工程地质学报  2018, Vol. 26 Issue (5): 1390-1396   (#KB#)
 Article Options PDF (#KB#) Full Text HTML Abstract Figures References History 收稿日期：2018-06-01 接受日期：2018-08-02 扩展功能 把本文推荐给朋友 加入引用管理器 Email Alert 文章反馈 浏览反馈信息 本文作者相关文章 徐彬 李仲奎

引用本文

XU Bin, LI Zhongkui. 2018. Initial stress regressive analysis of water sealed underground oil carven[J]. Journal of Engineering Geology, 26(5): 1390-1396. doi: 10.13544/j.cnki.jeg.2018245.

① 中交基础设施养护集团有限公司 北京 100011;
② 清华大学水利水电工程系 北京 100084

INITIAL STRESS REGRESSIVE ANALYSIS OF WATER SEALED UNDERGROUND OIL CARVEN
XU Bin, LI Zhongkui
① CCCC Infrastructure Maintenance Group Co., Ltd., Beijing 100011;
② Department of Water Resources and Hydropower Engineering, Tsinghua University, Beijing 100084
Abstract: For the stability analysis of underground cavern, initial stress regression analysis is a very important first step. The existing initial stress regression methods, such as function method, displacement back analysis method and boundary method, are not easy to operate. Their accuracy is not high. This paper takes the Huangdaowater sealed underground oil cavern as an example. The relationship between the principal stress and the vertical self-weight stress is obtained, according to the measured initial in-situ stress. On the basis of the numerical simulation calculated results of self-weight stress, the horizontal principal stress convert to the normal stress and shear stress of model coordinates by coordinate transformation. Finally, based on the FISH language of FLAC3D, read the normal stress and shear stress obtained in the previous step, and calculate to convergence. Then the initial stress field is generated directly. The calculated results are compared with the measured results in the field. The relative error is less than 10%. This method is simple and effective.
Key words: Initial stress field    Coordinate transformation    FLAC3D

0 引言

1 黄岛地下水封石油洞库

 图 1 洞库整体几何模型 Fig. 1 Integral geometric model of cavern

 图 2 洞库洞室分布 Fig. 2 Distribution of all caverns

2 现场地应力

 图 3 实测地应力测孔分布图 Fig. 3 Test hole distribution of ground stress

3 初始地应力回归分析方法
3.1 整体模型建立及离散

OXY平面为水平面，为建模和分析成果方便起见，X轴和Y轴分别垂直和平行于主洞库的洞轴线，Z轴为垂直方向，以向上为正。因为研究对象为所有开挖的洞室，将整个三维几何模型的计算范围取得较大，四周侧边要大出350 m左右。在X方向为-355.0 m＜X＜872.0 m(长1227 m)，在Y方向为-1000.0 m＜Y＜300.0 m(宽1300 m)，在垂直方向为EL-200 m＜Z＜地表，比洞库最低高程(EL-50 m)低150 m，相当5倍洞高。这样可以充分消除边界约束影响，保证计算结果比较合理。

 图 4 开挖部分和断层离散网格 Fig. 4 Excavation parts and the faults grid

3.2 初始地应力回归
3.2.1 实测水平地应力与竖向应力的关系

 图 5 3个测孔各高程实测地应力与埋深的关系 Fig. 5 The relationship between in-situ stress and depth of three measuring holes

 图 6 实测水平向地应力与竖直向地应力拟合曲线 Fig. 6 Fitting curves of horizontal in-situ stress and vertical in-situ stress

 $\begin{array}{*{20}{c}} {{\sigma _{h1}} = 0.80848 + 3.30753{\sigma _v} - 0.25043{{({\sigma _v})}^2} + }\\ {0.00915{{({\sigma _v})}^3}({R^2} = 0.9253)} \end{array}$ (1)

 $\begin{array}{*{20}{c}} {{\sigma _{h2}} = - 0.07105 + 2.27255{\sigma _v} - 0.18394{{({\sigma _v})}^2} + }\\ {0.00624{{({\sigma _v})}^3}({R^2} = 0.9019)} \end{array}$ (2)

 $\left. \begin{array}{l} {\sigma _{xx}} = {\sigma _{h1}}{\cos ^2}\left({30} \right) + {\sigma _{h2}}{\sin ^2}\left({30} \right)\\ {\sigma _{yy}} = {\sigma _{h2}}{\cos ^2}\left({30} \right) + {\sigma _{h1}}{\sin ^2}\left({30} \right)\\ {\sigma _{xy}} = ({\sigma _{h2}} - {\sigma _{h1}})\cos \left({30} \right)\sin \left({30} \right) \end{array} \right\}$ (3)

3.2.2 初始地应力回归分析结果

 图 7 大主应力实测值与计算值对比柱状图 Fig. 7 Measured and calculated value of the major principal stress

 图 8 中主应力实测值与计算值对比柱状图 Fig. 8 Measured and calculated value of the intermediate principal stress

 图 9 小主应力实测值与计算值对比柱状图 Fig. 9 Measured and calculated value of the minor principal stress

 图 10 回归后的5#主洞洞轴线剖面水平向大主应力分布 Fig. 10 The calculated major principal horizontal stress distribution in the axis section of 5# cavern

 图 11 回归后的5#主洞洞轴线剖面水平向小主应力分布 Fig. 11 The calculated minor principal horizontal stress distribution in the axis section of 5# cavern

 图 12 回归后的5#主洞洞轴线剖面竖直向地应力分布 Fig. 12 The calculated major principal vertical stress distribution in the axis section of 5# cavern

 图 13 回归后的EL-45 m高程水平向主应力矢量图 Fig. 13 The horizontal principal stress arrow at EL-45 m elevation

4 结论

(1) 建立了一种简单便捷的地应力回归分析方法，根据实测地应力结果，先将水平向地应力与竖直向的自重应力进行拟合，得到水平向地应力与自重应力的关系后，在已有自重应力计算结果的基础上，遍历所有单元，竖直向的自重应力不变，将拟合出的水平向主应力转换到几何模型坐标系下的正应力和剪应力且读入，计算收敛后直接得到初始应力场。

(2) 采用该方法得到的初始地应力场规律性较强，90%以上点的地应力计算值与实测值对比相对误差在10%以内，取得了较好的效果。

 Chen X, Sun J Z, Zhang J K, et al. 2009. Fitting analysis of geo-stress field inhuangdao water sealed underground oil tank site[J]. Chinese Journal of Geotechnical Engineering, 31(5): 713~719. Li Y S, Yin J M, Ai K, et al. 2006. Geostress regression analysis method and engineering case application[J]. Journal of Yangtze River Scientific Research Institute, 23(4): 41~46. Qiu X B, Li S C, Li S C. 2003. 3D geostress regression analysis method and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 22(10): 1613~1617. Yao X C, Li N, Qu X, et al. 2010. Back analysis of three-dimensional initial geostress laxiwa underground powerhouse[J]. Rock and Soil Mechanics, 31(1): 246~252. Yu C, Li H B, Li G W, et al. 2010. Inversion analysis of initial stress field of Dalian underground oil storage cavern[J]. Rock and Soil Mechanics, 31(12): 3984~3990. Yu J H, Jin W L, Zou D Q. 2003. Displacement function method for analyzing initial earth stress[J]. Rock and Soil Mechanics, 24(3): 417~419. 北京东方新星石化工程股份有限公司. 2009.国家石油储备黄岛地下水封洞库工程岩土工程勘察报告[R].北京: 北京东方新星石化工程股份有限公司. 陈祥, 孙进忠, 张杰坤, 等. 2009. 黄岛地下水封石油洞库场区地应力场模拟分析[J]. 岩土工程学报, 31(5): 713~719. DOI:10.3321/j.issn:1000-4548.2009.05.012 李永松, 尹健民, 艾凯, 等. 2006. 地应力回归分析方法与工程应用实例[J]. 长江科学院院报, 23(4): 41~46. DOI:10.3969/j.issn.1001-5485.2006.04.009 邱祥波, 李术才, 李树忱. 2003. 三维地应力回归分析方法与工程应用[J]. 岩石力学与工程学报, 22(10): 1613~1613. DOI:10.3321/j.issn:1000-6915.2003.10.007 姚显春, 李宁, 曲星, 等. 2010. 拉西瓦水电站地下厂房三维高地应力反演分析[J]. 岩土力学, 31(1): 246~252. DOI:10.3969/j.issn.1000-7598.2010.01.042 于崇, 李海波, 李国文, 等. 2010. 大连地下石油储备库地应力场反演分析[J]. 岩土力学, 31(12): 3984~3990. DOI:10.3969/j.issn.1000-7598.2010.12.046 喻军华, 金伟良, 邹道勤. 2003. 分析初始地应力场的位移函数法[J]. 岩土力学, 24(3): 417~419. DOI:10.3969/j.issn.1000-7598.2003.03.019