文章快速检索     高级检索
  地质与资源 2021, Vol. 30 Issue (5): 533-543  
0
引用本文
宋冬虎, 刘兵, 路永岩, 刘晓玮, 包佳凤, 王燕, 刘军平, 孙柏东, 田素梅. 滇西潞西地区晚寒武世岩浆构造热事件的新认识[J]. 地质与资源, 2021, 30(5): 533-543.  
SONG Dong-hu, LIU Bing, LU Yong-yan, LIU Xiao-wei, BAO Jia-feng, WANG Yan, LIU Jun-ping, SUN Bai-dong, TIAN Su-mei. THE LATE CAMBRIAN MAGMATIC TECTONIC THERMAL EVENTS IN LUXI AREA, WESTERN YUNNAN: A New Understanding[J]. Geology and Resources, 2021, 30(5): 533-543.  

滇西潞西地区晚寒武世岩浆构造热事件的新认识
宋冬虎1 , 刘兵2,3 , 路永岩1 , 刘晓玮1 , 包佳凤2 , 王燕2 , 刘军平2,3 , 孙柏东2 , 田素梅2     
1. 云南省国土资源规划设计研究院, 云南 昆明 650216;
2. 云南省地质调查院, 云南 昆明 650216;
3. 国土资源部三江成矿作用及资源勘查利用重点实验室, 云南 昆明 650051
摘要:保山地块作为冈瓦纳大陆的重要组成部分,其西缘发育有以平河岩体为代表的大量早古生代侵入岩,但由于缺少野外调查资料,其地质意义存在长期争议.通过1:5万区域地质调查,详实的野外接触关系证实平河岩体存在两期侵入岩.沉积作用及年代学、岩石地球化学等赋予了其新的地质意义.潞西地区早期侵入岩主要岩石类型为二长花岗岩,应用LA-ICP-MS获得锆石U-Pb年龄为488.3±3.9 Ma.通过主、微量元素分析,其岩石属高温富黑云母含堇青石过铝花岗岩,属高钾钙碱系列岩石,具中等负Eu异常稀土特征,属"南岭型"花岗岩.结合沉积作用和区域地质构造背景,认为该期侵入岩为晚寒武世保山地块与腾冲地块碰撞拼合后上地壳部分熔融产物.
关键词保山地块    晚寒武世    后碰撞    二长花岗岩    U-Pb锆石年龄    滇西    
中图分类号:P579            文献标志码:A            文章编号:1671-1947(2021)05-0533-11
THE LATE CAMBRIAN MAGMATIC TECTONIC THERMAL EVENTS IN LUXI AREA, WESTERN YUNNAN: A New Understanding
SONG Dong-hu1 , LIU Bing2,3 , LU Yong-yan1 , LIU Xiao-wei1 , BAO Jia-feng2 , WANG Yan2 , LIU Jun-ping2,3 , SUN Bai-dong2 , TIAN Su-mei2     
1. Yunnan Institute of Land and Resources Planning and Design, Kunming 650216, China;
2. Yunnan Institute of Geological Survey, Kunming 650216, China;
3. Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization, MLR, Kunming 650051, China
Abstract: A large number of Early Paleozoic intrusive rocks represented by Pinghe pluton are developed on the western margin of Baoshan block-an important part of Gondwana. However, due to the lack of field survey data, its geological significance has long been disputed. Based on the 1:50 000 regional geological survey, the detailed field contact relationship has confirmed the existence of two stages of intrusive rocks in Pinghe pluton, and sedimentation, chronology and petrogeochemistry have endowed it with new geological implication. The early intrusive rocks in Luxi area are mainly monzogranites, with the LA-ICP-MS zircon U-Pb age of 488.3±3.9 Ma. The major and trace element analysis results show that the rock belongs to high-temperature biotite-rich cordierite-bearing peraluminous granite of high-K calc-alkali series, with REE characteristics of medium negative Eu anomaly, classified as the Nanling type of granite. Combined with sedimentation and regional geological tectonic background, it is considered that the intrusive rock is the product of upper crust partial melting after the collision of Baoshan block and Tengchong block in the Late Cambrian.
Key words: Baoshan block    Late Cambrian    post-collision    monzogranite    U-Pb zircon age    western Yunnan    

0 引言

新元古代末至早古生代早期, 冈瓦纳大陆经历了汇聚与裂解, 并在青藏高原东南缘形成了大量早古生代侵入岩, 但目前对其地质背景和意义尚存争议: 一种观点认为其为泛非造山运动的后造山花岗岩[1-4]; 另一种观点认为其与原特提斯洋壳俯冲作用有关[5-8]; 还有一种观点认为这些侵入岩可分为两期, 早期(550~520 Ma)为冈瓦纳大陆陆内局部伸展背景的产物, 晚期(520~450 Ma)为泛非造山运动后期伸展背景产物, 均不属于泛非造山带的产物[9].保山地块作为冈瓦纳大陆的重要组成部分, 其西缘发育有大量早古生代侵入岩[10-11]❶❷❸.近年来, 一些学者陆续报道了其锆石U-Pb年龄数据和岩石地球化学数据, 认为其为从寒武纪持续至奥陶纪的侵入体[7, 9, 12].然而, 将其时代置于寒武纪至奥陶纪并作为统一体进行的大地构造背景探讨, 不能精确反应其构造岩浆演化特征; 同时, 尚无人从保山地块与腾冲地块的构造演化角度对其构造背景进行过探讨.

❶云南区域地质调查大队.1:20万潞西幅区域地质调查报告.1966.

❷云南省地质调查院.1:25万腾冲县、潞西市幅区域地质调查报告.2008.

❸云南省地质调查局.云南省成矿地质背景研究报告.2013.

近来, 笔者及项目组在潞西、平河地区开展了1:5万区域地质调查, 收集了早古生代沉积作用和岩浆作用的详实资料, 基于野外直接接触关系和锆石U-Pb年龄等资料, 将早古生代侵入岩划为晚寒武世和中奥陶世两期, 进行了岩石地球化学研究, 并结合沉积作用对其构造背景提出新的认识.

1 区域地质背景

保山地块位于青藏高原东南缘, 东以昌宁-孟连结合带与印支地块毗邻, 西隔怒江-瑞丽断裂和怒江缝合带与腾冲地块毗邻[12-14](图 1a), 出露新元古界、古生界和中-新生界(图 1b).大汪溏组和公养河组为保山地块最古老地层[15], 其上不整合覆盖有早古生界磨拉石岩系[12], 资料表明该套磨拉石形成于晚寒武世(另文发表).保山地块岩浆作用主要形成了以平河岩体为代表的早古生代早期岩浆岩带, 时代为518~437 Ma [7, 16-18], 晚期岩浆作用不发育[19-20].

图 1 滇西地区地质背景图 Fig.1 Geological background map of western Yunnan Province a-区域大地构造图(据文献[21])(regional tectonic map, from Reference[21]); b-研究区采样位置图(据文献[7]修改)(sampling location map of the study area, modified from Reference[7]); (1)天山缝合带(Tianshan suture zone); (2)金沙江缝合带(Jinshajiang suture zone); (3)哀牢山缝合带(Ailaoshan suture zone); (4)马江缝合带(Majiang suture zone); (5)龙母错-双湖缝合带(Longmucuo-Shuanghu suture zone); (6)庄他武里缝合带(Chanthaburi suture zone); (7)清迈缝合带(Chiang Mai suture zone); (8)昌宁-孟连缝合带(Changning-Menglian suture zone); (9)班公湖-怒江缝合带(Bangonghu-Nujiang suture zone); (10)山边缝合带(Shanbian suture zone); (11)印度-雅鲁藏布江缝合带(India-Yarlung Zangbo River suture zone); (12)怒江缝合带(Nujiang suture zone); 1-古近系-第四系(Paleogene-Quaternary); 2-三叠系-白垩系(Triassic-Cretaceous); 3-下奥陶统-二叠系(Lower Ordovician-Permian); 4-上寒武统(Upper Cambrian); 5-古生界(Paleozoic); 6-元古宇(Proterozoic); 7-公养河组(Gongyanghe fm.); 8-三台山蛇绿混杂岩(Santaishan ophiolite melange); 9-白垩纪-古近纪花岗岩(Cretaceous-Paleogene granite); 10-晚寒武世花岗岩(Late Cambrian granite); 11-奥陶纪花岗岩(Ordovician granite); 12-平行不整合界线(parallel unconformity); 13-角度不整合界线(angular unconformity); 14-参考文献采样点(sampling site of reference); 15-1:5万区调资助项目年龄采样点(age sampling site of 1:50 000 regional survey project); 16-年龄数据(age data); 17-本文采样位置(sampling location of this study); ①文献[18]数据(data from Reference[18]); ②文献[22]数据(data from Reference[22]); ③文献[7]数据(data from Reference[7])

研究区位于滇西保山地块西缘潞西-平河地区, 涵盖了平河岩体大部(图 1b), 岩体侵位于新元古界大汪溏组和震旦系-下寒武统公养河组(图 2a), 并在接触部位围岩中形成厚1~2 m的接触热变质带.岩体由晚寒武世和中奥陶世两期侵入体组成(图 1b), 二者界面呈不规则曲面状, 同时接触部位中奥陶世侵入岩形成10~30 cm的冷凝边(图 2b).

图 2 潞西地区平河岩体两期花岗岩及其围岩 Fig.2 Two stages of granites and the surrounding rocks of Pinghe Pluton in Luxi area a-岩体与围岩侵入接触关系(intrusive contact relationship between rock mass and surrounding rock); b-中奥陶世花岗岩与晚寒武世花岗岩侵入关系(intrusive relationship between Middle Ordovician granite and Late Cambrian granite)
2 采样分析方法

在平河南约8 km (坐标24°12′24.4″N, 98°41′40.51″E)采集二长花岗岩样品(图 1b), 在河北廊坊诚信地质服务有限公司完成锆石分选, 制靶和CL图像摄制由北京锆年领航科技有限公司完成.在武汉上谱分析科技有限责任公司完成锆石U-Pb同位素测试, 实验接收器电感耦合等离子体质谱(MC-ICP-MS)采用美国Thermo Fisher公司生产的Neptune, 采用的光束直径32 μm.详细分析流程及原理参见文献[23].

主量元素和微量元素测定在国土资源部昆明矿产资源监督检测中心实验室完成.主量元素测试采用XRF (Rigaku RIX2100型)玻璃熔饼法完成, 分析精度和准确度均优于4%;微量元素分析利用Agilent7500a型ICP-MS完成, 分析精度和准确度优于5%.

3 分析结果 3.1 锆石U-Pb年代学

锆石背散射电子(BSE)图像和阴极发光CL图(图 3a)显示, 样品D0842-1-1中锆石结构单一, 具有较好的晶型结构, 呈长柱状, 长100~150 μm, 少数长达200 μm, 宽30~80 μm, 长宽比为3:1~5:1, 发育细密的震荡环带, 属典型的岩浆锆石[24].从锆石微区U-Pb同位素测定分析数据(表 1)可知, 在误差范围内多数测点表面年龄t(207Pb/206Pb)=t(207Pb/235U)=t(206Pb/238U), 在锆石U-Pb年龄谐和图(图 3b)上, 数据集中分布于谐和线上, 说明这些锆石测点微区保留了原始U、Pb封闭系统.此外, 这些年龄值均小于1 000 Ma.通常, 在对年轻地质体特别是年龄小于1 000 Ma的样品进行锆石年龄测定时, 206Pb/238U的年龄值精度要优于208Pb/232U和207Pb/206Pb的年龄值, 并取206Pb/238U的加权平均年龄代表锆石形成年龄[25].因此对30颗锆石进行了206Pb/238U的加权平均年龄计算, 获得488.3±3.9 Ma的锆石U-Pb加权平均年龄值, 代表了该期岩浆结晶冷凝的时间, 说明岩体侵位于晚寒武世.

图 3 平河岩体花岗岩锆石阴极发光图像和U-Pb年龄谐和图 Fig.3 CL images and U-Pb age concordia plot of zircons in granites from Pinghe pluton
表 1 潞西地区平河岩体锆石U-Pb同位素比值测定结果 Table 1 Test results for U-Pb isotope ratio of zircons from Pinghe pluton in Luxi area
3.2 主量元素特征

平河岩体中10件晚寒武世花岗岩的主量元素和微量元素分析结果及相关参数见表 2.由表 2可知, 岩石SiO2含量为69.91%~75.15%, 均大于66%, 属典型的酸性岩类.在TAS图解(图 4a)中, 多数样品投点落入了酸性火山岩流纹岩区, 对应侵入岩为二长花岗岩, 1件向钾长花岗岩过渡, 可能属分异演化程度较高的岩浆.K2O/Na2O=1.34~2.00, 大于1.SiO2-K2O图(图 4b)中所有样品属高钾钙碱性系列.岩石Al2O3含量为12.65%~14.69%, A/NCK=1.09~1.40, 平均为1.21, CIPW标准矿物组成中, 出现大量的c (1.12%~4.23%), 属强过铝花岗岩.在A/NK-A/NCK图解(图 4c)中, 所有样品均落入了过铝质花岗岩区且位于S型一侧.在A-B图解(图 4d)上, 随着B值的降低, 过铝指数A快速降低, 呈现富黑云母含堇青石过铝花岗岩的岩浆演化趋势, 暗示岩浆的形成主要为加热增温熔融机制[26-30].

表 2 潞西地区平河岩体晚寒武世花岗岩主要岩石类型主量、微量元素及CIPW标准矿物分析结果 Table 2 Major and trace element contents and CIPW norm mimeral calculation results for the Late Cambrian granites in Luxi area
图 4 平河花岗岩分类判别图解 Fig.4 Discrimination diagrams for granites of Pinghe pluton
3.3 稀土及微量元素特征

岩石稀土和微量元素含量如表 2所示, ΣREE=178.05×10-6~274.77×10-6, (La/Sm)N=2.34~3.37, 平均为2.90;(Gd/Yb)N=0.73~1.58, 平均为1.29, 轻稀土元素较重稀土元素分异程度明显.球粒陨石标准化稀土元素配分曲线图(图 5a)中, 样品具有较为一致的平缓右倾式"V"形分配曲线特征.δEu=0.20~0.63, 具中等负铕异常, 与极低Sr高Yb型(南岭型)花岗岩类似[31-32].在Sr-Yb分类图(图 6)中, 样品落入了极低Sr高Yb型(南岭型)花岗岩区, 属中上地壳较低压力条件的部分熔融作用产物[31-32].在微量元素洋中脊玄武岩标准化蛛网图(图 5b)中, 总体上富集K、Rb等大离子亲石元素, 相对亏损Nb、Ta、P、Ti等高场强元素, Rb/Sr=2.36~5.39, 均大于1, Sr/Ba=0.02~0.46, 均小于0.5, 显示S型花岗岩特征[33].

图 5 潞西地区平河岩体稀土元素球粒陨石标准化配分曲线图及微量元素洋中脊玄武岩标准化蛛网图 Fig.5 Chondrite-normalized REE patterns and N-MORB-normalized trace element spidergram of Pinghe pluton in Luxi area
图 6 潞西地区平河岩体Sr-Yb花岗岩分类图解 Fig.6 The Sr-Yb classification diagram for granites of Pinghe pluton in Luxi area
4 讨论 4.1 岩体侵位时代

潞西地区平河岩体作为保山地块西缘早古生代侵入岩的代表性岩体, 其侵位时代一直广受关注.吕伯西等[34]获得了466 Ma的黑云母K-Ar年龄, Liu et al.[22]获得了498~502 Ma的SHRIMP锆石U-Pb年龄, Chen et al.[18]获得了466 Ma、472 Ma和495 Ma的LA-ICP-MS锆石U-Pb年龄, 董美玲等[7]获得了486.3±5.5 Ma、486±2 Ma、480±11 Ma和480.4±5.7 Ma的LA-ICP-MS锆石U-Pb年龄.这些年龄数据显示平河岩体侵位于晚寒武世至奥陶纪.事实上, 平河岩体侵位于寒武世的大汪塘组和公养河组(图 2), 说明其时代晚于中寒武世.此外, 野外接触关系表明, 平河岩体存在明显的两期侵入体, 并非是从晚寒武世持续至早奥陶世, 本文488.3±3.9 Ma的锆石206Pb/238U加权平均年龄与前人所报道的晚寒武世年龄数据代表了岩体早期侵位时代.

4.2 花岗岩成因类型

I型花岗岩一般具有较低的SiO2含量, 为偏过铝质(A/CNK < 1.1)岩石[35], 并见有角闪石; S型花岗岩相比于I型花岗岩更富铝, 富含斜长石、黑云母、白云母和堇青石.平河岩体晚寒武世花岗岩以其较高的K2O含量(3.22%~4.80%, 平均4.33%>1%)而明显区别于M型花岗岩[36], 富含斜长石、黑云母等矿物, 具有较高的A/CNK比值(1.08~1.40), 属过铝质花岗岩, 总体显示S型花岗岩特征.

4.3 构造意义

在Batchelor R1-R2图解(图 7)上, 投点大部分落入同碰撞与造山期后之间的区域, 少部分落入同碰撞区内, 显示了由同碰撞向后碰撞的构造体制转换.S型花岗岩可见于包括大陆弧、弧后、同碰撞和后碰撞等大地构造背景中, 以往一些学者认为其形成于同碰撞早期挤压环境[37].最近研究认为, 这种强过铝质花岗岩形成于后碰撞环境峰期后的伸展背景[38], 因此认为平河岩体为后碰撞型花岗岩, 这与该地区晚寒武世以来连续的早古生代沉积记录相一致.

图 7 潞西地区平河岩体R1-R2成因分类图 Fig.7 The R1-R2 genetic classification diagram for Pinghe pluton in Luxi area 1-地幔分异花岗岩(mantle differentiation granite); 2-碰撞前花岗岩(pre-collision granite); 3-碰撞后隆起的花岗岩(post-collision uplifted granite); 4-造山晚期-晚造山期花岗岩(late orogenic-serorogenic granite); 5-非造山区花岗岩(anorogenic granite); 6-同碰撞花岗岩(syn-collision granite); 7-造山期后花岗岩(post-orogenic granite)

滇西保山地块西缘晚寒武世侵入岩位于怒江断裂带以东, 沿保山地块西缘呈弧状平行怒江缝合带分布(图 1b), 属东冈瓦纳北缘早古生代早期安第斯型造山带的一部分[12-14](图 1a).在拉萨地区, 冈瓦纳大陆经历了板片俯冲(约530 Ma)→弧后伸展(约510 Ma)→板片断离(约492 Ma)的演化过程, 这说明在东冈瓦纳北缘各陆块间可能存在洋壳.研究区位于保山地块西缘, 与腾冲地块以怒江缝合带相隔, 属于东冈瓦纳北缘造山带的一部分.目前, 笔者及项目组人员已在怒江缝合带中发现了早古生代早期(约500 Ma)洋壳残片, 证实保山地块与腾冲地块间存在早古生代早期的大洋.而在保山地块, Li et al.[34]已提出存在490~475 Ma时期的陆-陆碰撞事件.前已述及, 该地区早古生代花岗岩具晚寒武世和奥陶纪两期侵入体, 晚寒武世花岗岩具有后碰撞花岗岩特征.通常, 角度不整合面上覆沉积形成于一次造山结束后由挤压向伸展背景转换阶段, 而保山地块西缘角度不整合面上覆最早沉积形成于晚寒武世, 与本文研究的花岗岩形成于同一时期, 二者在时代和背景上一致, 这说明晚寒武世时期保山地块与腾冲地块已完成俯冲和碰撞, 并已进入后碰撞阶段, 因此文中花岗岩应属这一阶段地壳发生部分熔融的产物.

5 结论

(1) 滇西保山地块西缘平河岩体属于复式岩体, 由晚寒武世和早奥陶世两期侵入岩组成.

(2) 保山地块晚寒武世二长花岗岩属高温型高钾钙碱性系列强过铝质花岗岩, 具有富黑云母含堇青石过铝花岗岩(CPG)的岩浆演化趋势.

(3) 保山地块西缘晚寒武世二长花岗岩属于保山地块与腾冲地块碰撞拼合后古老地壳较低压力条件下, 上地壳物质较高程度部分熔融产物.

参考文献
[1]
Baig M S, Lawrence R D, Snee L W. Evidence for late Precambrian to early Cambrian orogeny in northwest Himalaya, Pakistan[J]. Geological Magazine, 1988, 125(1): 83-86. DOI:10.1017/S0016756800009390
[2]
胡培远, 李才, 苏犁, 等. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J]. 中国地质, 2010, 37(4): 1050-1061.
Hu P Y, Li C, Su L, et al. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau: Age records of Pan-African movement and Indo-China movement[J]. Geology in China, 2010, 37(4): 1050-1061. DOI:10.3969/j.issn.1000-3657.2010.04.019
[3]
林仕良, 丛峰, 高永娟, 等. 滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2): 258-263.
Lin S L, Cong F, Gao Y J, et al. LA-ICP-MS zircon U-Pb age of gneiss from Gaoligong Mountain Group on the southeastern margin of Tengchong block in western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2/3): 258-263.
[4]
Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. DOI:10.1016/j.jseaes.2011.12.018
[5]
Ding H X, Zhang Z M, Dong X, et al. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 2015, 27(4): 1616-1629. DOI:10.1016/j.gr.2014.02.003
[6]
Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.
[7]
董美玲, 董国臣, 莫宣学, 等. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J]. 岩石学报, 2012, 28(5): 1453-1464.
Dong M L, Dong G C, Mo X X, et al. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 2012, 28(5): 1453-1464.
[8]
刘琦胜, 叶培盛, 吴中海. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 2012, 31(2): 250-257.
Liu Q S, Ye P S, Wu Z H. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2): 250-257. DOI:10.3969/j.issn.1671-2552.2012.02.007
[9]
刘一鸣. 青藏高原羌南一保山板块550~450 Ma岩浆事件——兼论冈瓦纳大陆北缘基底构造演化[D]. 长春: 吉林大学, 2017: 1-180.
Liu Y M. Magmatism at 550-450 Ma within the South Qiangtang-Baoshan Plate of the Tibetan Plateau: Constraints on the tectonic evolution of the basement of the northern Gondwana margin[D]. Changchun: Jilin University, 2017: 1-180.
[10]
李文昌, 潘桂堂, 侯增谦, 等. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010: 1-490.
Li W C, Pan G T, Hou Z Q, et al. Archipelagic basin, forming collision theory and prospecting techniques along the Nujiang-Lancangjiang-Jinshajiang area in Southwestern China[M]. Beijing: Geological Publishing House, 2010: 1-490.
[11]
李再会, 林仕良, 丛峰, 等. 滇西腾冲-保山地块早古生代岩浆作用和地球化学: 岩石成因和构造背景[J]. 矿物岩石地球化学通报, 2013, 32(6): 689-703.
Li Z H, Lin S L, Cong F, et al. Magmatism and geochemistry of the Early Paleozoic of the Tengchong-baoshan block, Western Yunnan, China: Implications for petrogenesis and tectonics[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6): 689-703.
[12]
蔡志慧, 许志琴, 段向东, 等. 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2123-2140.
Cai Z H, Xu Z Q, Duan X D, et al. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 2123-2140.
[13]
邓军, 杨立强, 王长明. 三江特提斯复合造山与成矿作用研究进展[J]. 岩石学报, 2011, 27(9): 2501-2509.
Deng J, Yang L Q, Wang C M. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011, 27(9): 2501-2509.
[14]
Deng J, Wang Q F, Li G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, Southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299. DOI:10.1016/j.earscirev.2014.05.015
[15]
李维科, 王晓林, 刘兵, 等. 滇西保山地块南部公养河群研究新进展[J]. 地质通报, 2018, 37(11): 1970-1979.
Li W K, Wang X L, Liu B, et al. New progress in the study of Gongyanghe Group in southern Baoshan block, western Yunnan Province[J]. Geological Bulletin of China, 2018, 37(11): 1970-1979.
[16]
金世昌, 庄凤良. 龙陵-潞西地区花岗岩矿物中熔融包裹体研究[J]. 昆明工学院学报, 1988, 13(5): 1-15.
Jin S C, Zhuang F L. Study of melting inclusion in granites at Longling in Luxi area[J]. Journal of Kunming Institute of Technology, 1988, 13(5): 1-15.
[17]
陈吉琛. 滇西花岗岩类时代划分及同位素年龄值选用的讨论[J]. 云南地质, 1987, 6(2): 101-113.
Chen J C. Discussion on the age division and the selects of isotopic age determination for granitic rock in western Yunnan[J]. Yunnan Geology, 1987, 6(2): 101-113.
[18]
Chen F K, Li X H, Wang X L, et al. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, Southwestern China[J]. International Journal of Earth Sciences, 2007, 96(6): 1179-1194. DOI:10.1007/s00531-006-0146-y
[19]
郝家栩, 邹立志, 陈刚, 等. 滇西施甸地区卧牛寺组火山岩的地质时代及喷发环境[J]. 中国地质调查, 2015, 2(7): 40-44.
Hao J X, Zou L Z, Chen G, et al. Age and eruption environment of volcanic rock from Woniusi Formation in Shidian, Western Yunnan Province[J]. Geological Survey of China, 2015, 2(7): 40-44.
[20]
禹丽, 李龚健, 王庆飞, 等. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约[J]. 岩石学报, 2014, 30(9): 2709-2724.
Yu L, Li G J, Wang Q F, et al. Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block: Constraints from bulk geochemistry zircon U-Pb geochronology and Hf isotopic compositions[J]. Acta Petrologica Sinica, 2014, 30(9): 2709-2724.
[21]
崔晓琳, 邓军, 张铎, 等. 滇西腾冲地块高黎贡山群早志留世变质花岗岩体的年代学、地球化学特征及意义[J]. 岩石学报, 2017, 33(7): 2085-2098.
Cui X L, Deng J, Zhang D, et al. Chronological and geochemical characteristics of the Early Silurian metamorphic granites in Tengchong Block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 2017, 33(7): 2085-2098.
[22]
Liu S, Hu R Z, Gao S, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic Ⅰ-type granite from the Tengchong-Baoshan block, western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2009, 36(2/3): 168-182.
[23]
Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[24]
周剑雄, 陈振宇. 电子探针下锆石阴极发光的研究[M]. 成都: 电子科技大学出版社, 2007: 1-104.
Zhou J X, Chen Z Y. Study on cathodoluminescence of zircon by electron probe[M]. Chengdu: University of Electronic Science and Technology of China Press, 2007: 1-104.
[25]
Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards[J]. Chemical Geology, 2003, 200(1/2): 171-188. DOI:10.1016/S0009-2541(03)00166-9
[26]
Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4): 29-44.
[27]
葛文春, 李献华, 李正祥, 等. 桂北新元古代两类过铝花岗岩的地球化学研究[J]. 地球化学, 2001, 30(1): 24-34.
Ge W C, Li X H, Li Z X, et al. Geochemical studies on two types of Neoproterozoic peraluminous granitoids in northern Guangxi[J]. Geochimica, 2001, 30(1): 24-34.
[28]
林广春, 马昌前. 过铝花岗岩的成因类型与构造环境研究综述[J]. 华南地质与矿产, 2003(1): 65-70.
Lin G C, Ma C Q. Genesis of peraluminous granitoids and their tectonic settings[J]. Geology and Mineral Resources of South China, 2003(1): 65-70.
[29]
廖忠礼, 莫宣学, 潘桂堂, 等. 过铝花岗岩的研究动向和进展——兼论西藏过铝花岗岩[J]. 沉积与特提斯地质, 2004, 24(2): 22-29.
Liao Z L, Mo X X, Pan G T, et al. Peraluminous granites: Insights from recent developments with discussions on the peraluminous granites in Xizang[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(2): 22-29.
[30]
钟长汀, 邓晋福, 武永平, 等. 华北克拉通北缘中段古元古代强过铝质花岗岩地球化学特征及其构造意义[J]. 地质通报, 2006, 25(3): 389-397.
Zhong C T, Deng J F, Wu Y P, et al. Geochemical characteristics and tectonic significations of Paleoproterozoic strongly peraluminous granitoids in the central segment of the northern margin of the North China craton[J]. Geological Bulletin of China, 2006, 25(3): 389-397.
[31]
张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269.
Zhang Q, Wang Y, Li C D, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(9): 2249-2269.
[32]
张旗, 潘国强, 李承东, 等. 花岗岩构造环境问题: 关于花岗岩研究的思考之三[J]. 岩石学报, 2007, 23(11): 2683-2698.
Zhang Q, Pan G Q, Li C D, et al. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3)[J]. Acta Petrologica Sinica, 2007, 23(11): 2683-2698.
[33]
刘振声, 王洁民. 青藏高原南部花岗岩地质地球化学[M]. 成都: 四川科技出版社, 1994: 1-133.
Liu Z S, Wang J M. Geological and geochemical features of granite in the south of Qinghai-Tibet Plateau[M]. Chengdu: Sichuan Science and Technology Publishing House, 1994: 1-133.
[34]
吕伯西, 王增, 张能德, 等. 三江地区花岗岩类及其成矿专属性[M]. 北京: 地质出版社, 1993: 1-328.
Lv B X, Wang Z, Zhang N D, et al. Granitoids in the Sanjiang region (Nujiang-Lancangjiang-Jinshajiang Region) and their metallogenic specialization[M]. Beijing: Geological Publishing House, 1993: 1-328.
[35]
Li G J, Wang Q F, Huang Y H, et al. Petrogenesis of Middle Ordovician peraluminous granites in the Baoshan block: Implications for the Early Paleozoic tectonic evolution along east Gondwana[J]. Lithos, 2016, 245: 76-92. DOI:10.1016/j.lithos.2015.10.012
[36]
Hu P Y, Zhai Q G, Jahn B M, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the Early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 2015, 220-223: 318-338. DOI:10.1016/j.lithos.2014.12.020
[37]
Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic Rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
[38]
Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1-29.