工程地质学报  2018, Vol. 26 Issue (5): 1188-1195   (#KB#)    

引用本文  

许冲, 田颖颖, 马思远, 等. 2018. 1920年海原8.5级地震高烈度区滑坡编录与分布规律[J]. 工程地质学报, 26(5): 1188-1195. doi: 10.13544/j.cnki.jeg.2018110.
XU Chong, TIAN Yingying, MA Siyuan, et al. 2018. Inventory and spatial distribution of landslides in ⅸ-ⅺ high intensity areas of 1920 haiyuan (china) m8.5 earthquake[J]. Journal of Engineering Geology, 26(5): 1188-1195. doi: 10.13544/j.cnki.jeg.2018110.

1920年海原8.5级地震高烈度区滑坡编录与分布规律
许冲, 田颖颖, 马思远, 徐锡伟①②, 周本刚, 吴熙彦, 庄建琦, 高玉欣①④, 吴玮莹①⑤, 黄学强    
① 中国地震局地质研究所, 活动构造与火山重点实验室 北京 100029;
② 中国地震局地壳应力研究所 北京 100085;
③ 长安大学地质工程与测绘学院 西安 710054;
④ 中国地质大学(北京), 工程技术学院 北京 100083;
⑤ 中国地震局地震预测研究所 北京 100036
摘要:发生在黄土高原的1920年12月16日的海原MS8.5级大地震触发了大量的滑坡,这些滑坡直接造成了大量的人员伤亡。近年来,出现了一些关于本次地震触发滑坡的专题研究,然而,这些研究多是基于局部震区或者个别单体滑坡进行,极少有关于该地震触发滑坡详细全面的成果出现。这种情况已经成为了深入理解海原地震触发滑坡的规模与程度、发育规律等的障碍。本研究拟基于谷歌地球平台,采用人工目视解译方法,以海原地震高烈度区(Ⅸ~Ⅺ)为研究区,开展地震滑坡解译工作,并分析这些滑坡的分布规律与影响因子之间的关系。结果表明本次地震在Ⅸ~Ⅺ度区内触发了至少5384处滑坡,滑坡总面积为218.78 km2。滑坡密度最高的区域为Ⅸ烈度圈的北西部分。通过分析这些滑坡与地形、地震、地质等因子的关系发现,高程1700~2000 m为滑坡的高发与高易发区间;大多数滑坡集中发育在坡度15°~25°范围内,滑坡密度随着坡度的增加而显著增加;坡位越低,也就是距离河流越近,滑坡密度越大;新生代地层、尤其是第四系黄土覆盖地区是海原地震滑坡发生的主要区域,也是高易发区域。本文为探索黄土地区地震滑坡发育规律、减轻黄土地震滑坡灾害等提供了科学参考。
关键词海原地震    滑坡    谷歌地球    地震烈度    分布规律    
INVENTORY AND SPATIAL DISTRIBUTION OF LANDSLIDES IN Ⅸ-Ⅺ HIGH INTENSITY AREAS OF 1920 HAIYUAN (CHINA) M8.5 EARTHQUAKE
XU Chong, TIAN Yingying, MA Siyuan, XU Xiwei①②, ZHOU Bengang, WU Xiyan, ZHUANG Jianqi, GAO Yuxin①④, WU Weiying①⑤, HUANG Xueqiang    
① Key Laboratory of Active Tectonics and Volcano, Institute of Geology, China Earthquake Administration, Beijing 100029;
② Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085;
③ College of Geological Engineering and Surveying of Chang'an University, Xi'an 710054;
④ School of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083;
⑤ Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036
Abstract: The Haiyuan MS8.5 earthquake on December 16, 1920, occurred at the loess plateau. It triggered a large number of landslides. The landslides directly caused a large number of casualties. In recent years, there have been some special studies on landslides triggered by the Haiyuan earthquake. However, most of these studies have limitations on their local study areas or individual landslides. There are few detailed and comprehensive results about landslides triggered by the earthquake. This situation has become an obstacle to understand the overall incidence and severity, spatial distribution law of the Haiyuan earthquake-triggered landslides. In this study, we carry out the visual interpretation of landslides in the high seismic intensity(Ⅸ-Ⅺ)areas of Haiyuan earthquake based on Google Earth platform, as well as analyze the relationship between landslides and several influence factors. Results show that the earthquake triggered at least 5384 landslides, which have a total landslide area of 218.78 km2. The highest density of landslides is located at the NW part of seismic intensity Ⅸ circle. Through analyzing the relationship between these landslides and topography, earthquake and geological factors, it is found that elevation 1700~2000 m registers the largest landslide number and density. Most landslides are concentrated in the slope angle range of 15°~25°whereas the number density of landslides increases with the increase of slope angle. The lower the slope position is, i.e., the closer to rivers, the greater the density of the landslides. The areas with Cenozoic strata underlying, especially the Quaternary loess covered areas, register most of the landslides and the high density of landslides. This study provides a scientific reference for exploring the law of the occurrence of seismic landslides and reduction and mitigation of earthquake-triggered landslides in loess area.
Key words: Haiyuan earthquake    Landslide    Google Earth    Seismic intensity    Spatial distribution    

0 引言

习近平在向汶川地震10周年国际研讨会暨第四届大陆地震国际研讨会致信中提到,“人类对自然规律的认知没有止境,防灾减灾、抗灾救灾是人类生存发展的永恒课题。科学认识致灾规律,有效减轻灾害风险,实现人与自然和谐共处,需要国际社会共同努力”,这体现了自然灾害是全人类面临的重要问题。地震滑坡不但是一种最主要的地震次生灾害,而且还具有自然现象的属性,对其规律的探索与认知是减轻其灾害的重要基础,开展地震滑坡规律研究具有探索自然规律的科学意义与减轻滑坡灾害的实际应用价值。据文献记载,1920年12月16日宁夏海原大地震造成的人员伤亡约50%直接来自地震滑坡(Close et al., 1922; Li,1990; 李原,1994)。关于这次地震触发的滑坡以往的文献做过简要的总结(许冲,2014),包括本次地震滑坡与堰塞湖的调查与解译(陈丙午,1992; 邹谨敞等,1996; 袁丽侠,2005; Li et al., 2013)、单体滑坡机制研究(Wang et al., 2006; 袁丽侠,2006; Zhang et al., 2007)、分布特征分析(单鹏飞,1996; 陈晓利等,2003; 卢育霞,2007; 邓龙胜等,2013; Zhuang et al., 2018)等。这些研究为理解海原地震滑坡的发育程度、空间分布上的特点、一些低坡度长运动距离的滑坡发生机制等具有重要帮助。然而,当前的这些研究中,关于海原地震滑坡调查的成果并没有完全覆盖整个地震高烈度区,多数成果是针对较小区域的分布调查,对于理解地震滑坡的发育规律与分布特征可能会有一定的偏差。鉴于此,本研究以海原地震高烈度区(Ⅸ~Ⅺ度)为研究区,依托谷歌地球平台的地形与遥感影像,开展1920年海原地震滑坡目视解译,制作详细的海原地震高烈度区滑坡分布图,并分析地震滑坡与地形、地质与地震因子的关系。成果可为理解1920年海原地震滑坡发育程度与分布规律提供依据,也可为减轻黄土地区滑坡灾害提供基础资料与科技支撑。

1 数据与方法

本文研究区为海原地震高烈度区(Ⅸ~Ⅺ度),研究区总面积20 939 km2。海原地震的发震构造为北西向的海原断裂,海原断裂有一系列次级断裂组成。研究区还发育着北西向的六盘山西麓断裂与近南北向的六盘山东麓断裂、云雾山断裂与小关山断裂等(徐锡伟等,2016)。海原断裂为左旋走滑运动性质,倾角较陡,倾向南西,震中(104.9°E,36.7°N)位于海原断裂的南西侧。海原地震烈度具有南北衰减不均衡的特点。极震区北侧烈度衰减快、南侧衰减慢。尽管海原地震发震断层为左旋走滑性质,但是有一定的倾角,断层总体上向南西倾斜,因而导致南西侧的上盘震害较重,衰减得较慢(国家地震局地质研究所与宁夏回族自治区地震局,1990)。海原断层的西支的走向逐渐由北西西向北北西过渡,南东方向的六盘山东麓断裂的走向为近南北,海原断裂与六盘山东麓断裂组成的弧形构造(图 1)。海原地震的左旋走滑特征导致的南西侧块体东向运动,受到六盘山东麓断裂的阻挡,相当于在走滑断裂的末端形成了逆断层效应。南侧黄土覆盖较厚,地形起伏较大,河谷切割较深。北侧地形较平坦,黄土层覆盖较薄。总体上,北侧土质较为密实,地表土的不利影响较南侧少,地震灾害较轻。

图 1 研究区活动构造分布与1920年海原地震烈度图 Fig. 1 Active faults in the study area and seismic intensity contours of the 1920 Haiyuan earthquake

近年来,谷歌地球被应用于一些滑坡的调查工作(Sato et al., 2009; Gorum et al., 2013; Li et al., 2013; Xu et al., 2014a; Xu,2015)与其他地学研究工作(Lisle,2006; Yu et al., 2012; Padarian et al., 2015; Boardman,2016; Liu et al., 2018)中,其中高分辨率的地形起伏数据与全球绝大部分区域覆盖的多时段的极高分辨率(~ 0.5 m)的卫星影像为滑坡调查工作提供了极大的便利。研究区内极高分辨率卫星影像覆盖率为100%,且包括多个时段,保证了滑坡解译需要的卫星影像。研究区植被覆盖稀疏,多为矮小的草本植物,有利于地震滑坡的目视解译。由于海原地震已经距今90多年,因此,浅层的小滑坡痕迹早已不可辨识,但是对于深层的地震滑坡,尤其是黄土滑坡,其在谷歌地球平台上的痕迹非常清晰。表现出“勺形”的滑坡滑过之后的地形与地貌特点。尽管滑坡体上多被改造为梯田,但是滑坡后壁、滑坡源区、滑坡堆积体清晰可辨,保证我们的滑坡目视解译工作的客观性。图 2为西吉县一处区域(中心点坐标为105.591°,35.829°)滑坡解译情况(向上为东),图中每个蓝色区域代表一处滑坡。图 3为研究区西北角附近一处区域(中心点坐标为104.419°,37.071°)滑坡解译情况(向上为北),图中每个红色的区域代表一处滑坡。这一区域内的滑坡在以往的研究中(袁丽侠,2005; Li et al., 2013; Zhuang et al., 2018)还没有被发现过。

图 2 西吉县境内一处区域滑坡解译情况 Fig. 2 Interpretation of landslides in an area of Xiji County

图 3 研究区西北角附近一处区域滑坡解译情况 Fig. 3 Interpretation of landslides in the northwestern of the study area

本研究中滑坡影响因子分析中的地形数据来自SRTM 1弧秒分辨率的DEM,在投影操作中将其处理为20 m分辨率的DEM。坡度与坡向数据由这个20 m的DEM导出。坡位数据来自地理空间数据云网站(http://giscloud.cn/)。下伏地层数据(图 4)来自中国地质调查局公布的全国地质图。

图 4 研究区下伏地层分布图 Fig. 4 Underlying strata map of the study area

2 结果与分析
2.1 海原地震滑坡分布与密度分析

解译结果表明,海原地震高烈度区(Ⅸ~Ⅺ度)内至少发生5384处滑坡(图 5a),这些滑坡的总面积为218.78 km2。研究区(Ⅸ~Ⅺ度区)面积为20 939 km2,研究区内滑坡点密度为0.257个·km-2,面积密度为1.045%。以5 km为搜索半径,点密度类型选择Kernel,导出栅格分辨率设置为100 m,制作海原地震滑坡的点密度分布图(图 5b),点密度最大的可达4.124个·km-2。按照<0.1个·km-2、0.1~0.2个·km-2、0.2~0.5个·km-2、0.5~1个·km-2、1~2个·km-2、2~4.124个·km-2将滑坡点密度分为6类。滑坡点密度为2~4.124个·km-2所占区域为177.92 km2;1~2个·km-2所占区域为1056.4 km2;0.5~1个·km-2所占区域1930.96 km2;0.2~0.5个·km-2所占区域为3934.69 km2;0.1~0.2个·km-2所占区域为3473.82 km2。滑坡的高发区与高密度区位于烈度等值线Ⅸ与Ⅹ之间的区域的南西部分,并没有在极震区Ⅺ度区,这可能是因为滑坡密集分布区具备了滑坡发生的地形、地质与地震等多种条件。Ⅸ区内的滑坡密集区如西吉县地形陡峻,河流切割深。地质条件方面黄土层覆盖较厚,岩土体强度较弱。在Ⅹ与Ⅺ度区、Ⅸ度区的其他区域,尽管具备了发生地震滑坡的地震烈度条件,但是这些区域的地形与地质条件比较不利于发生地震滑坡,如这些区域地形较缓,黄土覆盖层较薄,岩土体强度较大等。研究区的北西方向也有一小块滑坡密集分布区(图 3图 5)。

图 5 1920年海原地震滑坡分布与密度图 Fig. 5 Spatial distribution map and number density map of landslides triggered by the 1920 Haiyuan earthquake a.滑坡分布图;b.滑坡密度图

2.2 海原地震滑坡影响因素分析

影响地震滑坡发生的主要因素大体包括地震、地形、地质3个方面。为探索海原地震滑坡与这些影响因素的关系,选择高程、坡度、坡向、坡位、地震烈度、下伏基岩等6个影响因子,分析滑坡在不同因子区间内的分布数量与密度(图 6)。整个研究区高程范围为1263~2999 m。将研究区按照高程1263~1400 m、1400~1500 m、1500~1600 m、1600~1700 m、1700~1800 m、1800~1900 m、1900~2000 m、2000~2100 m、2100~2200 m、2200~2300 m、2300~2400 m、2400~2999 m分为12个区间,这些区间内的滑坡面积分布大体上为中间多、两边少。在这些高程区间内的滑坡数量与滑坡密度也大体上表现出中间多两边少的趋势,高程1800~1900 m的区间发育滑坡最多,为1500处,密度也最大,为0.427个·km-2。这表明了高程对海原地震滑坡具有一定的影响作用。

图 6 海原地震滑坡与高程关系统计结果 Fig. 6 Haiyuan earthquake-triggered landslides versus elevation

坡度是影响地震滑坡发生的最主要因素之一,因为斜坡的坡度决定着滑坡发生的有效临空面。在其他条件相近的情况下,坡度越高,滑坡越容易发生。研究区坡度范围为0~68.7°。为统计海原地震滑坡与坡度的关系,将研究区按照0~5°、5°~10°、10°~15°、15°~20°、20°~25°、25°~30°、30°~35°、35°~40°、>40°共分为9类。大体上分区面积随着坡度的增加而减少(图 7)。0~20°的坡度所占总面积为17 562 km2,占整个研究区面积的83.9%,表明了整个研究区以缓坡地形为主。滑坡数量大体上呈现两边少、中间多的趋势,坡度15°~20°的区间发育滑坡数量最多,为1251处。滑坡密度随着坡度的增加而增加,大于30°的坡度分级内滑坡密度均大于1个·km-2。>40°坡度的区间内滑坡密度最高,达3.77个·km-2。这一趋势与以往的多个震例相似(Gorum et al., 2013; Xu et al., 2013, 2014a, 2014b),表明了坡度对地震滑坡的强烈控制作用。

图 7 海原地震滑坡与坡度关系统计结果 Fig. 7 Haiyuan earthquake-triggered landslides versus slope angle

坡向也是地震滑坡发生的一个地形影响因素。斜坡坡向可能通过两种方式影响地震滑坡的发生,一方面,不同坡向接收光照强度、降水强度、植被覆盖等条件不同,从而导致滑坡易发程度不同;另一方面,区域应力场方向、地震中块体的运动方向、地震波的传播方向导致了地震滑坡在某个坡向的斜坡上更易发生。后者的影响在地震滑坡中更显著。斜坡坡向与海原地震滑坡的统计结果表明北西、西、北东、北方向的滑坡数量与滑坡密度高于其他4个坡向区间。海原地震区的区域主应力场方向为北东—北北东方向的主压应力,发震断裂海原活动断裂带走向为北西西方向,性质为左旋走滑。无论是区域主应力场、南北盘的块体运动方向或地震波的传播方向等都不能与海原地震滑坡的多发与易发坡向对应起来。以往一些震例中坡向与地震滑坡的良好对应关系(Xu et al., 2014b, 2015)在本研究中海原地震滑坡中并没有体现出来(图 8)。这可能是由于海原地震是走滑断裂型地震,而表现出良好对应关系的多为逆冲断裂型地震,如2008汶川(Xu et al., 2014b; Shen et al., 2016)与2013芦山地震(Xu et al., 2015)。这也说明关于坡向与地震滑坡的关系目前还没有普适性的规律被发现,还需要考虑更多的实例并开展进一步研究。

图 8 海原地震滑坡与坡向的关系统计结果 Fig. 8 Haiyuan earthquake-triggered landslides versus slope aspect

斜坡坡位也往往作为一个影响地震滑坡的发生因素,来统计不同坡位中的地震滑坡分布。参考前人的坡位分类方法(Weiss,2001; Jenness et al., 2013),将研究区按照山脊、上坡、中坡、平坡、下坡、河谷分为6类。研究区内中坡分类所占面积最大,为7840 km2,其中发育滑坡2643处,也是所有坡位分类中发育滑坡最多的(图 9)。平坡无疑是滑坡数量最少与密度最低的,少数的滑坡可能是由于DEM的精度问题或者一些黄土滑坡发生在坡度很低的区域,如石碑塬滑坡的坡度低于5°(Pei et al., 2017)。其他5个坡位从山脊到河谷代表坡位从高到低的变化,发现滑坡密度随着坡位的降低而逐渐升高,最大的为河谷坡位,滑坡密度高达0.617个·km-2。这也反映了河流对地震滑坡的影响作用,距离河流越近,滑坡密度越大。

图 9 海原地震滑坡与坡位的关系统计结果 Fig. 9 Haiyuan earthquake-triggered landslides versus slope position

地震烈度无疑是影响地震滑坡发生的一个重要因素。海原地震的极震区烈度为Ⅺ度,本文研究区为Ⅸ~Ⅺ度区域。结果表明Ⅸ度区滑坡数量与滑坡密度均最高,分别为3324处与0.326个·km-2。滑坡数量随着烈度的升高而增加,Ⅹ与Ⅺ度区的滑坡密度相当,约为0.19个·km-2(图 10)。大体上滑坡密度随着地震烈度的升高而增加(Wang et al., 2002; Xu et al., 2014b, 2014c, 2015; Tian et al., 2016),海原地震这种地震滑坡数量和滑坡密度随着烈度上升反而降低的趋势非常罕见。这表明了地震滑坡不但受地震烈度的控制,同时也受地形与地质条件的强烈控制。

图 10 海原地震滑坡与地震烈度的关系统计结果 Fig. 10 Haiyuan earthquake-triggered landslides versus seismic intensity

下伏地层是地震滑坡发生的重要因素,因为其是滑坡发生的重要物质条件,不同下伏地层区域内的滑坡易发性往往差异较大。研究区的地层分布从震旦系(Pt)到第四系(Q),但是第四系(Q)地层覆盖面积为15 286 km2,占整个研究区的73%;其中发育滑坡4008处,占总滑坡的74.4%。新生代地层(Q、N、E)总面积为18 145 km2,占研究区总面积的86.7%;其中发育滑坡为5026处,占滑坡总数量的93.4%。3类新生代地层中的滑坡发育密度分别为0.26个·km-2、0.34个·km-2、0.37个·km-2,比其他地层中的滑坡密度都高(图 11)。这表明了新生代地层、尤其是第四系黄土覆盖地区是海原地震滑坡发生的主要区域,也是高易发区域。这是海原地震滑坡不同于其他地区地震滑坡(Xu et al., 2014b, 2015)的一个特征。

图 11 海原地震滑坡与下伏地层的关系统计结果 Fig. 11 Haiyuan earthquake-triggered landslides versus underlying strata

3 结论

本文在覆盖20 939 km2的区域内,基于谷歌地球平台的地形起伏与遥感影像,采用目视解译方法,以1920年海原地震高烈度区(Ⅸ~Ⅺ)为研究区,解译得到5384处滑坡,滑坡总面积为218.78 km2。研究区内滑坡点密度、面密度分别为0.257个·km-2与1.045%。海原滑坡最密集分布区位于Ⅸ烈度圈的北西部分,是强震动与显著的地表形变、陡峻的地形条件与较厚的黄土覆盖层导致的岩土体强度弱等条件的共同作用导致了这一现象。高程1700~2000为滑坡的高发与高易发区间;大多数滑坡集中发育在坡度15°~25°范围内,滑坡密度随着坡度的增加而显著增加;坡位越低,也就是距离河流越近,滑坡密度越大;新生代地层、尤其是第四系黄土覆盖地区是海原地震滑坡发生的主要区域,也是高易发区域。本研究包括的1920年海原MS8.5级大地震触发滑坡的总体发育程度与强度、滑坡与地震、地形、地质等各种影响因子的关系等研究为探索黄土地区地震滑坡发育规律、减轻黄土地震滑坡灾害等提供了科学参考。

参考文献
Boardman J. 2016. The value of Google EarthTM for erosion mapping[J]. Catena, 143: 123~127. DOI:10.1016/j.catena.2016.03.031
Close U, McCormick E. 1922. Where the mountains walked[J]. National Geographic Magazine, 41(5): 445~464.
Chen X L, Ye H. 2003. Application of GIS for earthquake landslide research[J]. Earthquake Research in Shanxi, (2): 17~19.
Deng L S, Fan W. 2013. Deformation breakage characteristics and development mechanism of loess landslide triggered by Haiyuan M.5 earthquake in Ningxia[J]. Journal of Catastrophology, 28(3): 30~37.
Gorum T, van Westen C J, Korup O, et al. 2013. Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake[J]. Geomorphology, 184: 127~138. DOI:10.1016/j.geomorph.2012.11.027
Jenness J, Brost B, Beier P. 2013. Land facet corridor designer: Topographic position index tools[EB/OL]. www.jennessent.com.
Li T. 1990. Landslide management in the mountain areas of China[R]. Kathmandu, Nepal: International Centre for Integrated Mountain Development Occasional.
Li W L, Huang R Q, Pei X J, et al. 2013. Historical co-seismic landslide inventory with Google Earth:A case study of 1920 Haiyuan Earthquake, China[M]. Global View of Engineering Geology and the Environment: 179~184.
Lisle R J. 2006. Google Earth:a new geological resource[J]. Geology Today, 22(1): 29~32. DOI:10.1111/gto.2006.22.issue-1
Liu K, Ding H, Tang G A, et al. 2018. Large-scale mapping of gully-affected areas:An approach integrating Google Earth images and terrain skeleton information[J]. Geomorphology, 314: 13~26. DOI:10.1016/j.geomorph.2018.04.011
Lu Y X. 2007. Landform characteristics of seismic landslides in Xiji county, Ningxia province, and discussion on the countermeasures of landslide exploration and disaster mitigation[J]. Northwestern Seismological Journal, 29(1): 79~83.
Minasny B, Padarian J, Malone B. 2015. Digital soil mapping in the cloud using Google Earth Engine[J]. Computers & Geosciences, 83: 80~88.
Padarian J, Minasny B, Malone B, et al. 2015. Digital soil mapping in the clound using Google Earth Engine[J]. Computers & Geosciences, 83: 80~88.
Pei X J, Zhang X C, Guo B, et al. 2017. Experimental case study of seismically induced loess liquefaction and landslide[J]. Engineering Geology, 223: 23~30. DOI:10.1016/j.enggeo.2017.03.016
Sato H P, Harp E L. 2009. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth[J]. Landslides, 6(2): 153~159. DOI:10.1007/s10346-009-0147-6
Shan P F. 1996. Original analysis of the slide hazard-induced landforms in the Xiji region of Ningxia[J]. Acta Geographica Sinica, 51(6): 535~542.
Shen L L, Xu C, Liu L Y. 2016. Interaction among controlling factors for landslides triggered by the 2008 Wenchuan, China MW7.9 earthquake[J]. Frontiers of Earth Science, 10(2): 264~273. DOI:10.1007/s11707-015-0517-4
Tian Y Y, Xu C, Xu X W, et al. 2016. Detailed inventory mapping and spatial analyses to landslides induced by the 2013 MS6.6 Minxian earthquake of China[J]. Journal of Earth Science, 27(6): 1016~1026. DOI:10.1007/s12583-016-0905-z
Wang G H, Zhang D X, Furuya G, et al. 2006. On the mechanism for a long-travel loess landslide triggered by the 1920 Haiyuan Earthquake in China[M]. Disaster Mitigation of Debris Flows, Slope Failures and Landslides: 3~12.
Wang W N, Nakamura H, Tsuchiya S, et al. 2002. Distributions of landslides triggered by the Chi-chi Earthquake in Central Taiwan on September 21, 1999[J]. Landslides-Journal of the Japan Landslide Society, 38(4): 318~326.
Weiss A D. 2001. Topographic position and landforms analysis[EB/OL]. http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf.
Xu C, Shyu J B H, Xu X W. 2014a. Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, MW=7.0 earthquake:visual interpretation, inventory compiling, and spatial distribution statistical analysis[J]. Natural Hazards and Earth System Sciences, 14(7): 1789~1818. DOI:10.5194/nhess-14-1789-2014
Xu C, Xu X, Yao X, et al. 2014b. Three(nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan MW7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 11(3): 441~461. DOI:10.1007/s10346-013-0404-6
Xu C, Xu X W, Shyu J B H, et al. 2014c. Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, MW5.9 earthquake:Inventory compiling and spatial distribution analysis[J]. Journal of Asian Earth Sciences, 92: 125~142. DOI:10.1016/j.jseaes.2014.06.014
Xu C, Xu X, Shyu J B H. 2015. Database and spatial distribution of landslides triggered by the Lushan, China MW6.6 earthquake of 20 April 2013[J]. Geomorphology, 248: 77~92. DOI:10.1016/j.geomorph.2015.07.002
Xu C, Xu X, Yu G. 2013. Landslides triggered by slipping-fault-generated earthquake on a plateau:An example of the 14 April 2010, MS7.1, Yushu, China earthquake[J]. Landslides, 10(4): 421~431. DOI:10.1007/s10346-012-0340-x
Xu C. 2015. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies:Principles and case studies[J]. Geoscience Frontiers, 6(6): 825~836. DOI:10.1016/j.gsf.2014.03.004
Xu C. 2014. Overview of earthquake-triggered landslides across China mainland before the 2008 Wenchuan MW7.9 earthquake[J]. Science & Technology Review, 32(16): 63~77.
Yu L, Gong P. 2012. Google Earth as a virtual globe tool for Earth science applications at the global scale:progress and perspectives[J]. International Journal of Remote Sensing, 33(12): 3966~3986. DOI:10.1080/01431161.2011.636081
Yuan L X. 2005. The mechanism of loess landslide caused by earthquake in Haiyuan of Ningxia[D]. Xi'an: Northwest University.
Yuan L X. 2006. Forming mechanism of the loess landslides in Xiji of Ningxia with low-angle, high speed and far-distance[J]. Journal of Disaster Prevention and Mitigation Engineering, 26(2): 219~223.
Zhang D X, Wang G H. 2007. Study of the 1920 Haiyuan earthquake-induced landslides in loess(China)[J]. Engineering Geology, 94(1): 76~88.
Zhuang J Q, Peng J B, Xu C, et al. 2018. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China[J]. Geomorphology, 314: 1~12. DOI:10.1016/j.geomorph.2018.04.012
Zou J C, Shao S M. 1996. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake, 10(1): 1~6.
陈丙午. 1992.地震滑坡灾害的特点与减灾对策[C]//中国地震学会第4次学术大会论文摘要集.北京: 中国地震学会.
陈晓利, 叶洪. 2003. 利用GIS进行地震滑坡分析[J]. 山西地震, (2): 17~19. DOI:10.3969/j.issn.1000-6265.2003.02.006
邓龙胜, 范文. 2013. 宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J]. 灾害学, 28(3): 30~37. DOI:10.3969/j.issn.1000-811X.2013.03.007
国家地震局地质研究所, 宁夏回族自治区地震局. 1990. 海原活动断裂带[M]. 北京: 地震出版社.
李原. 1994. 地震洪水的次生灾害:滑坡和崩坍[J]. 环境, (12): 30.
卢育霞. 2007. 宁夏西吉县境地震滑坡的地貌特征及其减灾开发对策探讨[J]. 西北地震学报, 29(1): 79~83. DOI:10.3969/j.issn.1000-0844.2007.01.016
单鹏飞. 1996. 宁夏西吉地区滑坡灾害地貌的成因分析[J]. 地理学报, 51(6): 535~542. DOI:10.3321/j.issn:0375-5444.1996.06.008
徐锡伟, 韩竹军, 杨晓平, 等. 2016. 中国及邻近地区地震构造图[M]. 北京: 地震出版社.
许冲. 2014. 2008年汶川地震前的中国大陆地震滑坡研究[J]. 科技导报, 32(16): 63~77. DOI:10.3981/j.issn.1000-7857.2014.16.011
袁丽侠. 2005.宁夏海原地震诱发黄土滑坡的形成机制研究[D].西安: 西北大学.
袁丽侠. 2006. 宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J]. 防灾减灾工程学报, 26(2): 219~223.
邹谨敞, 邵顺妹. 1996. 海原地震滑坡及其分布特征探讨[J]. 内陆地震, 10(1): 1~6.
Boardman J. 2016. The value of Google EarthTM for erosion mapping[J]. Catena, 143: 123~127. DOI:10.1016/j.catena.2016.03.031
Close U, McCormick E. 1922. Where the mountains walked[J]. National Geographic Magazine, 41(5): 445~464.
Chen X L, Ye H. 2003. Application of GIS for earthquake landslide research[J]. Earthquake Research in Shanxi, (2): 17~19.
Deng L S, Fan W. 2013. Deformation breakage characteristics and development mechanism of loess landslide triggered by Haiyuan M.5 earthquake in Ningxia[J]. Journal of Catastrophology, 28(3): 30~37.
Gorum T, van Westen C J, Korup O, et al. 2013. Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake[J]. Geomorphology, 184: 127~138. DOI:10.1016/j.geomorph.2012.11.027
Jenness J, Brost B, Beier P. 2013. Land facet corridor designer: Topographic position index tools[EB/OL]. www.jennessent.com.
Li T. 1990. Landslide management in the mountain areas of China[R]. Kathmandu, Nepal: International Centre for Integrated Mountain Development Occasional.
Li W L, Huang R Q, Pei X J, et al. 2013. Historical co-seismic landslide inventory with Google Earth:A case study of 1920 Haiyuan Earthquake, China[M]. Global View of Engineering Geology and the Environment: 179~184.
Lisle R J. 2006. Google Earth:a new geological resource[J]. Geology Today, 22(1): 29~32. DOI:10.1111/gto.2006.22.issue-1
Liu K, Ding H, Tang G A, et al. 2018. Large-scale mapping of gully-affected areas:An approach integrating Google Earth images and terrain skeleton information[J]. Geomorphology, 314: 13~26. DOI:10.1016/j.geomorph.2018.04.011
Lu Y X. 2007. Landform characteristics of seismic landslides in Xiji county, Ningxia province, and discussion on the countermeasures of landslide exploration and disaster mitigation[J]. Northwestern Seismological Journal, 29(1): 79~83.
Minasny B, Padarian J, Malone B. 2015. Digital soil mapping in the cloud using Google Earth Engine[J]. Computers & Geosciences, 83: 80~88.
Padarian J, Minasny B, Malone B, et al. 2015. Digital soil mapping in the clound using Google Earth Engine[J]. Computers & Geosciences, 83: 80~88.
Pei X J, Zhang X C, Guo B, et al. 2017. Experimental case study of seismically induced loess liquefaction and landslide[J]. Engineering Geology, 223: 23~30. DOI:10.1016/j.enggeo.2017.03.016
Sato H P, Harp E L. 2009. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth[J]. Landslides, 6(2): 153~159. DOI:10.1007/s10346-009-0147-6
Shan P F. 1996. Original analysis of the slide hazard-induced landforms in the Xiji region of Ningxia[J]. Acta Geographica Sinica, 51(6): 535~542.
Shen L L, Xu C, Liu L Y. 2016. Interaction among controlling factors for landslides triggered by the 2008 Wenchuan, China MW7.9 earthquake[J]. Frontiers of Earth Science, 10(2): 264~273. DOI:10.1007/s11707-015-0517-4
Tian Y Y, Xu C, Xu X W, et al. 2016. Detailed inventory mapping and spatial analyses to landslides induced by the 2013 MS6.6 Minxian earthquake of China[J]. Journal of Earth Science, 27(6): 1016~1026. DOI:10.1007/s12583-016-0905-z
Wang G H, Zhang D X, Furuya G, et al. 2006. On the mechanism for a long-travel loess landslide triggered by the 1920 Haiyuan Earthquake in China[M]. Disaster Mitigation of Debris Flows, Slope Failures and Landslides: 3~12.
Wang W N, Nakamura H, Tsuchiya S, et al. 2002. Distributions of landslides triggered by the Chi-chi Earthquake in Central Taiwan on September 21, 1999[J]. Landslides-Journal of the Japan Landslide Society, 38(4): 318~326.
Weiss A D. 2001. Topographic position and landforms analysis[EB/OL]. http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf.
Xu C, Shyu J B H, Xu X W. 2014a. Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, MW=7.0 earthquake:visual interpretation, inventory compiling, and spatial distribution statistical analysis[J]. Natural Hazards and Earth System Sciences, 14(7): 1789~1818. DOI:10.5194/nhess-14-1789-2014
Xu C, Xu X, Yao X, et al. 2014b. Three(nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan MW7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 11(3): 441~461. DOI:10.1007/s10346-013-0404-6
Xu C, Xu X W, Shyu J B H, et al. 2014c. Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, MW5.9 earthquake:Inventory compiling and spatial distribution analysis[J]. Journal of Asian Earth Sciences, 92: 125~142. DOI:10.1016/j.jseaes.2014.06.014
Xu C, Xu X, Shyu J B H. 2015. Database and spatial distribution of landslides triggered by the Lushan, China MW6.6 earthquake of 20 April 2013[J]. Geomorphology, 248: 77~92. DOI:10.1016/j.geomorph.2015.07.002
Xu C, Xu X, Yu G. 2013. Landslides triggered by slipping-fault-generated earthquake on a plateau:An example of the 14 April 2010, MS7.1, Yushu, China earthquake[J]. Landslides, 10(4): 421~431. DOI:10.1007/s10346-012-0340-x
Xu C. 2015. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies:Principles and case studies[J]. Geoscience Frontiers, 6(6): 825~836. DOI:10.1016/j.gsf.2014.03.004
Xu C. 2014. Overview of earthquake-triggered landslides across China mainland before the 2008 Wenchuan MW7.9 earthquake[J]. Science & Technology Review, 32(16): 63~77.
Yu L, Gong P. 2012. Google Earth as a virtual globe tool for Earth science applications at the global scale:progress and perspectives[J]. International Journal of Remote Sensing, 33(12): 3966~3986. DOI:10.1080/01431161.2011.636081
Yuan L X. 2005. The mechanism of loess landslide caused by earthquake in Haiyuan of Ningxia[D]. Xi'an: Northwest University.
Yuan L X. 2006. Forming mechanism of the loess landslides in Xiji of Ningxia with low-angle, high speed and far-distance[J]. Journal of Disaster Prevention and Mitigation Engineering, 26(2): 219~223.
Zhang D X, Wang G H. 2007. Study of the 1920 Haiyuan earthquake-induced landslides in loess(China)[J]. Engineering Geology, 94(1): 76~88.
Zhuang J Q, Peng J B, Xu C, et al. 2018. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China[J]. Geomorphology, 314: 1~12. DOI:10.1016/j.geomorph.2018.04.012
Zou J C, Shao S M. 1996. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake, 10(1): 1~6.
陈丙午. 1992.地震滑坡灾害的特点与减灾对策[C]//中国地震学会第4次学术大会论文摘要集.北京: 中国地震学会.
陈晓利, 叶洪. 2003. 利用GIS进行地震滑坡分析[J]. 山西地震, (2): 17~19. DOI:10.3969/j.issn.1000-6265.2003.02.006
邓龙胜, 范文. 2013. 宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J]. 灾害学, 28(3): 30~37. DOI:10.3969/j.issn.1000-811X.2013.03.007
国家地震局地质研究所, 宁夏回族自治区地震局. 1990. 海原活动断裂带[M]. 北京: 地震出版社.
李原. 1994. 地震洪水的次生灾害:滑坡和崩坍[J]. 环境, (12): 30.
卢育霞. 2007. 宁夏西吉县境地震滑坡的地貌特征及其减灾开发对策探讨[J]. 西北地震学报, 29(1): 79~83. DOI:10.3969/j.issn.1000-0844.2007.01.016
单鹏飞. 1996. 宁夏西吉地区滑坡灾害地貌的成因分析[J]. 地理学报, 51(6): 535~542. DOI:10.3321/j.issn:0375-5444.1996.06.008
徐锡伟, 韩竹军, 杨晓平, 等. 2016. 中国及邻近地区地震构造图[M]. 北京: 地震出版社.
许冲. 2014. 2008年汶川地震前的中国大陆地震滑坡研究[J]. 科技导报, 32(16): 63~77. DOI:10.3981/j.issn.1000-7857.2014.16.011
袁丽侠. 2005.宁夏海原地震诱发黄土滑坡的形成机制研究[D].西安: 西北大学.
袁丽侠. 2006. 宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J]. 防灾减灾工程学报, 26(2): 219~223.
邹谨敞, 邵顺妹. 1996. 海原地震滑坡及其分布特征探讨[J]. 内陆地震, 10(1): 1~6.