文章快速检索     高级检索
  地质与资源 2023, Vol. 32 Issue (1): 39-48, 69  
0
引用本文
师学耀, 高超利, 雷俊杰, 黄闯, 安鑫胜, 张宇恒, 王如意, 李艳青, 王磊, 孙宁亮. 鄂尔多斯盆地南部延长组长7段富有机质泥页岩生烃条件及沉积模式分析[J]. 地质与资源, 2023, 32(1): 39-48, 69.  
SHI Xue-yao, GAO Chao-li, LEI Jun-jie, HUANG Chuang, AN Xin-sheng, ZHANG Yu-heng, WANG Ru-yi, LI Yan-qing, WANG Lei, SUN Ning-liang. HYDROCARBON GENERATION CONDITIONS AND SEDIMENTARY MODEL OF ORGANIC-RICH SHALE FROM CHANG 7 MEMBER OF YANCHANG FROMATION IN SOUTHERN ORDOS BASIN[J]. Geology and Resources, 2023, 32(1): 39-48, 69.  

鄂尔多斯盆地南部延长组长7段富有机质泥页岩生烃条件及沉积模式分析
师学耀1 , 高超利1,2 , 雷俊杰1 , 黄闯1 , 安鑫胜1 , 张宇恒1 , 王如意1 , 李艳青1 , 王磊1 , 孙宁亮3     
1. 延长油田股份有限公司勘探开发技术研究中心, 陕西 延安 716000;
2. 中国石油大学 石油工程学院, 北京 102249;
3. 东北大学 资源与土木工程学院, 辽宁 沈阳 110819
摘要:针对鄂尔多斯盆地南部延长组长7段富有机质泥页岩岩石学特征及生烃潜力认识不清的问题, 通过对研究区泥页岩的岩石学、矿物组成、有机地球化学、孔隙类型及沉积模式精细研究, 结果表明: 研究区主要存在3种不同类型的泥页岩, 分别是泥质碎屑流成因的块状泥岩、浊流成因的正粒序泥岩及沉积于静水环境中的纹层状泥岩. 块状泥岩和正粒序泥岩含有较多的陆源碎屑矿物, 纹层状泥岩碳酸盐矿物含量高, 同时含有较高的有机碳及可溶烃和热解烃, 它们的干酪根类型以Ⅱ型为主, 含有少量Ⅰ型. 泥页岩储集空间主要为粒间孔、粒内孔及微裂缝, 有机质孔少见, 纹层状泥岩孔隙类型多样, 储集空间大. 泥质碎屑流形成的块状泥岩沉积在湖盆坡脚处, 浊流成因的正粒序泥岩及纹层状泥岩广泛沉积于湖盆中心, 且厚度大.
关键词富有机质泥岩    页岩油气    生烃条件    地球化学特征    沉积模式    鄂尔多斯盆地    
中图分类号:P618.13            文献标志码:A            文章编号:1671-1947(2023)01-0039-11
HYDROCARBON GENERATION CONDITIONS AND SEDIMENTARY MODEL OF ORGANIC-RICH SHALE FROM CHANG 7 MEMBER OF YANCHANG FROMATION IN SOUTHERN ORDOS BASIN
SHI Xue-yao1 , GAO Chao-li1,2 , LEI Jun-jie1 , HUANG Chuang1 , AN Xin-sheng1 , ZHANG Yu-heng1 , WANG Ru-yi1 , LI Yan-qing1 , WANG Lei1 , SUN Ning-liang3     
1. Research Center for Exploration and Development Technology, Yanchang Oilfield Co., Ltd., Yan'an 716000, Shaanxi Province, China;
2. School of Petroleum Engineering, China University of Petroleum, Beijing 102249, China;
3. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Abstract: The study on petrology, mineral composition, organic geochemistry, pore types and sedimentary model of shale from Chang 7 Member of Yanchang Formation in southern Ordos Basin shows that there are three types of mud shale in the area, including massive mudstone of muddy debris flow origin, normal-graded mudstone formed by turbidity current, and laminated mudstone deposited in lentic environment. The former two contain numerous terrigenous clastic minerals, while the latter has high content of carbonate minerals as well as high organic carbon and soluble and pyrolysed hydrocarbon. The kerogens of the mud shale are dominated by type II with minus of type I. The reservoir space of shale is mainly intergranular pore, intragranular pore and microfracture, with rare organic pore. The laminated mudstones are characterized by various pore types and large reservoir space. The massive mudstones formed by muddy debris flow are deposited at the slope toe of lake basin, while the normal-graded mudstone of turbidity current origin and laminated mudstone are widely deposited in the center of lake basin with large thickness.
Key words: organic-rich mudstone    shale oil and gas    hydrocarbon generation condition    geochemical characteristics    sedimentary model    Ordos Basin    

0 引言

富有机质泥页岩因其具有巨大的页岩油气资源潜力而被广泛研究[1-4]. 近年来,随着非常规页岩油气在北美取得巨大成功,泥页岩获得了业内更多的关注[5-7]. 在世界范围内,页岩气开采多集中于海相碳酸盐地层[8-9],中国在上扬子及南华盆地海相地层也取得突破[10-11]. 海相页岩油气的成功开采,促进了陆相页岩的勘探步伐,在此背景下,鄂尔多斯盆地延长组湖相页岩油气获得新发展[12-13]. 2011年,鄂尔多斯盆地延长组第一口湖相页岩气井LP 177井成功钻探,压裂后获得2 350 m3/d的初产[14]. 2015年,自然资源部评价鄂尔多斯盆地中生界湖相页岩气资源量达到4 212×108 m3. 此后,延长组页岩油气勘探进入了一个新的阶段.

许多学者将中国陆相页岩与北美海相页岩进行了广泛对比[15-17],明确了页岩气的产量主要受控于泥页岩岩石类型、厚度、脆性矿物含量、有机质成熟度、干酪根类型及孔隙和裂缝的发育情况. 泥页岩的岩石学特征是沉积环境、水动力条件、气候及古物源等多种因素的综合反映[18],具有重要的油气资源信息,有机地球化学特征更是烃源岩质量评判的重要指标. 鄂尔多斯盆地延长组长7段泥页岩广泛发育,具有较大的页岩油勘探潜力,但是现阶段对泥页岩的岩相类型及其对应的生烃潜力认识不清,制约了页岩油甜点精细评价. 本文基于对长7段泥页岩岩石学特征及成因分析,研究不同岩石类型泥页岩的地球化学特征及沉积模式,以期为页岩油气勘探提供一定的地质支撑.

1 区域地质概况

鄂尔多斯盆地位于中国中部,是一个大型克拉通拗陷盆地,面积约32×104 km2 [19]. 盆地周围被阴山山脉、吕梁山、秦岭、六盘山和贺兰山包围(图 1). 从古生代到中生代,盆地的构造演化分为3个阶段:寒武世到早奥陶世属于克拉通扩张发展时期,中奥陶世到中三叠世属于克拉通聚合时期,晚三叠纪到早白垩纪属于内陆残余克拉通时期[20]. 在早—中三叠世,鄂尔多斯盆地属于南华稳定陆块的一部分,到了晚三叠世,盆地南部由于印支运动的影响演变为一个前陆盆地[21].

图 1 鄂尔多斯盆地大地构造及研究区位置图(据文献[14]修改) Fig.1 Tectonic map of Ordos Basin with location of the study area (Modified from Reference[14]) 1—盆地边界(boundary of basin);2—构造边界(boundary of tectonic unit);3—断层(fault);4—河流(river);5—古水流(paleocurrent);6—城市(city);7—研究区(study area);8—黑色泥页岩(black shale)0~40 m;9—黑色泥页岩(black shale)40~80 m;10—黑色泥页岩(black shale)80~120 m;11—三角洲前缘及半深湖(delta front and semi-deep lake);12—三角洲平原(delta plain);13—河漫滩(flood plain);14—井位(well location)

由于构造特征的差异性,盆地可以分为6个一级构造单元[19],分别为北部的伊蒙隆起,西部的西缘褶皱带和天环凹陷,中部的伊陕斜坡,东部的晋西挠褶带和南部的渭北隆起. 伊陕斜坡是整个盆地的主要组成部分,整体上呈现为一个西倾的单斜,地层倾角小于1°. 研究区位于鄂尔多斯盆地南部,地跨伊陕斜坡和渭北隆起两个构造单元.

延长组上覆侏罗系延安组,下部与中三叠世纸坊组不整合接触,厚度1 000~1 300 m(图 2),根据标志层及沉积旋回特征,从下到上分为长10—长1共10个油层组[19]. 延长期主要发育河流、三角洲及湖泊相沉积,其中长7段沉积了厚度大的泥页岩,被称为张家滩页岩,是页岩油气主要的储集层.

图 2 鄂尔多斯盆地延长组综合柱状图(据文献[22]修改) Fig.2 Comprehensive stratigraphic column of the Triassic Yanchang Formation in Ordos Basin(Modified from Reference[22]) 1—不整合(unconformity);2—中砂岩(medium sandstone);3—细砂岩(fine sandstone);4—泥质粉砂岩(argillaceous siltstone);5—泥岩(mudstone);6—油页岩(oil shale)
2 实验结果及讨论

为了进一步揭示长7段泥页岩的岩石学及地球化学特征,选取了8口取心井及旬邑三水河剖面中的样品进行分析,研究内容包括精细岩心观察、薄片分析、X衍射分析、扫描电镜分析、有机碳(TOC)及热解分析、干酪根镜检、氩离子抛光电镜分析.

2.1 岩石学特征

湖相泥页岩一般沉积于三角洲前缘、前三角洲及半深湖—深湖环境中,通过泥页岩岩石学特征可以揭示其成因机理. 本研究共识别出了块状泥岩、正粒序泥岩及纹层状泥岩3种类型的泥页岩.

(1)块状泥岩

研究区块状泥岩呈深灰色,含泥岩碎屑和漂浮状泥砾(图 3a). 这些泥岩碎屑和漂浮状泥砾一般呈黑色和棕黄色,次圆状到棱角状,大小在2~10 cm之间. 有些块状泥岩可见软沉积变形构造和液化砂脉(图 3bcd),其中的泥岩碎屑发生变形或者破成碎片(图 3c).这种块状泥岩被解释成泥质碎屑流沉积,属于高泥质含量的宾汉流体,呈块状搬运[23-25]. 前人研究表明,它们一般是由泥质滑塌沉积引起的[26]. 在沉积的早期阶段,这些泥岩黏度低,因此易于变形和破碎,同沉积变形构造是最直观的表象. 漂浮状的泥砾多显杂色(图 3a),是一种氧化色,可能来自三角洲前缘,泥岩中的砂脉是机械振动作用使饱含水的泥质粉砂发生液化形成的.

图 3 长7油层组块状泥岩岩心照片 Fig.3 Photographs of massive mudstone cores from Chang 7 Member a—具棕黄色漂浮状泥砾的块状泥岩,X41井,1076.1 m(massive mudstone with brownish yellow floating muddy gravel);b—块状泥岩,部分泥岩碎屑发生变形,X41井,1090.5 m(massive mudstone with partly-deformed mudstone clastic);c—块状泥岩中的液化砂脉,可见小的泥岩碎屑,X41井,1012.4 m(liquefied sand veins in massive mudstone with small mudstone clastics);d—块状泥岩中的液化砂脉,X41井,1098.6 m(liquefied sand veins in massive mudstone)

(2)正粒序泥岩

正粒序泥岩呈黑色和灰色(图 4a),夹粉砂质泥岩层,见正粒序层理(图 4acd). 每一个单独的正粒序泥岩底部的颜色呈浅灰色(图 4a),向上渐变为深灰色,没有明显的突变面,并富含有机质(图 4cd). 单一的正粒序泥岩层厚度一般在0.5~2 cm之间,累计厚度达1~10 cm. 这类泥岩被解释为浊流成因,属于低密度泥质沉积[27-28],因此有些学者也称之为泥质浊流[25]. 泥岩底部可见沟脊模(图 4b),说明沉积过程中具有一定侵蚀性,是一种紊流[29].

图 4 长7油层组正粒序泥岩岩心和镜下照片 Fig.4 Cores and micrographs of normal-graded mudstone from Chang 7 Member a—正粒序泥岩,见多个正粒序纹层,X51井,931.8 m(normal-graded mudstone with multiple normal-graded laminas);b—正粒序泥岩底部的沟脊模,X51井,925.8 m(groove cast at the bottom of normal-graded mudstone);c—正粒序泥岩,X55井,850.9 m,正交偏光(normal-graded mudstone under cross-polarized light);d—正粒序泥岩,见有机质,X52井,1251.9 m,单偏光(normal-graded mudstone with organic matter under plane-polarized light)

(3)纹层状泥岩

纹层状泥岩呈黑色和深灰色,具水平层理,可见植物碎屑(图 5a). 此外,纹层状泥岩中常夹棕色火山凝灰岩(图 5b),有机质纹层与粉砂质泥岩层呈韵律出现(图 5cd). 这种富含有机质的纹层状泥岩沉积于静水环境,发育的粉砂岩纹层通常是油气运移通道和有利的储集空间[9, 30]. 由于长7期印支运动Ⅰ幕构造活动的影响,秦岭造山带因火山活动产生的火山灰随风飘入湖,并沉积在厚层纹层状泥岩中,形成了特有的凝灰岩夹层.

图 5 长7油层组中的纹层状泥岩岩心及镜下照片 Fig.5 Cores and micrographs of laminated mudstone from Chang 7 Member a—泥岩中的植物碎屑,X41井,1060.1 m(phytodetritus in mudstone);b—泥岩夹棕黄色凝灰岩层,X52井,1252.2 m(mudstone with brownish yellow tuff interbeds);c—富有机质纹层状泥岩,X41井,1090.3 m,单偏光(laminated organic-rich mudstone under plane-polarized light);d—粉砂岩纹层与有机质纹层韵律出现,X52井,1292.0 m,正交偏光(rhythmic alternation of siltstone lamina and organic lamina under cross-polarized light)
2.2 矿物组分特征

通过X衍射全岩分析(XRD),表明以上3种类型的泥岩主要的矿物组分是石英,平均值为40.3%,黏土矿物其次,块状泥岩、正粒序泥岩和纹层状泥岩的平均含量分别为28.3%、26.6%和30.5%(图 6a). 矿物组分显示块状泥岩和正粒序泥岩含有相对较高的陆源碎屑矿物(石英+长石),而纹层状泥岩含有较高的碳酸盐岩矿物(平均值为5.1%). 黏土矿物中以伊利石和伊蒙混层为主,平均值占到黏土矿物总含量的50.6%和37.8%(图 6b).

图 6 研究区不同类型泥岩矿物组成柱状图 Fig.6 Bar charts showing the mineral compositions in different types of mudstones in the study area a—全岩矿物组成(1~7)(whole-rock mineral composition);b—黏土矿物组成(8~11)(clay mineral composition);1—石英(quartz);2—长石(feldspar);3—黄铁矿(pyrite);4—方解石(calcite);5—白云石(dolomite);6—菱铁矿(siderite);7—黏土矿物(clay minerals);8—高岭石(kaolinite);9—绿泥石(chlorite);10—伊利石(illite);11—伊蒙混层(illite/smectite)
2.3 有机地球化学特征

(1)有机碳和岩石热解

纹层状泥岩TOC含量最高,在3.11%~11.58%之间,平均值为7.45%;正粒序泥岩TOC在0.96%~3.34%之间,平均值为2.23%;块状泥岩的TOC含量相对较低,在0.67%~3.61%之间,平均值为1.81%(图 7). 纹层状泥岩可溶烃(S1)在1.17×10-6~2.37×10-6之间,最高热解烃(S2)在12.13×10-6~61.56×10-6之间,含量最高,有机碳含量与S1S2之间呈正相关关系(图 7). 总体来说纹层状泥岩显示出较好的生油、气潜力.

图 7 研究区泥页岩TOC与可溶烃和热解烃的关系 Fig.7 Relationships of TOC vs. S1 and S2 of shale in the study area 1—块状泥岩(massive mudstone);2—正粒序泥岩(normal-graded mudstone);3—纹层状泥岩(laminated mudstone)

(2)干酪根类型

根据烃指数HI与最高热解温度交汇图分析,研究区的泥页岩有机质类型以Ⅱ型为主,含有少量Ⅰ型(图 8),它们都处于成熟阶段. 干酪根镜检分析泥页岩中腐泥组分含量最高,在60%~80%之间,平均值为70.2%;镜质组和惰质组含量在5%~35%之间,平均值为21.3%,壳质组含量在0%~20%之间,平均值为8.2%(图 9),反映了干酪根以腐泥型为主,含有少量腐植型. 通过有机质类型指数TI=(腐泥组×100+壳质组×50-镜质组×75-惰质组×100)/100,及干酪根类型划分方案[31],当TI>80时为I型;当40 < TI < 80时为Ⅱ1型;当0 < TI < 40时为Ⅱ2型;当TI < 0时为Ⅲ型. 计算显示研究区泥页岩干酪根主要为Ⅱ1型,含少量I型及Ⅱ2型.

图 8 最高热解温度与烃指数关系图 Fig.8 The diagram of Tmax vs. HI 1—块状泥岩(massive mudstone);2—正粒序泥岩(normal-graded mudstone);3—纹层状泥岩(laminated mudstone)
图 9 泥页岩显微组分三角图 Fig.9 Triangular diagram of maceral compositions in shale 1—块状泥岩(massive mudstone);2—正粒序泥岩(normal-graded mudstone);3—纹层状泥岩(laminated mudstone)
2.4 泥页岩孔隙类型特征

根据Loucks等[32]对泥页岩孔隙分类,研究区泥页岩孔隙类型分为粒间孔、粒内孔、有机质孔及微裂缝. 粒间孔通常分布在颗粒之间、颗粒与黏土矿物之间及黏土矿物之间. 刚性矿物(石英、长石、黄铁矿等)具有较强的抗压实能力,因此刚性颗粒之间(图 10a)及刚性颗粒与黏土矿物之间(图 10b)的粒间孔较普遍,黏土矿物之间的粒间孔通常呈片状或长条状(图 10c). 研究区粒间孔呈三角形、多边形及不规则状,直径一般在0.5~4 μm之间. 粒内孔主要是长石或方解石颗粒内溶蚀孔(图 10d)、黏土矿物晶间孔(图 10e)、黄铁矿晶间孔(图 10f),它们比粒间孔直径小,主要分布在0.1~1 μm之间. 研究区内的有机质孔并不普遍,只在纹层状泥页岩中少量出现(图 10g),它们通常呈孤立状,直径小,在5~400 nm之间. 有机质孔通常与成熟度、有机碳含量及干酪根类型有关,研究区的泥页岩热演化程度不高,因此没有形成大量的有机质孔. 微裂缝在研究区泥页岩中较为常见,一般为与纹层平行的水平缝(图 10hi),并常被方解石或沥青充填. 此外,有机质内可以见到细小的微裂缝,它们一般与成岩作用及生烃增压有关,微裂缝的宽度一般在0.1~1 μm之间. 研究区页岩油气的储集空间主要为粒间孔、粒内孔及微裂缝,有机质孔少量发育,并且纹层状泥岩孔隙类型多,储集空间大,正粒序泥岩次之,块状泥岩中孔隙少见.

图 10 研究区长7油层组泥页岩主要的储集空间类型 Fig.10 Main reservoir space types of shale in Chang 7 Member of the study area a—块状泥岩颗粒之间残余粒间孔,X42井,960.8 m(residual intergranular pores between grains in massive mudstone);b—纹层状泥岩颗粒与黏土矿物之间粒间孔,X40井,1143.4 m(intergranular pores between grains and clay minerals in laminated mudstone);c—正粒序泥岩黏土矿物之间的粒间孔,X50井,946.4 m(intergranular pores between clay minerals in normal-graded mudstone);d—纹层状泥岩颗粒内溶蚀孔,X52井,1251.9 m(intraparticle dissolved pores in laminated mudstone);e—纹层状泥岩黏土矿物内晶间孔,X40井,1143.4 m(intercrystalline pores in clay minerals of laminated mudstone);f—纹层状泥岩黄铁矿内晶间孔,X52井,1251.9 m(intercrystalline pores within pyrite in laminated mudstone);g—纹层状泥岩有机质孔,X52井,1261.3 m(SEM image of organic pores in laminated mudstone);h—纹层状泥岩有机质内微裂缝,X52井,1251.9 m(SEM image of microfractures in organic matter of laminated mudstone);i—纹层状泥岩微裂缝充填方解石,X52井,1261.3 m(microfractures filled with calcite in laminated mudstone)
3 沉积模式分析

泥页岩的质量和分布与沉积环境密切相关,是古气候、可容空间及氧化还原条件的综合反映[9]. 古气候控制着湖泊动植物群落的分布、温度及盐度. 在潮湿及温和的气候条件下,更多的植物碎屑会被河流带入湖泊,泥页岩通常为黑色,有机碳含量也相对较高;在干旱和炎热的气候条件下,泥页岩通常呈氧化色且有机碳含量低. 可容空间决定着古水深及泥页岩分布. 氧化还原条件是影响泥页岩质量的重要因素,泥页岩沉积于缺氧环境下,其烃源岩质量一般较好.

根据沉积构造、岩石学、有机地球化学特征并结合区域构造情况,建立了反映研究区泥页岩沉积环境的沉积模式(图 11). 沉积过程控制着不同类型泥页岩岩石学特征及分布. 研究区块状泥岩具漂浮状泥砾及泥岩撕裂屑,整体呈块体搬运,表明一种层流的沉积过程. 正粒序的泥岩沉积水体相对较深,反映了一种紊流沉积过程,属于浊流沉积,正粒序层理是其典型特征. 纹层状泥岩中有机质与粉砂岩互层,并且夹火山凝灰岩层,这些凝灰岩夹层是西秦岭印支运动火山活动的产物,距离研究区约200 km[33],它们在一段时间内使湖盆处于缺氧状况,有利于有机质保存,同时也可引起藻类勃发,提高湖泊的初级古生产能力[34]. 大多数泥质碎屑流成因的块状泥岩分布在湖盆坡脚,浊流成因的泥岩及纹层状的泥岩在湖盆中心分布广泛,且厚度大. 前人研究表明鄂尔多斯盆地在三叠纪延长期属于温暖湿润的亚热带气候,温度高于15 ℃[35],因此洪水发生的概率很高,陆生植物很容易被带入到湖盆中去,同时陆源输入的营养物质也有利于浮游生物的繁盛,并且深水环境保证了较慢的沉积速率和较大的可容空间,这些条件都有利于有机质富集和保存.

图 11 鄂尔多斯盆地南部延长组长7油层组泥页岩沉积模式(据文献[36]修改) Fig.11 Sedimentary model of shale in Chang 7 Member of Yanchang Formation in southern Ordos Basin(Modified from Reference[36]). 1—砂岩(sandstone);2—粉砂质泥岩(silty mudstone);3—泥岩(mudstone);4—页岩(shale);5—浮游生物(plankton);6—植物碎片(phytoclast);7—泥岩撕裂屑(mudstone tearing clast);8—小型褶皱(small fold);9—古地震(paleoearthquake);10—火山凝灰岩(volcanic tuff)
4 结论

通过精细的岩石学和有机地球化学分析,关于鄂尔多斯盆地南部延长组长7段泥页岩研究可以得到以下结论:

(1)研究区发育3种湖相泥页岩岩石类型,分别是块状泥岩(泥质碎屑流成因)、正粒序泥岩(浊流成因)及纹层状泥岩(深湖静水成因).

(2)石英和黏土矿物是泥页岩主要的矿物组分,块状泥岩和正粒序泥岩具有较高陆源碎屑成分,纹层状泥岩碳酸盐岩矿物含量高,并具有较高的有机碳(平均值为7.45%)与可溶烃(S1)和热解烃(S2)含量;干酪根类型主要为Ⅱ型,含少量Ⅰ型.

(3)泥页岩的孔隙类型包括粒间孔、粒内孔及微裂缝,有机质孔少见,纹层状泥岩孔隙类型多,储集空间大,正粒序泥岩次之,块状泥岩孔隙少见.

(4)泥质碎屑流成因的块状泥岩分布于湖盆坡脚,而浊流成因的泥岩及纹层状泥岩广泛分布于湖盆中心,且厚度大,为页岩油气提供良好的源岩条件.

参考文献
[1]
Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. DOI:10.2110/jsr.2009.092
[2]
Zou C N, Yang Z, Tao S Z, et al. Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos Basin, North-Central China[J]. Earth-Science Reviews, 2013, 126: 358-369. DOI:10.1016/j.earscirev.2013.08.006
[3]
袁选俊, 林森虎, 刘群, 等. 湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发, 2015, 42(1): 34-43.
Yuan X J, Lin S H, Liu Q, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
[4]
陈树旺, 许光, 杨建国, 等. 松辽盆地及外围油气资源基础地质调查——"十三五"阶段进展与未来工作展望[J]. 地质与资源, 2021, 30(3): 221-231, 248.
Chen S W, Xu G, Yang J G, et al. Foundational geological survey for oil and gas resources in Songliao Basin and its periphery areas: Progress and prospect[J]. Geology and Resources, 2021, 30(3): 221-231, 248.
[5]
徐兴友, 刘卫彬, 白静, 等. 松辽盆地南部青山口组一段页岩油富集地质特征及资源潜力[J]. 地质与资源, 2021, 30(3): 296-305.
Xu X Y, Liu W B, Bai J, et al. Enrichment characteristics and resource potential of shale oil in the first member of Qingshankou Formation in southern Songliao Basin[J]. Geology and Resources, 2021, 30(3): 296-305. DOI:10.13686/j.cnki.dzyzy.2021.03.011
[6]
Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[7]
Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/3): 223-239.
[8]
Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. DOI:10.1306/12190606068
[9]
Loucks R G, Ruppel S C. Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. DOI:10.1306/11020606059
[10]
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
Zou C N, Dong D Z, Wang S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[11]
冯动军, 胡宗全, 李双建, 等. 川东盆缘带龙马溪组关键保存要素对页岩气富集的控制作用[J]. 地质论评, 2021, 67(1): 144-158.
Feng D J, Hu Z Q, Li S J, et al. Controlling effect of key preservation elements on shale gas enrichment in Longmaxi Formation, eastern marginal zone of Sichuan Basin[J]. Geological Review, 2021, 67(1): 144-158.
[12]
王香增. 延长石油集团非常规天然气勘探开发进展[J]. 石油学报, 2016, 37(1): 137-144.
Wang X Z. Advances in unconventional gas exploration and development of Yanchang Petroleum Group[J]. Acta Petrolei Sinica, 2016, 37(1): 137-144.
[13]
谷志宇, 刘恩涛, 王香增, 等. 鄂尔多斯盆地东南部延长组七段页岩发育特征及勘探潜力[J]. 油气地质与采收率, 2021, 28(1): 95-105.
Gu Z Y, Liu E T, Wang X Z, et al. Development characteristics and exploration potential of shale in Chang 7 Member in southeast of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 95-105.
[14]
王香增, 张金川, 曹金舟, 等. 陆相页岩气资源评价初探: 以延长直罗-下寺湾区中生界长7段为例[J]. 地学前缘, 2012, 19(2): 192-197.
Wang X Z, Zhang J C, Cao J Z, et al. A preliminary discussion on evaluation of continental shale gas resources: A case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan area of Yanchang[J]. Earth Science Frontiers, 2012, 19(2): 192-197.
[15]
姜呈馥, 程玉群, 范柏江, 等. 陆相页岩气的地质研究进展及亟待解决的问题——以延长探区上三叠统延长组长7段页岩为例[J]. 天然气工业, 2014, 34(2): 27-33.
Jiang C F, Cheng Y Q, Fan B J, et al. Progress in and challenges to geologic research of terrestrial shale in China: A case study from the 7th member of the Upper Triassic Yanchang Fm in the Yanchang exploration block, Ordos Basin[J]. Natural Gas Industry, 2014, 34(2): 27-33.
[16]
赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10.
Zhao W Z, Hu S Y, Hou L H, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
[17]
Arthur M A, Sageman B B. Marine black shales: depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 499-551.
[18]
Schieber J. Significance of styles of epicontinental shale sedimentation in the Belt Basin, Mid-Proterozoic of Montana, U. S. A.[J]. Sedimentary Geology, 1990, 69(3/4): 297-312.
[19]
杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律[M]. 北京: 石油工业出版社, 2002: 50-108.
Yang J J. Tectonic evolution and oil-gas reservoirs distribution in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2002: 50-108.
[20]
Yang Y T, Li W, Ma L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos Basin: A multicycle cratonic basin in Central China[J]. AAPG Bulletin, 2005, 89(2): 255-269.
[21]
刘池洋, 赵红格, 王锋, 等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报, 2005, 79(6): 737-747.
Liu C Y, Zhao H G, Wang F, et al. Attributes of the Mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica, 2005, 79(6): 737-747.
[22]
杨仁超, 尹伟, 樊爱萍, 等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报, 2017, 19(5): 791-806.
Yang R C, Yin W, Fan A P, et al. Fine-grained, lacustrine gravity- flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 791-806.
[23]
Shanmugam G. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models-a critical perspective[J]. Marine and Petroleum Geology, 2000, 17(2): 285-342.
[24]
Talling P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488.
[25]
Yang R C, Fan A P, Han Z Z, et al. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, Central China[J]. Marine and Petroleum Geology, 2017, 85: 194-219.
[26]
宋明水, 向奎, 张宇, 等. 泥质重力流沉积研究进展及其页岩油气地质意义——以东营凹陷古近系沙河街组三段为例[J]. 沉积学报, 2017, 35(4): 740-751.
Song M S, Xiang K, Zhang Y, et al. Research progresses on muddy gravity flow deposits and their significances on shale oil and gas: A case study from the 3rd oil-member of the Paleogene Shahejie Formation in the Dongying Sag[J]. Acta Sedimentologica Sinica, 2017, 35(4): 740-751.
[27]
Bouma A H, Kuenen P H, Shepard F P. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 168.
[28]
Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[29]
Dzulynski S. New data on experimental production of sedimentary structures[J]. Journal of Sedimentary Research, 1965, 35(1): 196-212.
[30]
刘国恒, 黄志龙, 姜振学, 等. 鄂尔多斯盆地延长组湖相页岩纹层发育特征及储集意义[J]. 天然气地球科学, 2015, 26(3): 408-417.
Liu G H, Huang Z L, Jiang Z X, et al. The characteristic and reservoir significance of lamina in shale from Yanchang Formation of Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(3): 408-417.
[31]
陈建渝, 郝芳. 有机岩石学研究有机质类型和成熟度的改进[J]. 石油实验地质, 1990, 12(4): 426-431.
Chen J Y, Hao F. Improvement on study of organic types and maturation with organic petrology[J]. Petroleum Geology & Experiment, 1990, 12(4): 426-431.
[32]
Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix- related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[33]
Qiu X W, Liu C Y, Mao G Z, et al. Late Triassic tuff intervals in the Ordos Basin, Central China: Their depositional, petrographic, geochemical characteristics and regional implications[J]. Journal of Asian Earth Sciences, 2014, 80: 148-160.
[34]
孙宁亮, 钟建华, 田东恩, 等. 鄂尔多斯盆地南部延长组事件沉积与致密油的关系[J]. 中国石油大学学报(自然科学版), 2017, 41(6): 30-40.
Sun N L, Zhong J H, Tian D E, et al. Relationship between event deposits and tight oil of Yanchang Formation in Southern Ordos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(6): 30-40.
[35]
付金华, 李士祥, 徐黎明, 等. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J]. 石油勘探与开发, 2018, 45(6): 936-946.
Fu J H, Li S X, Xu L M, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 936-946.
[36]
Plint A G. Mud dispersal across a cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647.