文章快速检索     高级检索
  地质与资源 2023, Vol. 32 Issue (3): 290-300  
0
引用本文
陈超, 刘治成, 龙波, 文真蓁, 郭宇衡, 郑毅, 吴得强, 彭松林. 扬子板块西缘同德鳞片状石墨矿地球化学特征及成因探讨[J]. 地质与资源, 2023, 32(3): 290-300.  
CHEN Chao, LIU Zhi-cheng, LONG Bo, WEN Zhen-zhen, GUO Yu-heng, ZHENG Yi, WU De-qiang, PENG Song-lin. GEOCHEMISTRY AND GENESIS OF TONGDE FLAKE GRAPHITE DEPOSIT IN THE WESTERN MARGIN OF YANGTZE PLATE[J]. Geology and Resources, 2023, 32(3): 290-300.  

扬子板块西缘同德鳞片状石墨矿地球化学特征及成因探讨
陈超1,2 , 刘治成3 , 龙波1,2 , 文真蓁1 , 郭宇衡3 , 郑毅1 , 吴得强1,2 , 彭松林1     
1. 四川省第四地质大队, 四川 成都 611130;
2. 四川省战略矿产资源勘查利用研究院, 四川 成都 611130;
3. 四川省国土科学技术研究院, 四川 成都 610045
摘要:同德鳞片石墨矿床位于扬子板块西缘,拥有超过500×104 t鳞片石墨资源储量,是攀西地区石墨成矿带中最大、最具代表性的鳞片石墨矿床之一.研究表明:矿石中SiO2含量为55.65%~61.68%,SiO2/Al2O3比值4.59~5.42,Ni/Co比值6.23~12.88,富集Ba、Rb、Sr等大离子亲石元素和Nb、Zr、Hf、Th、U等高场强元素,ΣREE为149.13×10-6~195.37×10-6,具有弱的Ce负异常和Eu负异常,代表了缺氧的海相沉积环境.通过镜下片度测定与统计,石墨片径0.08~0.9 mm,主要分布于0.15~0.4 mm(大于100目),占比53%,属于中-大鳞片石墨.碳同位素δ13CV-PDB值介于-25.0‰~-23.5‰,表明碳质来源于有机物.碳质经过沉积并通过区域变质作用形成石墨后,岩浆岩的侵入带来的热量将使石墨进一步富集并形成大的石墨鳞片.基于前人的研究和新取得的数据,针对同德石墨矿床提出并建立了一个三阶段成因模型,即碳源沉积、区域变质作用、后期岩浆-热液改造作用.
关键词石墨矿    碳同位素    地球化学特征    成因模型    扬子板块    四川省    
中图分类号:P619.2            文献标志码:A            文章编号:1671-1947(2023)03-0290-11
GEOCHEMISTRY AND GENESIS OF TONGDE FLAKE GRAPHITE DEPOSIT IN THE WESTERN MARGIN OF YANGTZE PLATE
CHEN Chao1,2 , LIU Zhi-cheng3 , LONG Bo1,2 , WEN Zhen-zhen1 , GUO Yu-heng3 , ZHENG Yi1 , WU De-qiang1,2 , PENG Song-lin1     
1. No. 4 Geological Brigade of Sichuan, Chengdu 611130, China;
2. Sichuan Research Institute of Strategic Mineral Resources Exploration and Utilization, Chengdu 611130, China;
3. Sichuan Institute of Land Science and Technology, Chengdu 610045, China
Abstract: Tongde flake graphite deposit, located in the western margin of Yangtze Plate with over 500×104 t reserves, is one of the largest and most representative flake graphite deposits in the graphite metallogenic belt of Panxi area. The study shows that the SiO2 content in ores is 55.65%-61.68%, with the SiO2/Al2O3 ratio of 4.59-5.42, the Ni/Co ratio of 6.23-12.88, characterized by enrichment of LILEs (Ba, Rb and Sr) and HFSEs (Nb, Zr, Hf, Th and U), ΣREE of 149.13×10-6-195.37×10-6, and weak negative Ce and Eu anomalies, indicating an anoxic marine sedimentary environment. The microscopic size measurement of graphite shows the flake diameter is 0.08-0.9 mm, mainly ranged in 0.15-0.4 mm, averagely counting for 53%, belonging to the medium-large flake graphite. The δ13CV-PDB of carbon isotopes is -25.0‰ to -23.5‰, indicating that the carbon is derived from organic matter. After the carbon is deposited and formed into graphite by regional metamorphism, the heat from the intrusion of magmatic rocks would contribute to the further enrichment of graphite and then form large graphite flakes. Based on previous studies and newly available data, a three-stage genetic model of Tongde graphite deposit is proposed, including carbon source deposition, regional metamorphism and late magmatic-hydrothermal transformation.
Key words: graphite deposit    carbon isotope    geochemistry    genetic model    Yangtze Plate    Sichuan Province    

0 引言

石墨是金刚石、碳纳米管、石墨烯和其他非晶体形式中在自然界分布最广的碳同素异形体之一[1],兼具导电性、导热性、化学稳定性、润滑性等,广泛应用于电池、刹车片、润滑剂、粉末金属、耐火材料和航天等领域[2-5]. 中国和美国等诸多国家已将石墨作为“关键性矿产”,制定了一系列相关的发展战略[6],欧盟委员会2020年将石墨列为稀缺矿物[7]. 根据石墨的结晶形态,国际上把天然石墨分为3类:无定形石墨(薄片晶体直径小于1 μm)、鳞片石墨(薄片直径1 μm以上)和块状石墨(结晶明显,肉眼可见). 其中,鳞片石墨具有最好的物理化学性能、最广泛的用途和最大的工业价值. 在《国家矿产资源规划报告(2016—2020)》中,鳞片石墨被列为24种战略矿产之一. 《国家矿产资源规划(2016—2020)》述及中国建立了6个石墨资源基地,同德鳞片石墨矿床所在地攀枝花便是其中之一.

以往对攀枝花地区同德石墨矿床的研究主要集中在地质特征和找矿标志上[8],很少有研究报道此石墨矿床的碳源和成因模式. 本研究通过对同德鳞片状石墨矿床进行详细野外地质调查,结合矿石全岩地球化学分析测试和碳同位素测定,查明了同德鳞片石墨矿床的基本地质特征及主要碳质来源,尝试性提出该矿床的三阶段成因模式,以期可以加深对该类型矿床的理解和认识,为此类石墨矿床的进一步找矿和勘探提供依据.

1 区域地质背景

同德石墨矿床位于扬子板块西缘增生带中部(图 1),该带西以青藏高原为界,北以秦岭-大别造山带为界[9]. 区域上主要由古元古代康定岩群冷竹关组和新元古代火山-沉积层序组成. 冷竹关组上段为赋矿地层,近南北走向,向东倾斜,断层以南北向为主,未对石墨矿体产生显著影响. 新元古代火山-沉积层序又称为盐边群,强烈变形变质为低级绿片岩相[10-13],其上不整合上覆震旦系. 盐边群可分为两部分,下部为约1 500 m厚的玄武岩熔岩序列,上部为约3 500 m厚的复理石沉积,后者被关刀山岩体、高家村-冷水箐镁铁质岩石和同德岩体等侵入[11, 14-17]. 前人对同德石墨矿床周边的辉长-闪长侵入体和镁铁质-超镁铁质等进行了年代学研究,获得了诸如830~825 Ma同德岩体[17-18]、806 Ma高家村岩体[9]和812 Ma冷水箐岩体[19]年龄,表明同德地区在新元古代经历了较为漫长的岩浆侵入事件. 区域上发育一系列石墨矿床,例如田坪、大箐沟、辣子哨、三大湾和中坝石墨矿床等.

图 1 扬子板块西缘地质简图(据文献[16]) Fig.1 Geological sketch map of the western margin of Yangtze Plate (From Reference[16]) 1—康定变质杂岩(Kangding metamorphic complex);2—新元古代火成岩(Neoproterozoic igneous rock);3—元古宇地层(Proterozoic strata);4—哀牢山韧性剪切带(Ailaoshan ductile shear zone);5—断层(fault);6—研究区(study area);7—其他典型石墨矿床(other typical graphite deposit)
2 矿床地质

同德石墨矿床位于攀枝花地区重要的鳞片石墨成矿带[2]. 该成矿带上包括数个石墨矿床,同德石墨矿床便是其代表性矿床之一. 矿床拥有超过500×104 t石墨资源储量,固定碳平均品位7.32%,普查共圈定11条石墨矿体,主要矿体为Ⅰ、Ⅱ、Ⅲ、Ⅷ. 矿体呈层状、似层状,倾角55~68°,厚度3~126 m,平均厚度34~45 m. 矿区出露的地层由老到新主要包括:古元古界康定岩群冷竹关组(Pt1lz2),新元古界震旦系列古六组(Z1lg)、观音崖组(Z2g)、灯影组(Zd)(图 2). 赋矿围岩为冷竹关组斜长白云母石英片岩,为一套由白云母石英片岩、黑云母石英片岩、斜长角闪片岩、角闪斜长片麻岩等组成的变质岩. 地层近南北走向,向东倾斜,总体呈“残留体”,三面被石英闪长岩包围,是攀枝花地区寻找石墨矿最为重要的地层. 矿区内地层为单斜构造,断层构造主要为近南北向及近东西向,对矿体影响较小. 区内岩浆岩主要为闪长岩,发育大量混合岩化,主要由角闪石闪长岩和辉石闪长岩组成,周围有石英闪长岩[17]. 岩体内部发育闪长岩脉岩,宽0.5~4 m,长达1 km [20]. 岩体出露面积较大,空间上冷竹关组地层较紧密.

图 2 同德鳞片石墨矿床地质图 Fig.2 Geological map of Tongde flake graphite deposit a—矿区地质简图(geological sketch of the orefield);b—硝洞湾-芭蕉箐矿段(Xiaodongwan-Bajiaoqing ore block);c—大麦地矿段(Damaidi ore block);1—冲洪积(alluvial-proluvial);2—昔格达组(Xigeda fm.);3—泥盆系中上统(Upper-Middle Devonian);4—泥盆系中统(Middle Devonian);5—寒武系下统(Lower Cambrian);6—震旦系上统灯影组(Upper Sinian Dengying fm.);7—观音崖组二段(2nd mem. of Guanyinya fm.);8—观音崖组一段(1st mem. of Guanyinya fm.);9—列古六组(Lieguliu fm.);10—盐边群渔门组(Yumen fm. of Yanbian gr.);11—康定岩群冷竹关组上段(upper mem. of Lengzhuguan fm.,Kangding rock group);12—太古宇天宝寨组(Archaean Tianbaozhai fm.);13—基性-超基性岩(basic-ultrabasic rock);14—石英闪长岩(quartz diorite);15—辉长闪长岩(gabbro diorite);16—辉长岩(gabbro);17—花岗岩脉(granite dike);18—断层(fault);19—地质界线(geological boundary);20—不整合地质界线(unconformity);21—石墨矿体(graphite orebody);22—研究区范围(study area);23—矿段范围(ore block);24—采样位置(sampling position)

石墨矿石新鲜面呈钢灰色,风化面呈灰黑色(图 3). 矿石类型主要为白云母石英片岩型,其次为二云斜长石英片岩型. 矿石结构以鳞片粒状变晶结构为主,次为粒状镶嵌变晶结构、板状变晶结构. 矿石构造主要为片状构造,次为条带状构造. 矿石中的石墨、黑云母、白云母多呈鳞片状,大部分定向排列,含量30%~35%;石英呈他形粒状,含量40%~45%;斜长石少量. 粒状矿物石英与斜长石不均匀相间分布,构成片状构造.

图 3 同德石墨矿床野外及镜下照片 Fig.3 Field and microscopic photographs of Tongde graphite deposit a—石墨矿体与围岩(graphite orebody and wall rock);b,c—石墨矿石钻探岩心(drilling core of graphite ore);d—石墨矿石(graphite ore);e,f—石墨矿石镜下照片(micrograph of graphite ore);Gph—石墨(graphite);Gt—针铁矿(goethite);Mag—磁铁矿(magnetite)
3 样品采集与测试

全岩地球化学分析、石墨片度和碳同位素分析测试样品均采自同德石墨矿区硝洞湾-管家箐矿段(见图 2a),岩性为云母石英片岩型石墨矿石.

主量、微量及稀土元素分析测试在四川省地质矿产勘查开发局西昌地矿检测中心完成. 岩石主量元素数据通过X射线荧光光谱法、电感耦合等离子体质谱法(ICP-MS)、电感耦合等离子发射光谱法(ICP-AES)、分光光度法、容量法和重量法测定;微量元素和稀土元素采用等离子体质谱法测定,应用Geokit软件进行数据处理[21].

石墨片度是评价石墨矿石品质的重要指标,根据《石墨、碎云母矿产地质勘查规范》(DZ/T0326—2018)的准则,石墨片度测定方法如下:平行片理切制光片,按大于100目(0.147 mm)、100~80目(0.175 mm)、80~50目(0.287 mm)、小于50目的4个目级在显微镜下观察及统计,计算各目级所占的百分比.

碳同位素样品分析测试由中国冶金地质总局山东局测试中心完成,测试方法及流程为:将全岩样品研磨至200目,105 ℃烘烤样品去除吸附水. 样品管在70 ℃的制样设备中烘烤30 min之后将样品放入样品管中并封盖,用高纯氦气将样品管中的空气排出;用酸泵酸针向样品管中加过量的100%磷酸,磷酸与碳酸盐样品反应8 h以上,反应产生CO2气体;用高纯氦气将生成的CO2气体带入MAT253质谱仪测试C同位素组成;用参考气对其比对测试,测量结果记为δ13CV-PDB(精度优于0.1‰);先用参考气对样品及参考物质进行初步定值,最后采用GBW04416、GBW04417两个标准进行双标准校正,并给出样品的校正值.

4 样品测试结果 4.1 全岩主、微量元素分析

分析结果见表 1.

表 1 同德石墨矿床主量、微量和稀土元素分析结果 Table 1 Contents of major, trace and rare earth elements in Tongde graphite deposit

1)主量元素

矿石主量元素含量变化不大,SiO2为55.65%~61.68%,平均57.74%,低于地壳平均值(66%)[22];Al2O3为10.72%~13.33%,平均11.93%,低于上地壳平均值(15.2%);SiO2/Al2O3值为4.59~5.42,平均4.86,与杂砂岩、砂质黏土岩类似[23];Fe2O3为2.71%~3.97%,平均3.48%,低于上地壳平均值(4.5%);FeO为1.80%~2.68%,平均2.29%,低于上地壳平均值(4.5%);K2O为1.57%~2.29%,平均1.95%,低于上地壳平均值(3.4%);Na2O为0.45%~1.28%,平均0.69%,低于上地壳平均值(3.9%);K2O/Na2O为1.73~4.24,平均值为3.19,表现为富K贫Na的特点;CaO为2.69%~6.98%,平均4.62%;MgO为0.64%~2.54%,平均1.64%;CaO/MgO为1.06~6.92,平均3.58;铝饱和指数A/CNK值为0.78~1.82,平均值为1.29,表现为过铝质岩石.

2)微量元素

大离子亲石元素K亏损,Ba、Rb、Sr较富集,Sr/Ba 0.12~0.27,平均值0.19. Rb/Sr 0.18~0.53,平均值为0.28. Co含量28.90×10-6~41.60×10-6,平均值32.72×10-6,Ni含量182.0×10-6~536.0×10-6,平均值296.0×10-6,Ni/Co 6.23~12.88,平均值8.73. 高场强元素除Ta外,Nb、Zr、Hf、Th、U等含量较高且较稳定,反映出高场强元素受重矿物控制. 原始地幔标准化微量元素蛛网图(图 4a)呈右倾趋势,亏损K、P、Ti等元素,K元素明显亏损,表明矿石样品可能偏基性,而P的亏损,反映了沉积岩原岩的特征. 球粒陨石标准化稀土元素配分曲线(图 4b)呈左高右低,并且呈现了几乎平行的特征,表明稀土含量的变化大致同步. 从表 1中可以看出,ΣREE为149.13×10-6~195.37×10-6,平均177.48×10-6;LREE 130.03×10-6~191.33×10-6,平均值154.41×10-6;HREE 19.10×10-6~29.92×10-6,平均值24.07×10-6;LREE/HREE比值为5.53~7.34,平均6.43;LaN/YbN 6.34~10.30,平均值为7.89,表明轻重稀土分异明显;δCe为0.72~0.86,平均为0.81,变化范围不大,呈轻微负异常;δEu为0.68~0.79,平均为0.72,Eu呈负异常.

图 4 同德石墨矿矿石微量元素原始地幔标准化蛛网图和稀土元素球粒陨石标准化配分图(据文献[24]) Fig.4 Primitive mantle-normalized trace element spidergrams and chondrite-normalized REE patterns of Tongde graphite ores (From Reference[24])
4.2 石墨片度分析

本次研究共统计石墨片度测试样品131件,其中地表采集81件,钻孔中采集50件,较均匀地分布在各矿体中,具有代表性. 通过光片鉴定和片度测定,工作区石墨片径一般为0.08~0.90 mm,主要分布于0.15~0.4 mm(大于100目). 经统计,工作区石墨片径大于100目的平均占比为53%,属于中—大鳞片晶质石墨矿(表 2).

表 2 同德石墨矿粒度占比统计一览表 Table 2 Particle size statistics of Tongde graphite ores
4.3 稳定同位素分析

碳同位素分析结果显示同德石墨矿中固定碳的δ13CV-PDB=-24.3‰~ -24.1‰,变化范围很小,与中坝、南江坪河、大河坝、黑龙江柳毛以及山东南墅石墨矿床等的δ13CV-PDB测试值接近(表 3).

表 3 同德石墨矿与同类型石墨矿床碳同位素对比 Table 3 Carbon isotope correlation between Tongde graphite deposit and the same types
5 讨论 5.1 碳质来源

生物源和非生物源石墨的稳定碳同位素组成存在显著差异. 生物成因石墨在变质过程中由有机物转化而来[4],例如变质沉积岩中的石墨,其通常显示相对较轻的碳同位素值,δ13CV-PDB ≤ -25‰(平均值)[29];而非生物成因的石墨具有较重的同位素组成,如陨石和超镁铁质火成岩中的同位素组成[30]. 通常同位素组成较重的石墨来源于岩浆熔体中碳的结晶[31]或来自流体的碳沉积[32-33]. 石墨结晶可以减缓或阻止同位素交换[34-35],完全结晶的石墨在后期变质变形过程中即使经历高温高压同位素也几乎没有明显变化[29, 36]. 因此,碳同位素是非常有用的地球化学工具,用于区分石墨中碳的来源.

以往的研究主要集中在攀枝花地区石墨成矿带中石墨矿石的基本地质特征和找矿标志等,笔者研究发现,同德鳞片石墨矿床中石墨的碳同位素数据落在有机碳含量范围内(图 5),与渤海湾原油和煤炭的数据相似,表明同德鳞片石墨矿床中的石墨具有不同于海洋沉积物[(0±2)‰]和岩浆碳[(-5±2)‰]的生物成因[37].

图 5 同德石墨的δ13CV-PDB及不同碳源的δ13CV-PDB变化 Fig.5 The δ13CV-PDB variations of Tongde graphite and different carbon sources 数据来源:有机碳(约1 Ga)和现代海相碳酸盐据文献[38];渤海湾原油、煤炭、刘戈庄和南墅据文献[39];柴达木盆地边缘据文献[40](data from References[38-40])
5.2 矿床成因

根据石墨矿石的赋矿围岩,石墨矿床大致可分为3种类型:区域变质型(片麻岩、片岩、大理岩和正片麻岩)、接触变质型(板岩和千枚岩)和热液型(花岗岩、闪长岩和长英质岩)[41]. 根据本文分析测试结果和野外详细地质调查,可以提出同德石墨矿床的三阶段成因模型如下.

1)碳质沉积阶段:石墨矿石较低的Sr/Ba比值(平均值0.19)反映了原岩物质来源具有陆源碎屑沉积特征,即以陆源物质为主[42]. Rb/Sr平均值为0.28,高于陆壳平均值0.24 [43],暗示循环沉积作用较弱. Rb/Sr比值明显大于Sr/Ba比值,显示近海陆源碎屑物的特征[44]. Ni/Co比值大于7代表极贫氧—厌氧环境[45]. 本文石墨矿石的Ni/Co平均比值为8.73,说明石墨矿床原岩沉积环境为极度贫氧—厌氧环境. ΣREE平均为177.48×10-6,介于泥质岩石和碳酸盐岩之间,与砂岩稀土总量特征相近[46]. Ce弱负异常及Eu负异常,代表了缺氧的海相生物或化学沉积环境[47]. Ma等[48]曾对与同德矿床紧邻的田坪石墨矿床进行过LA-ICP-MS测年,该矿床赋矿地层为盐边群云母石英片岩,石墨矿石样品中碎屑锆石的U-Pb年龄表明含碳物质的沉积时间晚于833 Ma. 与田坪石墨矿不同的是同德石墨矿床赋矿地层为康定岩群冷竹关组白云母石英片岩,但在大地构造背景、矿床地质特征等方面同德和田坪石墨矿床具有一定的相似性. 因此可以推断早—中元古界古生物在古活动大陆边缘相对稳定的浅海和湖中繁衍生息,这些生物和其他富碳物质沉积并形成有机质丰富的泥质(页岩)、粉砂质泥岩[48].

2)区域变质阶段:沉积地层中的碳质物质经过古元古代吕梁运动时期的区域变质作用和强烈的构造挤压作用转化为隐晶质石墨或细小鳞片石墨. 矿物受应力定向排列,形成片理、片麻理等构造. 晋宁期区域变质作用与动力变质作用叠加,变质程度可达绿片岩相[49]、角闪岩相[48],富碳部分的地层经过此轮变质作用形成石墨矿化(体).

3)岩浆-接触变质作用阶段:新元古代扬子板块西缘存在大量火山沉积地层、大量长英质侵入体和镁铁质-超镁铁质深成岩体,部分学者认为这些深成岩体与罗迪尼亚的组合和分裂有关[13]. 具体到同德石墨矿床,至少有两个可能影响石墨形成的深成岩体,包括825±12 Ma的同德闪长岩体[17]和806 Ma高家村深成岩体[9]. 这些深成岩体的侵入过程带来大量热量,导致深成岩体边缘发生接触变质. 经区域变质作用形成的石墨矿化层受紧邻的深成侵入体的影响再次结晶并形成粗大鳞片状石墨[50],接触变质使得石墨的鳞片尺寸变大,石墨矿体的品位升高,更有利于开发和利用.这与前文述及的同德矿区石墨片经大于100目的平均占比为53%、属于中大鳞片晶质石墨矿的情况一致. 虽然深成岩体的侵入在一定程度上可能会破坏部分已经形成的矿体,但石墨矿物片径和质量的优化无疑在同德形成大而富的石墨矿过程中占主导趋势.

6 结论

1)同德石墨矿床矿石类型主要为白云母石英片岩型,矿石具鳞片粒状变晶结构,片状构造. 矿石矿物主要为石墨,脉石矿物为黑云母、白云母、石英等. 石墨呈鳞片状,片径主要为0.15~0.4 mm,大于100目的平均占比为53%,属于中—大鳞片晶质石墨;云母多呈片状,大部分定向排列,含量30%~35%;石英呈他形粒状,含量40%~45%.

2)同德石墨矿床矿石中含SiO2 55.65%~61.68%,Al2O3 10.72%~13.33%,K2O 1.57%~2.29%,K2O/Na2O 1.73~4.24,表现为富K贫Na的特点. CaO 2.69%~6.98%,CaO/MgO 1.06~6.92,铝饱和指数A/CNK值为0.78~1.82,平均值为1.29,表现为过铝质岩石,富集Ba、Rb、Sr等大离子亲石元素和Nb、Zr等高场强元素. 矿石具有弱的Ce负异常和Eu负异常,代表了缺氧的海相沉积环境.

3)石墨样品δ13CV-PDB为-24.3‰~-24.1‰,落入有机碳成因范畴,表明同德石墨矿床中的碳质主要来源于有机物,原始碳质可能来源于古生物,它们位于相对稳定的浅海环境.

4)同德鳞片石墨矿床的形成经历了沉积阶段、区域变质作用阶段和岩浆-接触变质作用阶段. 沉积阶段完成含碳物质的聚集;区域变质阶段形成同德石墨矿床;岩浆-接触变质阶段完成对初始同德石墨矿床的改造,使其石墨矿层进一步富集结晶,形成如今的大鳞片石墨矿床.

参考文献
[1]
Hazen R M, Downs R T, Jones A P, et al. Carbon mineralogy and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 7-46. DOI:10.2138/rmg.2013.75.2
[2]
颜玲亚, 高树学, 陈正国, 等. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 2018, 45(3): 421-440.
Yan L Y, Gao S X, Chen Z G, et al. Metallogenic characteristics and metallogenic zoning of graphite deposits in China[J]. Geology in China, 2018, 45(3): 421-440.
[3]
张艳飞, 安政臻, 梁帅, 等. 石墨矿床分布特征、成因类型及勘查进展[J]. 中国地质, 2022, 49(1): 135-150.
Zhang Y F, An Z Z, Liang S, et al. Distribution characteristics, genetic types and prospecting progress of graphite deposits[J]. Geology in China, 2022, 49(1): 135-150.
[4]
Buseck P R, Beyssac O. From organic matter to graphite: Graphitization[J]. Elements, 2014, 10(6): 421-426. DOI:10.2113/gselements.10.6.421
[5]
李超, 王登红, 赵鸿, 等. 中国石墨矿床成矿规律概要[J]. 矿床地质, 2015, 34(6): 1223-1236.
Li C, Wang D H, Zhao H, et al. Minerogenetic regularity of graphite deposits in China[J]. Mineral Deposits, 2015, 34(6): 1223-1236.
[6]
王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209.
Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209.
[7]
吴大天, 赵院冬, 姜平, 等. 欧盟2020版关键原材料清单的认识与启示[J]. 地质与资源, 2023, 32(2): 185-192.
Wu D T, Zhao Y D, Jiang P, et al. Knowledge and enlightenment of the EU List of Critical Raw Materials (2020)[J]. Geology and Resources, 2023, 32(2): 185-192.
[8]
冯锋, 王光洪, 彭召强, 等. 四川省攀枝花市仁和区新民石墨矿矿床成因及成矿规律探讨[J]. 四川地质学报, 2021, 41(2): 226-230.
Feng F, Wang G H, Peng Z Q, et al. Genesis and metallogeny of the Xinmin graphite deposit in Renhe District, Panzhihua, Sichuan[J]. Acta Geologica Sichuan, 2021, 41(2): 226-230.
[9]
Zhao J H, Zhou M F, Yan D P, et al. Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China[J]. Precambrian Research, 2008, 163(3/4): 189-209.
[10]
Sun W H, Zhou M F, Zhao J H. Geochemistry and tectonic significance of basaltic lavas in the Neoproterozoic Yanbian Group, Southern Sichuan Province, Southwest China[J]. International Geology Review, 2007, 49(6): 554-571. DOI:10.2747/0020-6814.49.6.554
[11]
Du L L, Guo J H, Nutman A P, et al. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at ~860 Ma on the western margin of the Yangtze Block: Evidence from the Guandaoshan Pluton[J]. Lithos, 2014, 196/197: 67-82. DOI:10.1016/j.lithos.2014.03.002
[12]
Zhao J H, Li Q W, Liu H, et al. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth-Science Reviews, 2018, 187: 1-18. DOI:10.1016/j.earscirev.2018.10.004
[13]
Zhu Y, Lai S C, Qin J F, et al. Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China[J]. Journal of Asian Earth Sciences, 2019, 183: 103977. DOI:10.1016/j.jseaes.2019.103977
[14]
Li X H, Li Z X, Sinclair J A, et al. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China[J]. Precambrian Research, 2006, 151(1/2): 14-30.
[15]
Sun W H, Zhou M F. The ~860 Ma, cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China: Implications for the origin of Neoproterozoic magmatism[J]. The Journal of Geology, 2008, 116(3): 238-253. DOI:10.1086/587881
[16]
Zhao J H, Zhou M F, Wu Y B, et al. Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton[J]. Contributions to Mineralogy and Petrology, 2019, 174(4): 36. DOI:10.1007/s00410-019-1573-7
[17]
Munteanu M, Wilson A, Yao Y, et al. The Tongde dioritic pluton (Sichuan, SW China) and its geotectonic setting: Regional implications of a local-scale study[J]. Gondwana Research, 2010, 18(2/3): 455-465.
[18]
Li Q W, Zhao J H. The Neoproterozoic high-Mg dioritic dikes in South China formed by high pressures fractional crystallization of hydrous basaltic melts[J]. Precambrian Research, 2018, 309: 198-211. DOI:10.1016/j.precamres.2017.04.009
[19]
Zhou M F, Ma Y X, Yan D P, et al. The Yanbian Terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 2006, 144(1/2): 19-38.
[20]
李奇维. 扬子板块新元古代基性脉岩成因及地质意义[D]. 武汉: 中国地质大学, 2018.
Li Q W. Petrogenesis and tectonic implications of the Neoproterozoic mafic dikes in the Yangtze Block, South China[D]. Wuhan: China University of Geosciences, 2018.
[21]
路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464.
Lu Y F. Geokit — A geochemical toolkit for Microsoft Excel[J]. Geochimica, 2004, 33(5): 459-464.
[22]
Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific, 1985: 1-132.
[23]
Roser B P, Korsch R J. Geochemical characterization, evolution and source of a Mesozoic accretionary wedge, the Torlesse terrane, New Zealand[J]. Geological Magazine, 1999, 136(5): 493-512. DOI:10.1017/S0016756899003003
[24]
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [C]//Saunders A D, Norry M J. Magmatism in the ocean basins. Geological Society Publishing, 1989: 313-345.
[25]
夏锦胜, 孙莉, 肖克炎, 等. 四川省中坝晶质石墨矿床地球化学特征及成因分析[J]. 现代地质, 2019, 33(6): 1286-1294.
Xia J S, Sun L, Xiao K Y, et al. Geochemical features and genesis analysis of the Zhongba scaly graphite deposit in Sichuan Province[J]. Geoscience, 2019, 33(6): 1286-1294.
[26]
段威, 唐文春, 黎龙昌, 等. 四川旺苍大河坝浅变质岩型石墨矿床地球化学特征与成因分析[J]. 现代地质, 2021, 35(3): 599-607.
Duan W, Tang W C, Li L C, et al. Geochemical characteristics and genesis analysis of Daheba epimetamorphic graphite deposit in Wangcang, Sichuan Province[J]. Geoscience, 2021, 35(3): 599-607.
[27]
马志鑫, 罗茂金, 刘喜停, 等. 四川南江坪河石墨矿炭质来源及成矿机制[J]. 地质科技情报, 2018, 37(3): 134-139.
Ma Z X, Luo M J, Liu X T, et al. Carbon source and metallogenic mechanism of Pinghe graphite deposit at Nanjiang, Sichuan Province[J]. Geological Science and Technology Information, 2018, 37(3): 134-139.
[28]
李光辉, 黄永卫, 吴润堂, 等. 鸡西柳毛石墨矿碳质来源及铀、钒的富集机制[J]. 世界地质, 2008, 27(1): 19-22.
Li G H, Huang Y W, Wu R T, et al. Origin of carbon and concentration of uranium and vanadium from Liumao graphite formation in Jixi[J]. Global Geology, 2008, 27(1): 19-22.
[29]
Luque F J, Crespo-Feo E, Barrenechea J F, et al. Carbon isotopes of graphite: Implications on fluid history[J]. Geoscience Frontiers, 2012, 3(2): 197-207.
[30]
Craig H. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta, 1953, 3(2/3): 53-92.
[31]
Barrenechea J F, Luque F J, Millward D, et al. Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data[J]. Contributions to Mineralogy and Petrology, 2009, 158(1): 37-51.
[32]
Luque F J, Huizenga J M, Crespo-Feo E, et al. Vein graphite deposits: Geological settings, origin, and economic significance[J]. Mineralium Deposita, 2014, 49(2): 261-277.
[33]
Zhang H F, Zhai M G, Santosh M, et al. Paleoproterozoic granulites from the Xinghe graphite mine, North China Craton: Geology, zircon U-Pb geochronology and implications for the timing of deformation, mineralization and metamorphism[J]. Ore Geology Reviews, 2014, 63: 478-497.
[34]
Valley J W, O'Neil J R. 13C12C exchange between calcite and graphite: A possible thermometer in Grenville marbles[J]. Geochimica et Cosmochimica Acta, 1981, 45(3): 411-419.
[35]
Wada H. Microscale isotopic zoning in calcite and graphite crystals in marble[J]. Nature, 1988, 331(6151): 61-63.
[36]
Zhang C, Yu X Y, Jiang T L. Mineral association and graphite inclusions in nephrite jade from Liaoning, Northeast China: Implications for metamorphic conditions and ore genesis[J]. Geoscience Frontiers, 2019, 10(2): 425-437.
[37]
Zhang C, Santosh M. Coupled laser Raman spectroscopy and carbon stable isotopes of graphite from the khondalite belt of Kerala, southern India[J]. Lithos, 2019, 334-335: 245-253.
[38]
Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of earth history: Evolution of a concept[J]. Precambrian Research, 2001, 106(1/2): 117-134.
[39]
Wang J Y, Liu J C, Zhang H D, et al. Metamorphism, geochemistry, and carbon source on sedimentary-metamorphic graphite deposits in eastern Shandong, China[J]. Geological Journal, 2020, 55(5): 3748-3769.
[40]
Yan M Q, Zhang D H, Huizenga J M, et al. Mineralogical and isotopic characterization of graphite deposits in the western part of the North Qaidam Orogen and East Kunlun Orogen, northeast Tibetan Plateau, China[J]. Ore Geology Reviews, 2020, 126: 103788.
[41]
Cui N, Sun L, Bagas L, et al. Geological characteristics and analysis of known and undiscovered graphite resources of China[J]. Ore Geology Reviews, 2017, 91: 1119-1129.
[42]
史会娟. 辽宁省北镇市石墨矿地质地球化学特征及原岩恢复[D]. 北京: 中国地质大学, 2015.
Shi H J. The geochemical fractures and protolith restoration of Beizhen City graphite mine in Liaoning Province[D]. Beijing: China University of Geosciences, 2015.
[43]
Valley J W, Taylor H P, Moorbath S. Isotopic assessment of relative contributions from crust and mantle sources to the magma genesis of Precambrian granitoid rocks[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 310(1514): 605-625.
[44]
蔡文春, 曾忠诚, 宋曙光, 等. 陕西商南湘河晶质石墨矿床地质特征与成因探讨[J]. 西北地质, 2020, 53(3): 220-232.
Cai W C, Zeng Z C, Song S G, et al. Geological characteristics and genesis of the Xianghe crystalline graphite deposit in Shangnan County of Shaanxi Province[J]. Northwestern Geology, 2020, 53(3): 220-232.
[45]
柴广路, 李双应. 北淮阳东段佛子岭群变质岩地球化学特征及其地质意义[J]. 地学前缘, 2016, 23(4): 29-45.
Chai G L, Li S Y. Geochemical characteristics and geological implications for the metamorphic rocks of Foziling Group in eastern of North Huaiyang Tectonic Belt[J]. Earth Science Frontiers, 2016, 23(4): 29-45.
[46]
杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2): 164-167.
Yang S Y, Li C X. Research progress in REE tracer for sediment source[J]. Advance in Earth Sciences, 1999, 14(2): 164-167.
[47]
刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987: 34-56.
Liu Y J, Cao L M. An introduction to element geochemistry[M]. Beijing: Geological Publishing House, 1987.
[48]
Ma Y, Huang Y, Liu L. Genesis of the Tianping flake graphite deposit at the western margin of Yangtze Block, SW China[J]. Ore Geology Reviews, 2021, 139: 104434.
[49]
白家全, 郭道军, 凌亚军, 等. 攀枝花石墨矿成矿地质规律及成矿模型初探[J]. 四川地质学报, 2021, 41(3): 398-405.
Bai J Q, Guo D J, Ling Y J, et al. A preliminary study of metallogenic regularities and metallogenic model of crystalline graphite deposits in Panzhihua[J]. Acta Geologica Sichuan, 2021, 41(3): 398-405.
[50]
于海军, 王雪, 白家全. 攀枝花石墨矿床控矿构造特征与找矿模型[J]. 四川有色金属, 2020(4): 33-35.
Yu H J, Wang X, Bai J Q. Main ore-controlling structural characteristics and prospecting model of Panzhihua graphite deposit[J]. Sichuan Nonferrous Metals, 2020(4): 33-35.