of total lesion glycolysis by 18F-FDG PET/CT in surgically resected stage ⅠA non-small cell lung cancer[J]. J Nucl Med, 2015, 56(1): 45–49. DOI:10.2967/jnumed.114.147561
[34] Moon SH, Cho SH, Park LC, et al. Metabolic response evaluated by 18F-FDG PET/CT as a potential screening tool in identifying a subgroup of patients with advanced non-small cell lung cancer for immediate maintenance therapy after first-line chemotherapy[J]. Eur J Nucl Med Mol Imaging, 2013, 40(7): 1005–1013. DOI:10.1007/s00259-013-2400-4
[35] Soussan M, Chouahnia K, Maisonobe JA, et al. Prognostic implications of volume-based measurements on FDG PET/CT in stage Ⅲ non-small-cell lung cancer after induction chemotherapy[J]. Eur J Nucl Med Mol Imaging, 2013, 40(5): 668–676. DOI:10.1007/s00259-012-2321-7
[36] Usmanij EA, de Geus-Oei LF, Troost EG, et al. 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy[J]. J Nucl Med, 2013, 54(9): 1528–1534. DOI:10.2967/jnumed.112.116921
[37] Keam B, Lee SJ, Kim TM, et al. Total Lesion Glycolysis in Positron Emission Tomography Can Predict Gefitinib Outcomes in Non-Small-Cell Lung Cancer with Activating EGFR Mutation[J]. J Thorac Oncol, 2015, 10(8): 1189–1194. DOI:10.1097/JTO.000000000000-0569
[38] 张佳胤, 李彪. 正电子药物在肿瘤诊断中的进展[J]. 国际放射医学核医学杂志, 2006, 30(1): 30–35. DOI:10.3760/cma.j.issn.1673-4114.2006.01.011
Zhang JY, Li B. The development of positron emission tomography tracers in the diagnosis of malignant tumors[J]. Int J Radiat Med Nucl Med, 2006, 30(1): 30–35. DOI:10.3760/cma.j.issn.1673-4114.2006.01.011